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S-matrix theory = technology for calculating and dealing with amplitudes.

Amplitudes are not physical observables, suffering artefacts like gauge dependence,
ghosts, IR singularities and superficially acausal behaviour.

These artefacts are eliminated only when we combine individual amplitudes
together to obtain physical probabilities.

Dream: develop the technology for calculating these probabilities directly in the
hope that such artefacts never appear explicitly.



Causality is built into QFT through the vanishing of the equal-time commutator
(bosons) or anti-commutator (fermions) of field operators:

(), 0(y)| = |z, dy] =0 if (x —y)* <0 (space-like)

Yet, it is the Feynman propagator that is ubiquitous in S-matrix theory:

AP (@,y) = AE) = L sgn(eo — 30) ([60204]) + & ({620}

causal a-causal

The S-matrix is not a good place to start: infinite plane waves in infinite past/future.

Surely, it is the retarded propagator that should be ubiquitous:
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An archetypal signalling process: Fermi’s two-atom problem

[E. Fermi, Rev. Mod. Phys. 4 (1932) 87]
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Fermi calculated that P(D*S|DS*) =0 forT < R/c

but he made a mistake
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Fermi should have obtained a non-zero result for all T:

« Vacuum can excite D at any time (R independent)

 Even the R dependent part of P is non-zero for T < R/c

There is no paradox though because Fermi’s observable is non-local.
Resolution finally came via Shirokov (1967) and Ferretti (1968).

Think of measuring only D and not S (or the electromagnetic field) at time T.

In that case:

dP(D*|DS*)
dR

=0 forT < R/c

[M. L. Shirokov, Sov. J. Nucl. Phys. 4 (1967) 774; B. Ferretti, in Old and new problems in elementary particles, ed. Puppi, G., Academic Press,
New York (1968); E. A. Power and T. Thirunamachandran, Phys. Rev. A56 (1997) 3395; for a summary of the history of the Fermi problem, see R.
Dickinson, ]J. Forshaw and P. Millington, Phys. Rev. D93 (2016) 065054.]
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Amplitude-level analysis: the relevant Feynman graphs

t

NN

"AVAVAVAY ,
T T T
D S D S D S D

® @ ® @

Acausal terms cancel in the sum of

D<@ + @x0@ + OxO

+ C.C. crossed

Causality emerges only at the level of probabilities
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“In this paper [ will not say anything new, but I hope that it will not be
completely useless because, even if already known or immediately deducible
from known facts, it does not seem to be clearly remembered.” Ferretti 1967

* 1932 Fermi’s original paper
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There Are No Causality Problems for Fermi’s Two-Atom System
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A repeatedly discussed gedanken experiment, proposed by Fermi to check Einstein causality, is
reconsidered. It is shown that, contrary to a recent statement made by Hegerfeldt, there appears no
causality paradox in a proper theoretical description of the experiment.

* 1994: Buchholz and Yngvason restore order



“Weak causality”
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. Alice prepares her atom at t = O (excited = 1, ground = 0)
Bob prepares his atom at t = 0.

. Bob measures his atom att=T.
. Go to step 1 and repeat.

. Bob can determine Alice’s choice only after accumulating sufficient statistics.

Schlieder (1971)
Buchholz & Yngvason (1994)
Hegerfeld (1998)



A manifestly causal way to compute probabilities

e.g. P =(i[UT|f){fIUli) = Te(|f)(f|U) (i[UT)

]

E P0 U = Texp F /t jf dt Hint(t)]

(4

To see causality: commute E through U and use BCH

The BCH formula leads to an expansion of nested commutators:

[see also M. Cliche and A. Kempf, Phys. Rev. A81 (2010) 012330; J. D. Franson and M. M. Donegan, Phys. Rev. A65 (2002) 052107;
R. Dickinson, ]J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.]
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where Fo=F @12...j enforces t1 > t9 > - - tj

1
F; = - [Fi—1, Hing(t5)]



e.g. Fermi problem in scalar field theory

Ho:Zwilnsxnsl+Zw£|n”><n”\+/ x (567 + 3(Ve)? + m?6?)

Hin (1) = M®° ()p(x°,t) + MP () p(xP, 1) x° —xP| =R
. Z X dwX ot X\ X _
o Hmn €77 ‘m ><n ‘ X =25D
m.,n Wmn = Wm — Wn

P=Tr(Epr) E=ES@EP®E e.g. E=|f){f

; . E= ZInS,qD a®)(n®,q", a?|
pr = UropoUr e.g. po = [i)(1]

1 T
— / dt Hint:|
t Jo

Uro = Texp
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Notation: e.g. {[E”,M{],My} = Ef)

BY, = BN ME] BN = (BN MY} e = tenel] e = (En0f)
and
Eoég,.l = Eklgk_l + Ek_lgkl -+ E@lgkl + Eﬂgkl

Can then write down any F operator:

Fi=3(BEYEPEY + EYEVEY + EPEYE] + B°EYEY) = 5(EYEVEY + E°EYEL)

Fo = i(EngDé’f?S + EfEfngD + E§E§5£S + E°ERERP)

(o) o0

_ a—-n = IS D (S...S D...D)
S =2 Z E(g:::g Eatl’{}) g(.l ogafl..n)
a=20

(...) = permutations subject to time ordering within each operator
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e.g. the Fermi case (only D is observed to be in state with energy w, )

E= Z\ns,qD a®)(n®, ¢, a?|

=) 1°1°|¢") ("]

i) = |p®, 9", 0%)

Unit E operator in field space implies 1 index must be underlined on & ...

Implies 1 index is never underlined on E:X.

Since the E operator in S space is also the unit operator, the latest
time must always reside on E.

| owest order:

(i| P2 li) = (p°gP0°| § (BRER + BRERY + BP BSEF) 592 0°) AZYUD = (0l{e¥, 6} }o)

= |ufy (AR Meoswtis + AR Wsinewts AT = —itol[o. )0} ©

No dependence on source atom, S.

12



(1 Fali) > (p°gP0%| & (ERESERRSS + BRESERE + ERESERET) v59°0%)
= 15 (BD) ((B5) (EBE5S) + (B5) (€B55S))
+ 35 (BR) ((B5) (ER5E5) + (B5) (50 )
+ 15 (BR) (B5) (EB5P) + 35 (BD) (ES) (€057

DS DS R DS R
ZZWSM |,qu {costtlg smwS 2tag A (H )+C08w2§nt34 (R) (R)

DS(R) DS(R)

D D (H) S
+ cosw,,t13 smw tog A +coswpnt24

+ COquDgt12<Slan taq A DS( )—|—COSUJS fos DS(R)) DS(R)
+ sinw, t23<COSW tig Ay, + sinwg, t1g Ay >

SD(R) DS(R)}

t; —t

Every term is purely real.

Every term contains a retarded propagator linking S and D = manifestly causal.
Just need expectation values of nested commutators & anti-commutators.

Simple diagrammatic rules.....
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i //tl //t1 -1t
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+ // // / tg\\\
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The graphs relevant to the part of the probability that D is excited at time T
that depends on the location of atom S.

These are NOT Feynman graphs

Latest vertex on S always connected to a future vertex on D by a retarded

propagator.
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Computing expectation values

1. The field

The vacuum expectation value of a general nesting of commutators and anti-
commutators, i.e. &1 (2p) with any combination of underlinings, can be written
as 2P times the sum of all distinct products of p propagators subject to the fol-
lowing rule: every non-underlined (commutation) index must become the second
index on a retarded propagator and all remaining indices are paired and associ-
ated with Hadamard propagators.

E = 1
e.g. e _ 0 £
(01€1210) = 2(0][2¢1, 2]|0) = (0|2A12]0) = 2A®

(0[{2¢1, @2}|0) = (0]2¢(102)|0) = QA(H)
0‘51234‘0> — <O 4A12A34’O> — 4A(R)A(R)
(0148126(364)[0) = 423 ALY

>> (0 ‘4<A13A24 + A23A14) 0) = 4(A(R)A(R) + A(R)A(R)) ,

0 €12340) = (0] 4(A1sdathe) + Azsduén) 0) = 4(A15 Ag + Ay ALY)
) (0] 4(p192A3)4) |0) = 4(A$I)A(R) +ADAN A(H)A(R)) |
) (0] 261 padsta 10) = 4(A ALY + A ALY + ATVAIDY
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2. The atoms E = €mn Im)(n|

e.g. N =3
g Pab = 5ag5gb

€Emn €Emn €Emn €Emn emn — 6mq5qn
n m m n
s . . ) . for Fermi problem
5bm §na r
r 7 r b
a b a a
Dah Dah Pahb Dah
€Emn €Emn Emn €mn

n n
r a m
a m T
b b
1. Work clockwise around the ellipse and

(a) assign a factor of u,s for each time,
(b) connect consecutive times with atom Wightman propagators A;}>)7

(c) assign a factor of et(=)%rti for the times t; followed (preceded) by a

Wtk Cross.

— Wt Jtwnti ,—twWm e

ie ‘e €

AT e
€mn Pab Lbm Hralnr
2. Assign a factor of n; for any time ¢; appearing on the falling side of the
. llipse.

r(>) _—iwptyy ©

1 .
As(z,y) = (9(x)d(y)) = / (');)K)L e 16



+ 3 more

22 ’:ugn|2 ’,LL |2 Sin(wgntgg) Sin(wcﬁ;tm) ASD(R) ADS(R)

Since probabilities contain both time-ordered and anti-time-ordered contributions, the
diagrammatic structure resembles that of the closed-time-path formalism.

[J. S. Schwinger, ). Math. Phys. 2 (1961) 407-432; L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515-1527, Sov. Phys. JETP 20 (1965) 1018; R. L.
Kobes and G. W. Semenoff, Nucl. Phys. B260 (1985) 714-746; B272 (1986) 329-364; R. L. Kobes, Phys. Rev. D43 (1991) 1269-1282; see also R.
Dickinson, J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.]
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In order to find a (weakly) causal result for the Fermi two-atom problem, we had to
sum inclusively over the (unobserved) final state of the photon field.

By working directly with probabilities, summing inclusively over the states spanning
a given Hilbert space corresponds to a unit operator, i.e. we do not have to
calculate the individual amplitudes for all possible emissions in the final state.

What does this mean for the Bloch-Nordsieck or Kinoshita-Lee-Nauenberg
theorems? Are they applied implicitly if we work directly with probabilities?

18



General observables P — G0 EUL) = Te(EU U

B d’k 1 ;
Nro = ) /R 2r)? o e A k)
Ar, = T+ Y (_,1')j (Ng,)’: = operator form of the Sudakov factor
, J-
71=1
= e VRo

ki...ky) ifng=0 no = number of quanta in R
Ay KK = {O =
otherwise Ags = [0)(0]
e.g.
Ay =T
A —. L n VN, o .
Ro — ° ﬁ( Ro) € : = semi-inclusive prOJectlon operator

Projects onto the subspace of states in which exactly j particles have momenta

in Ro.
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This generalises to

. 1 B
Mleng =TT (Gy(e)") e

Ja!

Projects onto the subspace of states in which exactly ) j, particles have mo-
menta in R, distributed so that exactly j, particles have momenta in each
disjoint subset R, C Ry.

e.g. Pick Ry = R? and one particle with momentum k — k + d3k. In this case
we compute using

N, Pk o d%k
E= :NyeMes: = 2B a’(k)a(k) |0)(0] : = ——— |k)(K|

Can compute differential in any function of the final state momenta for observables
that are fully inclusive over some region, i.e. the most general type of observable.

n

1 _ ST / - 3(on (k) n, NG ) e Nro .

n 1=1 =1

Ry is the region over which the observable is sensitive
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Conclusions
* The S-matrix is (quite literally) only half the story.

* Einstein causality in the Fermi two-atom problem emerges only after we sum inclusively
over the unobserved final states of the source atom and the electromagnetic field.

* There exists a way to compute directly at the level of probabilities where causality is
explicit: How useful is it? What are the general graphical rules?

* What are the implications for dealing with soft and collinear IR divergences in gauge
theories?

* There are parallels with the closed-time path formalism and diagrammatics of non-
equilibrium QFT, including the Kobes-Semenoff unitarity cutting rules.
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