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OUTLINE

▸ Introduction 

▸ PDFs with large-x resummation 

▸ PDFs with small-x resummation: evidence for BFKL 
dynamics in inclusive HERA data 

▸ Double resummation 

▸ Conclusion and Outlook
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‣ coefficient functions (NLO,NNLO, N3LO) 

‣ parton evolution (NLO,NNLO) 

‣ electro-weak corrections

SIMONE MARZANI - VIENNA SEMINAR

A WORD ON PDFs
▸ Parton distribution functions describe the non-perturbative 

structure of the colliding protons 

▸ collinear factorisation implies their universality (up to 
power corrections)

�(x, Q) = �0C

✓
x

x1x2
, ↵s(µ)

◆
⌦ f1(x1, µ)⌦ f2(x2, µ)

measure extractcompute
‣ quark mass effects 

‣ target-mass corrections  

‣ …
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HIGHER-ORDER CORRECTIONS
▸ Higher-order QCD corrections correspond to emission of 

extra partons or virtual corrections 

▸ these corrections are enhanced in particular regions of 
phase-space
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 WE WILL MOST CONVENIENTLY WORK IN MELLIN SPACE 
SOFT-GLUON RESUMMATION: Z→1 ➪ LOGS OF N 
BFKL RESUMMATION:  Z→0 ➪ POLES IN N (TYPICALLY AT N=0)
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DATASET OF A GLOBAL FIT
▸ Standard PDFs fits rely on NLO 

and NNLO calculations of 
coefficient functions and 
evolution 

▸ current datasets span several 
order of magnitude in Q2 and x

Resummations in this talk

Large-x threshold resummation:

x ! 1

due to soft gluon emissions

resums double logs
⇣

log
k
(1�x)

1�x

⌘

+

in Mellin space, logN at N ! 1

[MB,Marzani,Rojo,Rottoli,Ubiali,Ball,Bertone,

Carrazza,Hartland 1507.01006]

Small-x high-energy (BFKL) resummation

x ! 0

due to high-energy gluon emissions

resums single logs 1

x logk x

in Mellin space, poles 1/(N � 1) in the limit N ! 1

[MB,Marzani,Peraro,NNPDF (in preparation)]
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Figure 1: The kinematical coverage in the
�
x, Q2

�
plane of the NNPDF3.0 dataset. For hadronic data,

leading-order kinematics have been assumed for illustrative purposes. The green stars mark the data
already included in NNPDF2.3, while the circles correspond to experiments that are novel in NNPDF3.0.

same process are available from the ATLAS Collaboration [92], but are given at the hadron level
and thus cannot be directly included in our fit (though they could be included by for example
estimating a hadron-to-parton correction factor using MadGraph5 aMC@NLO).

Finally, we include the LHCb Z ! ee rapidity distributions from the 2011 dataset [61],
which are more precise than the previous data from the 2010 run. The forward kinematics of
this data provide constraints on PDFs at smaller and large values of x than the vector boson
production data from ATLAS and CMS. Further LHCb data from the 2011 run for Z boson
rapidity distributions in the µµ channel [93] and for low mass Drell-Yan production [94] are still
preliminary.

Concerning inclusive jet production from ATLAS and CMS, we include the CMS inclusive
jet production measurement at 7 TeV from the full 5 fb�1 dataset [62], which has been pro-
vided with the full experimental covariance matrix, and which supersedes previous inclusive jet
measurements from CMS [95]. This data has a large kinematical coverage: for example, in the
central rapidity region, the CMS data reaches up to jet transverse momenta of more than 2
TeV, thus constraining the large-x quark and gluon PDFs [96,97]. From ATLAS, we include the
new inclusive cross section measurement at

p
s = 2.76 TeV [63], which is provided with the full

correlation matrix with the corresponding
p

s = 7 TeV measurement. Measuring the ratio of jet
cross-sections at two di�erent center of mass energies enhances the PDF sensitivity thanks to the

12
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▸ Do we trust FO everywhere? 

▸ Do we see evidence of all-order effects in the data? 

▸ Is it ok to use standard PDFs with resummed calculation?

QUESTIONS THAT COME TO MIND
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THRESHOLD (LARGE-X) 
RESUMMATION
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PRODUCTION AT THRESHOLD
▸ absolute threshold: the initial-

state energy is just enough to 
produce the final state with 
invariant mass Q 

▸ emissions forced to be soft, 
leading to log-enhanced 
contributions order-by-order in 
perturbation theory

x =
Q2

s
! 1

LO : Q2
= ŝ

beyond LO : Q2
= zŝ

C(z,↵s) ⇠ �0

X

n=1

2n�1X

k=�1

↵n
s

"
lnk(1� z)

1� z

#

+�(1� z)
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WHY BOTHER WITH THRESHOLD AT THE LHC?
▸ Gluon PDF shows a steep 

increase at low x 

▸ region of partonic threshold is 
enhanced in the convolution

ŝ = x1x2s

▸ more precise argument in Mellin space 

▸ a saddle-point approximation indicates the 
region that gives the bulk of the contribution 
to the inverse Mellin integral   

▸ this region turns out to be fairly narrow around 
the (real) saddle-point

 1.5

 2
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 5

 1  10  100

N 0

√s [TeV]

( NNLO, finite mt )  mH = 125 GeV

Bonvini, Forte, Ridolfi (2012)
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THRESHOLD RESUMMATION
▸ momentum space:  distributional terms for z →1 

▸ moment space: terms that do not vanish at large N

where we have used the same symbols, with different arguments, for a function and its Mellin transform.
Note that threshold resummation only affects the gg channel: we therefore suppress the flavours indices
and implicitly focus on the gg channel. We will later comment on the role of the quark channels. The
N -space resummed coefficient function has the form (see [13] and reference therein):

Cres(N,↵s) = ḡ0
�
↵s, µ

2

F

�
exp S̄(↵s, N), (3.2)

S̄(↵s, N) =

Z
1

0

dz
zN�1

� 1

1 � z

0

@
Z m2

H

(1�z)2

z

µ2

F

dµ2

µ2
2A

�
↵s(µ

2)
�
+D

�
↵s([1 � z]2m2

H
)
�
1

A, (3.3)

ḡ0(↵s, µ
2

F
) = 1 +

1X

k=1

ḡ0,k(µ
2

F
)↵k

s , (3.4)

A(↵s) =
1X

k=1

Ak↵
k
s , D(↵s) =

1X

k=1

Dk↵
k
s , (3.5)

where ḡ0(↵s, µ2
F
) does not depend on N . We note that in the full theory, all the top-mass dependence

is in ḡ0. Furthermore, under the rEFT assumption, its expression factorizes as

ḡ0(↵s, µ
2

F
) = W (m2

H
,m2

t
, µ2

F
) ˜̄g0(↵s, µ

2

F
) (3.6)

where now ˜̄g0(↵s, µ2
F
) does not depend on the top mass. Note that we have restored explicit scale

dependence and we have chosen the factorization scale µF as the scale of the running coupling ↵s =
↵s(µ2

F
). The three-loop coefficients of A(↵s) and D(↵s) have been known for a while (see for instance

Refs. [39–41]), while the O
�
↵3
s

�
contribution to ˜̄g0 has been recently computed [9]. The four-loop

contribution to A(↵s), which is needed to achieve full N3LL accuracy, is unknown. However, a Padé
estimate [40] can suggest the size of its value, and a numerical analysis shows that its impact in a
resummed result is essentially negligible.

The integrals in Eq. (3.3) can be computed at any finite logarithmic accuracy by using the explicit
solution of the running coupling, in terms of ↵s at a given reference scale, which we can also choose
to be µF in first place. At this point we have a result which depends on a single scale µF, with ↵s

always computed at µF (note that, while the µF dependence of S̄ is explicit, the one of ḡ0 can be
recovered by imposing µF-independence of the full cross section). In order to write the result in a
canonical way, we further evolve ↵s from µF to µR using the explicit solution of the running coupling
equation at sufficiently high order, and propagating the resulting logarithms in the various terms at
each fixed-order (in ḡ0) and logarithmic-order (in S̄) accuracy. Then, the final result explicitly depends
on both µR and µF.

The computation of the integrals in Eq. (3.3) is rather cumbersome when performed exactly. The
resulting expression was called A-soft in Ref. [13]. The computation is much simpler when performed
in the large-N limit, where the result of the integrals is written as a function of lnN only. We call
the result in this limit N -soft. Explicit expressions for S̄ in the N -soft limit up to N3LL are given in
Ref. [40]4 with full µF and µR dependence.

In Ref. [13] two of us proposed a variant of the N -soft resummation based on the simple replace-
ment

lnN !  0(N), (3.7)
4To be precise, the expressions in Ref. [40] are for the logarithmic part of the exponent, and not for the N -independent

terms.

– 6 –

Anastasiou et al. (2014)

Catani et al. (2002); Moch, Vogt (2005); 
Laenen, Magnea (2005) […]

‣ constants can go in the exponent of in front of it 
‣ state of the art N3LL (but the 4-loop cusp) 
‣ next-to-eikonal can be important (e.g. (1-z)2/z)

Laenen et al. (2015, 2016); 
Larkoski, Neill, Stewart (2015)
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PDFs AT LARGE X
▸ coefficient functions contain 

large-x logs 

▸ PDF evolution doesn’t (in MSbar)

Resum what?

Observable: � = �0 C(↵s(µ))⌦ f(µ)
h
⌦ f(µ)

i

Evolution: µ2 d
dµ2

f(µ) = P (↵s(µ))⌦ f(µ)

Any object with a perturbative expansion and a log enhancement:

coe�cient functions C(↵s(µ)) (observable)

splitting functions P (↵s(µ)) (evolution)

observable evolution
coe�cient functions C(↵s(µ)) splitting functions P (↵s(µ))

large-x (N)NNLL —
small-x LLx NLLx

Marco Bonvini Resummation in PDF fits 4

Pgg(x) ⇠
A(↵s)

(1� x)+

Processes in a global (NNPDF) PDF fits (arXiv:1507.01006)

Process observable resummation available

DIS d�/dx/dQ2 (NC, CC, charm, ...) YES
DY Z/� d�/dM2/dY YES
DY W di↵erential in the lepton kinematics NO
tt̄ total � YES
jets inclusive d�/dpt/dY YES/NO

Including DY W requires threshold resummation at fully di↵erential level: not
available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that
NLL is very poor: we excluded them

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms)

www.ge.infn.it/⇠bonvini/troll

tt̄ available from top++ www.alexandermitov.com/software

Marco Bonvini Resummations in PDF fits 6

it should be easy to compute

different calculations exist at NLL(*) but no 
public implementation

Processes in a global (NNPDF) PDF fits (arXiv:1507.01006)

Process observable resummation available

DIS d�/dx/dQ2 (NC, CC, charm, ...) YES
DY Z/� d�/dM2/dY YES
DY W di↵erential in the lepton kinematics NO
tt̄ total � YES
jets inclusive d�/dpt/dY YES/NO

Including DY W requires threshold resummation at fully di↵erential level: not
available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that
NLL is very poor: we excluded them

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms)

www.ge.infn.it/⇠bonvini/troll

tt̄ available from top++ www.alexandermitov.com/software

Marco Bonvini Resummations in PDF fits 6

‣ performing a resummed fit is 
relatively straightforward 

‣ data set is restricted: no jets 

‣ (*)global vs non-global
de Florian, Vogelsang (2007, 2013); 
Kidonakis, Owens (2000); Liu, Moch, 
Ringer (2017)
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EFFECTS ON THEORY PREDICTIONSE↵ects on the theory predictions
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Marco Bonvini Resummation in PDF fits 7

‣  K-factors reduced when NNLO is included: resummation is perturbative
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PDFs FIT WITH THRESHOLD RESUMMATION
Impact on PDF fits: �2

J
H
E
P
0
9
(
2
0
1
5
)
1
9
1

Experiment NNPDF3.0 DIS+DY+top

NLO NNLO NLO+NLL NNLO+NNLL

NMC 1.39 1.34 1.36 1.30

SLAC 1.17 0.91 1.02 0.92

BCDMS 1.20 1.25 1.23 1.28

CHORUS 1.13 1.11 1.10 1.09

NuTeV 0.52 0.52 0.54 0.44

HERA-I 1.05 1.06 1.06 1.06

ZEUS HERA-II 1.42 1.46 1.45 1.48

H1 HERA-II 1.70 1.79 1.70 1.78

HERA charm 1.26 1.28 1.30 1.28

DY E866 1.08 1.39 1.68 1.68

DY E605 0.92 1.14 1.12 1.21

CDF Z rap 1.21 1.38 1.10 1.33

D0 Z rap 0.57 0.62 0.67 0.66

ATLAS Z 2010 0.98 1.21 1.02 1.28

ATLAS high-mass DY 1.85 1.27 1.59 1.21

CMS 2D DY 2011 1.22 1.39 1.22 1.41

LHCb Z rapidity 0.83 1.30 0.51 1.25

ATLAS CMS top prod 1.23 0.55 0.61 0.40

Total 1.233 1.264 1.246 1.269

Table 5. Same as table 4 for the DIS+DY+top fits.

this particular observable.5 At the level of total χ2 we see that fixed-order and resummed

fits lead to essentially the same value, since in the resummed case the improvement in some

experiments is compensated by the deterioration of others.

Turning to the NNLO+NNLL fit results in table 5, we see that now the effect of

resummation is more moderate. Effects are small, and also in this case resummation

deteriorates the fit quality for the fixed-target Drell-Yan data. Interestingly, the χ2 for the

LHCb Z rapidity data, which, being in the forward region, probe rather large values of x,

improves substantially with the inclusion of resummation, even at NNLL. Given the small

differences at the χ2 level, we also expect smaller differences at the PDF level, as in the

case of the DIS-only NNLO+NNLL fit.

The comparison of the PDFs between the NLO and NLO+NLL DIS+DY+top

fits is shown in figure 10, and the corresponding comparison between the NNLO and

NNLO+NNLL fits is found in figure 11. These can be compared with the corresponding

DIS-only fits, see figure 8 and figure 9. In the case of the NLO+NLL fit, the trend is similar

to that of the DIS-only fit: softer quarks at very large x, and a corresponding enhancement

5We have checked that in a fit based only on HERA data and fixed-target Drell-Yan data, in both the

NLO+NLL and NNLO+NNLL fits we get χ2 ∼ 1 for the Drell-Yan data. Therefore, the deterioration of

the χ2 of E866 in the resummed fits can be attributed to tension with other datasets, rather than a failure

of the resummation to correctly describe this dataset.

– 21 –

Resummed �2 slightly worse
DY fixed-target experiment are the origin of the problem

Marco Bonvini Resummation in PDF fits 11

‣ as expected: visible 
effects at NLO+NLL are 
very much reduced at 
NNLO+NNLL 

‣ 𝜒2 slightly worse 
because of DY fixed-
target experiments 

‣ this remains a puzzle
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PARTONS WITH THRESHOLD RESUMMATION
Impact on PDF fits: PDFs
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Impact on PDF fits: luminosities
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‣ comparison to global fit: larger uncertainties because of 
reduced dataset 

‣ only “proof-of-concept” studies
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PHENOMENOLOGY

‣ effects on SM Higgs negligible 

‣ more pronounced for high-mass 
states, still within PDF errors 

‣ large-x PDFs not (yet) competitive 
because of missing jet data

Impact on phenomenology

Higgs:
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Higgs cross section: gluon fusion

LHC 13 TeVNNLO, fixed order PDFs
NNLO+NNLL, fixed order PDFs
NNLO+NNLL, resummed PDFs

SUSY particles: [Beenakker,Borschensky,Krämer,Kulesza,Laenen,Marzani,Rojo 1510.00375]
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Impact on phenomenology

Higgs:

SUSY particles: [Beenakker,Borschensky,Krämer,Kulesza,Laenen,Marzani,Rojo 1510.00375]

mq̃ = mg̃ = m [GeV]

Global fit

NLL/NLO DIS+DY+top

Prescription (1)

Prescription (2)
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KNLO+NLL(pp ! g̃g̃ + X)p
S = 13 TeV
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HIGH-ENERGY (SMALL-X) 
RESUMMATION
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LHC KINEMATICS

DGLAP

BFKL

d

d ln(Q2/µ2)
G(N, Q2) = ⇥(N, �s)G(N, Q2)

d

d ln(1/x)
G(x, M) = ⇥(M,�s)G(x, M)

DGLAP: Q2 evolution for N moments of the parton density

BFKL: small-x evolution for M moments of the parton density

lnk 1
x
� 1

Nk+1

lnk Q2

µ2
� 1

Mk+1Mellin moments:

logs� poles

‣ PDFs are largely unconstrained at low x 

‣ LHC does probe this region 

‣ Is DGLAP enough to describe this region? 

‣ Do we need to worry about small x? and 
saturation?
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‣ DGLAP evolution in the singlet sector 

‣ the gluon splitting functions start at LLx 

‣ while the quarks are NLLx

SIMONE MARZANI - VIENNA SEMINAR

DGLAP EVOLUTION AT SMALL-X

Marco Bonvini, et al.: Small-x resummation from HELL 3

We address these three steps in turn, giving a brief sum-
mary of the ABF procedure, emphasizing those aspects
that are di�erent from the original construction. We finally
comment on the numerical implementation and present
some results.

2.1 Resummation of the largest eigenvalue

The singlet-sector DGLAP evolution equation reads

Q2
d

dQ2

3
fg

fq

4
= ≈

!
N, –s(Q2)

" 3
fg

fq

4
, (2.3)

where fg = fg(N, Q2) and fq = fq(N, Q2) are the gluon
and quark-singlet PDFs respectively, and the evolution
matrix is given by (omitting arguments for readability)

≈ (N, –s) ©

3
“gg “gq

“qg “qq

4
. (2.4)

As already mentioned, the non-singlet sector is not af-
fected by small-x logarithmic enhancement, and we there-
fore ignore it.

The DGLAP evolution equation Eq. (2.3) can be di-
agonalised by performing a change of basis. We define the
“eigenvectors” f± as
3

f+

f≠

4
= R

!
N, –s(Q2)

" 3
fg

fq

4
, (2.5)

where the transformation matrix R (and its inverse) can
be generically written as

R = 1
r≠ ≠ r+

3
r≠ ≠1

≠r+ 1

4
, R≠1 =

3
1 1

r+ r≠

4
. (2.6)

Substituting Eq. (2.5) into Eq. (2.3) we get

Q2
d

dQ2

3
f+

f≠

4
=

5
R≈R≠1 + Q2

dR

dQ2
R≠1

63
f+

f≠

4
. (2.7)

In general, to make the equation diagonal, one has to pro-
vide a matrix R such that the matrix in squared brackets
in Eq. (2.7) is diagonal,

R≈R≠1 + Q2
dR

dQ2
R≠1 =

3
“+ 0
0 “≠

4
. (2.8)

Solving this problem in general is rather complicated.
However, we notice that at pure LL level the matrix
that diagonalizes ≈ has constant coe�cients, so we can
ignore the second term in squared brackets and simply
solve an eigenvalue problem. At NLL, a non-trivial depen-
dence on Q2 appears; however, the action of the derivative
with respect to Q2 further suppresses the second term in
squared brackets by –s—0, showing that it first contributes
at NNLL level. Therefore, when treating running coupling

e�ects perturbatively, we can ignore the derivative contri-
bution and simply focus on the eigenvalue problem, which
in particular leads to the following explicit form for R,

r± = “qg

“± ≠ “qq
, (2.9)

being “± the eigenvalues of ≈ . We anticipate that run-
ning coupling e�ects will eventually be resummed to all
orders in –s—0: when this counting is adopted, the deriva-
tive term is no longer subleading and the matrix R should
be corrected for it. We will come back to this point later
in Sect. 2.3 and in Sect. 3.2.

The eigenvalue “+ is chosen to be the largest eigen-
value at small-x, i.e. N ≥ 0, namely the one which
is enhanced at small N , while “≠ is finite in N = 0.
Consequently, f+ is the only eigenvector that contains
logarithmic enhancement and which is a�ected by high-
energy resummation. This holds for several factorization
schemes, including DIS and MS, and the so-called Q0MS
scheme which is particularly useful in small-x resumma-
tion [32,34,46,47]. The resummation of small-x logarithms
in the evolution is then encoded in the resummation of the
largest eigenvalue “+. The di�erence between the MS and
Q0MS factorization schemes influences the resummation
of “+ beyond the leading logarithmic accuracy, as well as
the resummation of “qg and of the coe�cient functions,
as we shall see in more detail in Sec. 3. The structure of
the resummation described in the remainder of the section
is rather general and it is valid for both MS and Q0MS
schemes. When presenting phenomenological results our
scheme of choice will be Q0MS, which is preferred from
an all-order viewpoint, because it gives more stable re-
sults [22]. It has to be noted that, when expanded to fixed-
order, the di�erence between the two schemes only starts
at relative O(–3

s): thus, all theoretical predictions that en-
ter current PDF fits are not sensitive to this choice.

High-energy resummation is achieved thanks to the
BFKL equation [7–12], which, in analogy with DGLAP,
we write as an evolution equation for the moments of the
parton density. Therefore, defining the M moments of f+

by

f+(x, M) =
⁄ Œ

≠Œ

dQ2

Q2

3
Q2

Q2
0

4≠M

f+(x, Q2), (2.10)

with Q0 some reference scale (the PDFs depend logarith-
mically on Q, so the value of Q0 is irrelevant), we have

≠x
d

dx
f+(x, M) = ‰(M, –s) f+(x, M), (2.11)

where ‰ is the BFKL kernel, currently known to NLO [12]
and to NNLO in the collinear approximation [47] (see
Ref. [48] for recent work beyond NLO accuracy). In the
small-x and high-Q2 limit, both the DGLAP and BFKL
equations are expected to hold, and consistency between
the solutions to both equations allows to resum to all or-
ders collinear contributions in the BFKL kernerl or, equiv-
alently, small-x contributions in the DGLAP anomalous
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We address these three steps in turn, giving a brief sum-
mary of the ABF procedure, emphasizing those aspects
that are di�erent from the original construction. We finally
comment on the numerical implementation and present
some results.

2.1 Resummation of the largest eigenvalue

The singlet-sector DGLAP evolution equation reads

Q2
d

dQ2

3
fg

fq

4
= ≈

!
N, –s(Q2)

" 3
fg

fq

4
, (2.3)

where fg = fg(N, Q2) and fq = fq(N, Q2) are the gluon
and quark-singlet PDFs respectively, and the evolution
matrix is given by (omitting arguments for readability)

≈ (N, –s) ©

3
“gg “gq

“qg “qq

4
. (2.4)

As already mentioned, the non-singlet sector is not af-
fected by small-x logarithmic enhancement, and we there-
fore ignore it.

The DGLAP evolution equation Eq. (2.3) can be di-
agonalised by performing a change of basis. We define the
“eigenvectors” f± as
3

f+
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4
= R
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4
, (2.5)

where the transformation matrix R (and its inverse) can
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R = 1
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4
, R≠1 =
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4
. (2.6)

Substituting Eq. (2.5) into Eq. (2.3) we get
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In general, to make the equation diagonal, one has to pro-
vide a matrix R such that the matrix in squared brackets
in Eq. (2.7) is diagonal,

R≈R≠1 + Q2
dR

dQ2
R≠1 =

3
“+ 0
0 “≠

4
. (2.8)

Solving this problem in general is rather complicated.
However, we notice that at pure LL level the matrix
that diagonalizes ≈ has constant coe�cients, so we can
ignore the second term in squared brackets and simply
solve an eigenvalue problem. At NLL, a non-trivial depen-
dence on Q2 appears; however, the action of the derivative
with respect to Q2 further suppresses the second term in
squared brackets by –s—0, showing that it first contributes
at NNLL level. Therefore, when treating running coupling

e�ects perturbatively, we can ignore the derivative contri-
bution and simply focus on the eigenvalue problem, which
in particular leads to the following explicit form for R,

r± = “qg

“± ≠ “qq
, (2.9)

being “± the eigenvalues of ≈ . We anticipate that run-
ning coupling e�ects will eventually be resummed to all
orders in –s—0: when this counting is adopted, the deriva-
tive term is no longer subleading and the matrix R should
be corrected for it. We will come back to this point later
in Sect. 2.3 and in Sect. 3.2.

The eigenvalue “+ is chosen to be the largest eigen-
value at small-x, i.e. N ≥ 0, namely the one which
is enhanced at small N , while “≠ is finite in N = 0.
Consequently, f+ is the only eigenvector that contains
logarithmic enhancement and which is a�ected by high-
energy resummation. This holds for several factorization
schemes, including DIS and MS, and the so-called Q0MS
scheme which is particularly useful in small-x resumma-
tion [32,34,46,47]. The resummation of small-x logarithms
in the evolution is then encoded in the resummation of the
largest eigenvalue “+. The di�erence between the MS and
Q0MS factorization schemes influences the resummation
of “+ beyond the leading logarithmic accuracy, as well as
the resummation of “qg and of the coe�cient functions,
as we shall see in more detail in Sec. 3. The structure of
the resummation described in the remainder of the section
is rather general and it is valid for both MS and Q0MS
schemes. When presenting phenomenological results our
scheme of choice will be Q0MS, which is preferred from
an all-order viewpoint, because it gives more stable re-
sults [22]. It has to be noted that, when expanded to fixed-
order, the di�erence between the two schemes only starts
at relative O(–3

s): thus, all theoretical predictions that en-
ter current PDF fits are not sensitive to this choice.

High-energy resummation is achieved thanks to the
BFKL equation [7–12], which, in analogy with DGLAP,
we write as an evolution equation for the moments of the
parton density. Therefore, defining the M moments of f+

by

f+(x, M) =
⁄ Œ

≠Œ

dQ2

Q2

3
Q2

Q2
0

4≠M

f+(x, Q2), (2.10)

with Q0 some reference scale (the PDFs depend logarith-
mically on Q, so the value of Q0 is irrelevant), we have

≠x
d

dx
f+(x, M) = ‰(M, –s) f+(x, M), (2.11)

where ‰ is the BFKL kernel, currently known to NLO [12]
and to NNLO in the collinear approximation [47] (see
Ref. [48] for recent work beyond NLO accuracy). In the
small-x and high-Q2 limit, both the DGLAP and BFKL
equations are expected to hold, and consistency between
the solutions to both equations allows to resum to all or-
ders collinear contributions in the BFKL kernerl or, equiv-
alently, small-x contributions in the DGLAP anomalous
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FIXED-ORDER CONSIDERATIONS
‣ Note that some of the coefficients can be zero because  of accidental 

cancellations: most notably c2 and c3 in MS-like schemes 

‣ NNLO is less stable than NLO (subleading logs survive)  

‣ N3LO (calculations underway) is likely to exhibit stronger instabilities 

�gg ⇠ c1
⇣↵s

N

⌘
+ c2

⇣↵s

N

⌘2
+ c3

⇣↵s

N

⌘3
+ c4

⇣↵s

N

⌘4
+O(↵5

s)x x
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DGLAP-BFLK DUALITY 
‣ (N)LLx behaviour can be determined from the (N)LO BFKL kernel 

‣ however: naive implementation of BFKL leads to results not supported 
by HERA data (too strong, too soon) 

G(N, M) =
G0(N)

M � ⇥(�s, N)
=

Ḡ0(M)
N � ⇤(�s, M)

DGLAP and BFKL

⇤(⇥(N, �s), �s) = N

⇥(⇤(M, �s), �s) = M

Jaroszewicz (1982)

The structure function F p
2 (x,Q

2), recently measured[1] by the HERA experiments

ZEUS and H1 in the hitherto unexplored region 10−4 <∼ x <∼ 10−2, 5GeV2 <∼ Q2 <∼
105GeV2, rises dramatically both as x decreases and Q2 increases. The form of this rise

may be clearly exhibited by using the variables[2]

σ ≡
√

ln x0

x ln t
t0
, ρ ≡

√

ln x0

x

/

ln t
t0
, (1)

where t ≡ ln(Q2/Λ2). Rescaling F p
2 by a simple multiplicative factor R′

F ≡ Nσ1/2ρeδσ/ρ,

where δ = 61

45
, we may then plot it on a logarithmic scale against σ. The resulting plot

(fig. 1) is interesting in two respects: firstly when σ is large enough all the data lie on

a single line, quite independently of the value of ρ (provided ρ too is large enough), and

secondly the rise of logR′
FF

p
2

with σ is linear.[2] The slope of the rise[3] is 2.37 ± 0.16

(dotted line in fig. 1).

Remarkable though it is, such a rise was not unanticipated: the behaviour of F2

at small x was computed in perturbative QCD soon after the discovery of asymptotic

freedom[4], using the operator product expansion (at leading twist), the renormalization

group, perturbation theory (at one loop) and assuming that at some low starting scale Q0

the small x behaviour of F2 is given by conventional Regge behaviour, and thus flat. The

resulting perturbatively generated non-Regge behaviour takes the form

F2 ∼ N f(γρ )(R
′
F )

−1e2γσ, (2)

where N and f ∼ 1 + O(ρ−1) depend on the (soft) non-perturbative input at Q0. Since

2γ ≡ 4
√

Nc/β0 = 2.4 is simply a numerical constant, perturbative QCD thus predicts

precisely the double scaling behaviour[2] described above: when F2 is rescaled by a factor

RF ≡ e−2γσR′
F to remove both the linear rise and the sub-asymptotic effects R′

F , the

resulting structure function is asymptotically independent of both σ and ρ.

The rise in F2 is thus generated perturbatively through iteration of the simple pro-

cesses g → gg and g → q̄q: the splitting functions Pgg(x) and Pqg(x) are both singular

at leading order as x → 0. In fact at small x the gluon evolution equation reduces to a

wave equation in light-cone variables ξ ≡ log x0

x , ζ ≡ log t
t0
, with a (negative) mass term

which generates an exponential growth in xg inside the light-cone (see fig. 2: turn it anti-

clockwise through 45o). This then drives a similar growth in F2. This explains why the

natural variables to use when x < x0 and t > t0 are σ =
√
ξζ and ρ =

√

ξ/ζ, and also why

a generic exponential rise (σ-scaling) will be produced isotropically (ρ-scaling) whenever

1

double-scaling variables 

models that naively implement 
BFKL are disfavoured by HERA 
data

Ball, Forte (1994)

DGLAP BFKL
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RESUMMATION OF DGLAP EVOLUTION
‣ Problem studied by different groups in late ‘90s /early ‘00s:              

Altarelli, Ball, Forte; Ciafaloni, Colferai, Salam, Stasto; Thorne, White                         

‣ for a comparative review see HERA-LHC Proc. arXiv:0903.3861 

‣ recent progress in SCET  

‣ we mostly follow the approach by ABF 

‣ key ingredients: 

‣ duality between DGLAP and BFKL kernels  

‣ stable solution of the running coupling BFKL equation (important 
subleading effects) 

‣  match to standard DGLAP at large N (x)

Rothstein, Stewart (2016)

Figure 3: Plot of the NLO and LO resummed DL expansion kernels χσ, both on-shell
and expressed in symmetric variables, compared with their quadratic approximations
(dashed curves) near the minimum at M = 1

2

and, from eq. (4.1),

[
N − c̄(αs)−

1
2 κ̄(αs)

(
M − 1

2

)2]
G(N,M) = α̂s

(
c′(αs) +

1
2κ

′(αs)
(
M − 1

2

)2)
G(N,M)+F (M),

(4.5)
where we have defined

c̄(αs) ≡ c(αs)− αsc
′(αs) (4.6)

κ̄(αs) ≡ κ(αs)− αsκ
′(αs). (4.7)

Equation (4.5) can be simplified defining G̃(N,M) through the implicit equation

G(M,N) ≡
N

N − c̄(αs)−
1
2 κ̄(αs)

(
M − 1

2

)2 G̃(M,N), (4.8)

so G̃(N,M) satisfies

NG̃(N,M) = α̂sφ(M,N)G̃(N,M) + F (M), (4.9)

with the kernel

ϕ(N,M) =
N(c′(αs) +

1
2κ

′(αs)
(
M − 1

2

)2
)

N −
(
c̄(αs) +

1
2 κ̄

(
M − 1

2

)2) . (4.10)

16

ABF (2005)
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H(n, pL, pF ,αs)

n

p0 ≡ p

pn ≡ pL

pn−1

pn−2

p1

K(pn, pn−1, µ,αs)

K(pn−1, pn−2, µ,αs)

K(p1, p0, µ,αs)

p

n

pL

H(n, pL, pF ,αs)

L(pL, p, µ,αs)

Figure 1: Left: decomposition of the cut partonic cross-section in terms of two-
gluon irreducible hard part and a reducible ladder part. Right: generalized ladder
expansion of the ladder part.

Since everything is on-shell and we are working in an axial gauge, we can decom-
pose both the hard part and the ladder part in terms of conserved Lorentz structures
time dimensionless scalar functions:

Hµν(n, pL, pF ,αs) =

(

−gµν +
pµLp

ν
L

p2L

)

H⊥

(

Q2

n · pL
,
−p2L
Q2

,ΩF ,αs

)

+

+p2L

(

pµL
p2L

− nµ

n · pL

)(

pνL
p2L

− nν

n · pL

)

H||

(

Q2

n · pL
,
−p2L
Q2

,ΩF ,αs

)

(4)

Lµν(pL, p, µ,αs) =
1

p2L

(

−gµν +
pµLp

ν
L

p2L

)

L⊥

(

−p2L
p · pL

,
µ2

−p2L
,αs

)

+

(

pµL
p2L

− pµ

p · pL

)(

pνL
p2L

− pν

p · pL

)

L||

(

−p2L
p · pL

,
µ2

−p2L
,αs

)

(5)

where ΩF stands for a set of (typically angular, see e.g. [7]) dimensionless variables
which characterize the final state F . Note that we have explicitly extracted the
propagator factor 1/p2L from the scalar functions L||,⊥.

In the high energy limit Eq. (2) simplifies somewhat. To see this, we work
in the center-of-mass frame of the colliding partons and introduce the Sudakov
parametrization

pL = zp− k − k2
T

s(1− z)
n =

(
√

s

2
z,− k2

T√
2s(1− z)

;−kT

)

(6)
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COEFFICIENT FUNCTIONS AT SMALL X
‣ the high-energy behaviour of coefficient function is obtained using    

kt-factorisation 

‣ derivation in terms of ladder expansion allowed for its generalisation 
to differential distributions 

Catani, Ciafaloni, Hautmann (1991); Collins, Ellis (1991)

Caola, Forte, SM (2010); Forte, Muselli (2016); Muselli (2017)

H(n, pL, pF ,αs)

pL

n
2

2GIdΠF

S

X̃

F

pL

n

δ4(p + n − pS − pX)

Figure 2: Graphic representation of the hard part in Eq. (2). Note that the hard
part contains the momentum conservation delta function as well as the S and X̃
phase space integration, but it does not contain phase space integration for gluons
emitted along the ladder.

2.2 Hard part

Let us now concentrate on the process-dependent hard part. We introduce a hard
coefficient function C defined as

C

(

Q2

zs
,
Q2

k2
T

,αs

)

≡
∫ 2π

0

dθ

2π

Q2

2sz
[PµνH

µν(n, pL, pF ,αs)] =

= −
∫ 2π

0

dθ

2π

Q2

2sz
H||

(

Q2

zs
,
Q2

k2
T

,ΩF ,αs

)

(1 +O(z)) , (11)

where we have defined the projector

Pµν ≡ kµkν

k2
T

(12)

which, up to O(z) terms, selects the longitudinal part H|| of the full Hµν . In Eq. (11)
the explicit dependence of C on ΩF is understood.

Equation (11) has a simple interpretation: C is the cross-section for the partonic
process V(n) + g∗(q) → F for an off-shell incoming gluon with momentum

q = zp + k; q2 = −k2
T . (13)

In this interpretation, P can be thought of as the sum over the polarizations of the
off-shell gluon. Note that

⟨Pµν⟩θ ≡
∫ 2π

0

dθ

2π
Pµν =

1

2

(

−gµν +
qµnν + qνnµ

q · n

)

≡ dµν
2

, (14)

i.e. the azimuthal average of Pµν performs the average over the polarizations of an
on-shell gluon with momentum q. Equations (11, 14) then imply

lim
k2T→0

〈

C

(

Q2

zs
,
Q2

k2
T

,αs

)〉

θ

= σon-shell (V(n), g(zp) → F) , (15)

8

‣ for most processes of interest (DIS, DY) resummation starts at NLLx
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RESUMMATION OF COEFFICIENT FUNCTIONS
‣ naive (i.e. fixed-log counting) resummation has same issues as 

evolution 

‣ running coupling corrections are crucial 

‣ elegant but complex treatment in Mellin space 

‣ our approach in a nutshell: resummation in momentum space 

Ball (2008)

Small-x resummation in the coe�cient functions

High-energy (kT ) factorization:

� /
Z

dz

z

Z
d2k �̂g

✓
x

z
,
Q2

k2
,↵s(Q

2
)

◆
Fg(z,k)

(
Fg(x,k) : unintegrated PDF

�̂g

⇣
z, Q2

k2 ,↵s

⌘
: o↵-shell xs

Defining

Fg(N,k) = U

✓
N,

k2

µ2

◆
fg(N,µ2

)

we get [MB,Marzani,Peraro 1607.02153]

Cg(N,↵s) =

Z
d2k �̂g

✓
N,

Q2

k2
,↵s

◆
U

✓
N,

k2

µ2

◆

At LLx accuracy, U has a simple form, in terms of small-x resummed anom dim �

U

✓
N,

k2

µ2

◆
⇡ k2

d

dk2
exp

Z k2

µ2

d⌫2

⌫2
�(N,↵s(⌫

2
))

Only known at LLx

Just uses the o↵-shell cross sections �̂(N,Q2/k2,↵s) (one for each process)

Can be included directly in HELL

Formally equivalent to ABF (practically easier and numerically stabler)

Marco Bonvini Resummation in PDF fits 14

‣ until recent: very little 
phenomenology 
because a 
comprehensive code 
was missing
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HIGH ENERGY LARGE LOGARITHMS 
‣ public code that computes resummed splitting functions and 

perturbative coefficient functions 

‣ HELL-x: pheno tool with pre-tabulated results, interfaced with 
evolution code APFEL 

‣ in current HELL 2.0 version 

‣  DIS (both NC and CC) 

‣ heavy-quark matching conditions 

‣ HELL 3.0 will appear soon (Higgs, DY)

https://www.ge.infn.it/~bonvini/hell/
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 RESULTS FROM HELL: SPLITTING FUNCTIONS
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Figure 2. The resummed and matched splitting functions at LO+LL (dotted green), NLO+NLL (dashed
purple) and NNLO+NLL (dot-dot-dashed blue) accuracy: Pgg (upper left), Pgq (upper right), Pqg (lower
left) and Pqq (lower right). The fixed-order results at LO (dotted) NLO (dashed) and NNLO (dot-dot-
dashed) are also shown (in black). The results also include an uncertainty band, as described in the text.
The plots are for –s = 0.2 and nf = 4 in the Q0MS scheme. We note that di�erence between Q0MS and
MS for the fixed-order results is immaterial at this accuracy.

techniques described in Ref. [61] and improved as described in the previous sections. Moreover, we
also show new results for the coe�cient functions with massive quarks.

5.1 Splitting functions

Let us start with DGLAP evolution. With respect to our previous work [61] we have made sub-
stantial changes in the resummation of the anomalous dimensions, mostly due to the treatment of
running coupling e�ects, as described in Sect. 3. Additionally, we are now able to match the NLL
resummation of the splitting functions to their fixed-order expressions up to NNLO, as presented
in Sect. 4.

In Fig. 2 we show the fixed-order splitting functions at LO (black dotted), NLO (black dashed)
and NNLO (black dot-dot-dashed) compared to resummed results at LO+LL (green dotted),
NLO+NLL (purple dashed) and NNLO+NLL (blue dot-dot-dashed). In principle, we also have
the technology for matching LL resummation to NLO, but this is of very limited interest, so we
do not show these results here (they can be obtained from the HELL-x code). The gluon splitting
functions Pgg and Pgq are shown in the upper plots, and the quark ones Pqg and Pqq are shown
in the lower plots (the latter two start at NLL so the LO+LL curve is absent there). All splitting
functions are multiplied by x for a clearer visualization. The scheme of the resummed splitting
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Figure 3. Ratio of fixed-order and resummed NLO+NLL splitting functions over their NLO counterparts. The plots are for
–s = 0.2 and nf = 4 in the Q0MS scheme, except for CCSS curve, which uses a di�erent factorization scheme.

We now move to the comparison of our results with
other approaches. To better highlight the impact of the
resummation, we show the comparisons in terms of ratios
over the fixed-order splitting functions. In Fig. 2 the ratio
of resummed LO+LL splitting functions over the LO ones
are presented for Pgg and Pgq (at this order, only the gluon
components are a�ected by resummation). Along with our
curves, the ABF results of Ref. [22] are also shown in dot-
dashed cyan (the plotted range is limited in x due to the
available information from the original paper). The fixed
NLO (solid) and NNLO (dot-dot-dashed) are also shown
(in gray) for comparison’s sake. Overall, we observe good
agreement with our result. The tiny deviation is due to a
di�erent treatment of the nf dependence of the result, see
App. A for more detail. Interestingly, we observe that at
large x the resummed results tend to follow the shape of
the NLO and NNLO results, before merging onto the LO
due to the damping, perhaps an indication that higher or-
der contributions predicted by the resummation go in the
right direction even far from the small-x region. Note also
that the LO+LL ratio is basically identical for Pgg and
Pgq, a small di�erence being visible only at large x. This
is easily understood by noting that the small-x behaviour
of both fixed-order and resummed results are simply re-
lated by a color factor CF /CA.

The comparison of the NLO+NLL resummed results
are shown in Fig. 3. Here, not only we compare our results
to the ones obtained by ABF in Ref. [22] but also to the
resummed splitting function calculated in Ref. [16] (hence-
forth the CCSS approach). The latter also comes with a
(yellow) uncertainty band which is obtained from renor-
malization scale variation. While the agreement with ABF
is still rather good, there are more significant deviations,
especially in the quark entries, which come from many
sources. For Pqg (and Pqq), we use the LLÕ anomalous di-
mension, Eq. (2.20), while ABF used the full NLL anoma-
lous dimension. Moreover, we implement di�erently the
large-N subtraction, as discussed in Sect. 2.2, and we also
have di�erent numerical implementations, as we adopt a
Borel-Padé summation for the series Eq. (2.21). These
di�erences also a�ect Pgg (and Pgq), due to Eq. (2.27)
but their numerical impact appears to be smaller. Note
that for these gluon splitting functions we also have dif-
ferences at large x due to our implementation of momen-
tum conservation, Eq. (2.34). Unfortunately, our simple
uncertainty band does not fully cover all these di�erences,
especially at larger x. When comparing to CCSS, we see
that the gluon entries Pgg and Pgq are in decent agree-
ment, our result lying at the lower edge of the CCSS band.
The quark entries Pqg and Pqq, however, are quite di�er-
ent both in shape and in size. It is clear that these entries

‣ resummation matched up to NNLO 

‣ uncertainty bands obtained by varying subleading corrections 

‣ quark splitting functions under less control (they start at NLL)
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‣ parton level results 

‣ large theoretical uncertainty (they start at NLL)
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Figure 3. The resummed and matched massless coe�cient functions CL,g (left) and C2,g (right) at
NLO+NLL accuracy (solid purple) and at NNLO+NLL accuracy (solid blue). Fixed-order results are
also shown in black: NLO in dashed, NNLO in dot-dot-dashed and N3LO in dotted. The plots are for
–s = 0.2 and nf = 4 in the Q0MS scheme. We note that di�erence between Q0MS and MS for the fixed-
order results is immaterial at this accuracy, except for the N3LO contribution to F2, which is shown in
MS.

and Pgq does not fully cover the e�ects of higher orders in the initial small-x region, 10≠4 . x .
10≠2, as demonstrated by the fact that NLO+NLL and NNLO+NLL do not overlap there. However,
this e�ect is mostly driven by the largish NNLL e�ects at O(–3

s), which are those that are included
in the NNLO+NLL but not in the NLO+NLL results. At higher orders the e�ects of subleading
logs in this region is likely to be smaller. In support of this hypothesis, we can note that the
distance between NNLO+NLL and NNLO for x ≥ 10≠2 is significantly smaller than the distance
between NLO+NLL and NLO, in the same region. Thus, we believe that, while the uncertainty
on the NLO+NLL result is not satisfactory in the intermediate x region, the uncertainty on the
NNLO+NLL should be reliable.

These plots are also instructive to study the stability of the perturbative expansion. By looking
at the fixed-order splitting functions, we see that small-x logarithms start being dominant already
at x . 10≠2, where the logarithmic term of the NNLO contribution sets in. We note that the
small-x growth could have been in principle much stronger. Indeed, the leading logarithmic con-
tributions have vanishing coe�cients both at NLO and NNLO and the sharp rise of the NNLO
splitting function is driven by its NLL contribution –

3
sx

≠1 log x. These accidental zeros are not
present beyond NNLO and so we expect the yet-unknown N3LO splitting functions to significantly
deteriorate the stability of the perturbative expansion because of their –

4
sx

≠1 log3
x growth at small

x. Therefore, we anticipate that the inclusion of the resummation to stabilize the small-x region
will be even more crucial at N3LO.

5.2 DIS coe�cient functions

We now move to DIS coe�cient functions and we first present updated predictions for the mass-
less coe�cients, i.e. assuming that there are only nf massless quarks and no heavy quarks. The
construction did not change compared to our previous work [61], but the input LLÕ anomalous di-
mension used for computing the resummed coe�cients did, as explained in Sect. 4.14 The updated
results are shown in Fig. 3 for CL,g (left) and C2,g (right). The quark contributions at small x are
very similar (due to colour-charge relation) and are not shown. We observe some di�erences with

14Additionally, we changed the overall large-x damping, which is now uniformly chosen to be (1 ≠ x)2(1 ≠
Ô

x)4,
as for the splitting functions, Eq. (4.41).
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Figure 4. Same as Fig. 3, but for the massive coe�cient functions ÂcL,g (left) and Âc2,g (right), for both
charm production (upper plots) and bottom production (lower plots) in NC. The charm production plots
are for nf = 3 and –s = 0.28, corresponding to Q ≥ 2 GeV, slightly above the charm mass mc = 1.5 GeV.
The bottom production plots are for nf = 4 and –s = 0.2, corresponding to Q ≥ 6 GeV, slightly above the
bottom mass mb = 4.5 GeV.

respect our previous work, although within uncertainties, for the coe�cient function C2,g due to the
modified running-coupling resummation. These changes appear to have instead a small numerical
e�ect on CL,g. The other noticeable di�erence with respect to our previous results is the size of the
theoretical uncertainty, which is now larger: this e�ect is entirely due to the di�erent LLÕ used in
the construction, and is therefore ultimately due to the treatment of running-coupling e�ects.

We now move to the new results which include mass dependence. We first show in Fig. 4 the
analogous of Fig. 3 for the massive unsubtracted coe�cient functions, both for charm production and
for bottom production close to the production threshold. As usual in theory papers, we define these
contributions as the ones for which the heavy quark is struck by the photon (at these energies, the
Z contribution in NC and the CC production mechanism are negligible). We call generically these
contributions Âca,i, with a = 2, L and i = g, q, of which the functions �Âca,i defined in Sect. 2.1.1 are
the resummed contributions. For charm production (upper plots) we use –s = 0.28, corresponding
to Q ≥ 2 GeV, which is a scale right above the charm mass assumed to be mc = 1.5 GeV, while
for bottom production we use –s = 0.20, corresponding to Q ≥ 6 GeV, right above the bottom
mass assumed to be mb = 4.5 GeV. The number of active flavours is set to be nf = 3 for charm
production and nf = 4 for bottom production, i.e. the massive quark is treated as heavy and its
collinear logarithms are not factorized. In particular, the massive coe�cients for bottom production
are those contributions which should be added to the corresponding massless coe�cients in the same
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we can already see 
N3LO instabilities
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 A FIT WITH SMALL-X RESUMMATION: THE DATASET
‣ exploit NNPDF state-of-art technology to perform fits with small-x 

resummation 

‣ for DIS with have a consistent implementation of small-x resummation 
(both evolution and coefficient functions) 

‣ similar dataset as standard NNLO analysis (NNPDF 3.1) 

‣ lower the initial scale of the fit to Q0=1.64 GeV to include an extra bin 
of the HERA data (Q2=2.7 GeV2) 

‣ what about hadronic data?

Experiment Ndat

NMC 367
SLAC 80
BCDMS 581
CHORUS 886
NuTeV dimuon 79
HERA I+II incl. NC 1081
HERA I+II incl. CC 81
HERA �

NC
c 47

HERA F
b
2 29

Total 3231

Table 3.1. The number of data points Ndat for each of the DIS experiments included in NNPDF3.1sx.

Sect. 4.2.1.

3.2 Kinematic cuts

In the NNPDF3.1sx analysis, we apply the same experimental cuts as those of the NNPDF3.1
fit [79] with two main di↵erences. First, as discussed above, the lower Q

2 cut is reduced from
Q

2
min = 3.49 GeV2 in NNPDF3.1 to Q

2
min = 2.69 GeV2 here. Thanks to this lower cut, we can

now include a further bin of the HERA inclusive cross-section data, specifically the one with
Q

2 = 2.7 GeV2. In turn, this allows us to slightly extend the kinematic coverage of the small-x
region, from xmin ' 4.6 ⇥ 10�5 before, down to xmin ' 3 ⇥ 10�5 now. This lower cut also
a↵ects a handful of points at low Q

2 (although at larger values of x) of other fixed-target DIS
experiments, which are therefore also included in the NNPDF3.1sx fits but not in NNPDF3.1.
The cut on W

2
� 12.5 GeV2 remains the same.

Moreover, no additional cuts are applied to the HERA charm production cross-sections as
compared to the inclusive structure functions. This was not the case in NNPDF3.1, where
some points at small-x and Q

2 were excluded in the NNLO fit, specifically those with Q
2
 8

GeV2. We have explicitly verified that the inclusion of these extra points does not a↵ect the
resulting PDFs, though the �

2 of the F
c

2 data becomes somewhat worse at NNLO. Taking into
account these two di↵erences, from HERA we fit 1162 points for the inclusive structure functions
and 47 points for the F

c

2 data, to be compared with 1145 (1145) and 47 (37) in NNPDF3.1
NLO (NNLO) respectively. The number of data points Ndat for each of the DIS experiments
included in NNPDF3.1sx is collected in Table 3.1.

The second main di↵erence with respect to the NNPDF3.1 kinematic cuts is related to
hadronic data. As already discussed, for hadronic processes small-x resummation e↵ects are
included only in PDF evolution but not in the partonic cross-sections. Therefore, in order
to avoid biasing the fit results, in the NNPDF3.1sx fits we include only those hadronic data
for which the e↵ects of small-x resummation on the coe�cient function can be assumed to be
negligible.

Quantifying the impact of small-x resummation on the partonic coe�cient functions would
require the knowledge of such resummation. Therefore, in order to estimate the region of
sensitivity to small-x logarithms, we resort to a more qualitative argument. The foundation of
this argument is the observation that in a generic factorization scheme large logarithms appear
both in the partonic coe�cient functions and in the partonic evolution factors; in general,
resummation corrections are thus expected to have a similar size both in the evolution and in
the coe�cient functions. This naive expectation is indeed confirmed by explicit calculations of

12

�26

https://www.ge.infn.it/~bonvini/hell/


SIMONE MARZANI - VIENNA SEMINAR

 THE ISSUE WITH HADRONIC DATA

Figure 3.2. The kinematic coverage in the (x,Q2) plane of the data included in the NNPDF3.1sx fit
with the default value of the kinematic cut to the hadronic data, Hcut = 0.6. The diagonal line indicates
the value of the cut Eq. (3.2), below which the hadronic data is excluded from the fit. For hadronic
processes, the LO kinematics have been used to determine the (x,Q2) values associated to each data bin.

Z pT distributions, which provide information on the gluon. On the other hand, the inclusive
jet and top-quark pair production data, which are mostly sensitive to the large-x region, are
essentially una↵ected by the cut. For completeness, we also provide the values of Ndat when
no cut is applied at all (Hcut = 1). In the latter case, the fit also includes 85 (93) LHCb
experimental points at NNLO (NLO).

4 Parton distributions with small-x resummation

In this section we present the main results of this work, namely the NNPDF3.1sx fits including
the e↵ects of small-x resummation. We will present first the DIS-only fits and then the global
fits, based on the dataset described in Sect. 3. Unless otherwise specified, for the global fits we
will use the default cut Hcut = 0.6 for the hadronic data.

In the following, we will first discuss the DIS-only fits, showing how small-x resummation
improves the fit quality and a↵ects the shape of the PDFs. We then move to the global fits, and
compare them to the DIS-only ones. We find that the qualitative results are similar, though
PDF uncertainties are reduced. We show the impact of resummation on the PDFs, and study
the dependence on the cut used to remove the hadronic data potentially sensitive to small-x
logarithms and for which we do not yet include resummation. We show how our default choice
for Hcut does not bias the fit, and still allows us to determine PDFs whose uncertainties are
competitive with those of NNPDF3.1. We discuss in detail the role of the additional low-Q2

HERA bin that we include in this fit for the first time, and how small-x resummed theory is
able to fit it satisfactorily.

We will further inspect the improved description of the HERA data in Sect. 5, where we will
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‣ resummation for coefficient functions in pp collisions is known but not 
yet implemented in HELL 

‣ resummation only included in the evolution 

‣ to avoid biases we cut away hadronic low-x data (mostly LHCb DY) 

‣ we discard points for which (based on LO kinematics)

hadronic resummed cross-sections [44,186], where it was found that the most common situation
is a partial cancellation between the resummation corrections from evolution and those in the
partonic cross-section. It follows that estimates based on the corrections due to resummed
evolution alone will probably be conservative, in the sense that they will over-estimate the total
resummation correction to the hadronic cross-section.

In order to implement these cuts, we first introduce a parametrization of the resummation
region in the (x,Q2) plane. Small-x logarithmic corrections should in principle be resummed
when ↵s(Q2) ln 1/x approaches unity, since the fixed-order perturbative expansion then breaks
down. We thus define our kinematic cut to the hadronic data in the NNPDF3.1sx fits such as
to removes those data points for which

↵s(Q
2) ln

1

x
� Hcut , (3.1)

where Hcut . 1 is a fixed parameter: the smaller Hcut, the more data are removed. Assuming
one-loop running for the strong coupling constant (which is enough for our purposes), Eq. (3.1)
can instead be expressed as

ln
1

x
� �0Hcut ln

Q
2

⇤2
, (3.2)

where ⇤ ' 88 MeV is the QCD Landau pole for nf = 5, and �0 ' 0.61. Thus the cut is a

straight line in the plane of ln 1
x
and ln Q

2

⇤2 , with gradient �0Hcut.
Note that the variable x used in the definition of the cut, Eq. (3.1), can in general only

be related to the final-state kinematic variables of hadronic observables by assuming leading-
order kinematics. To see how this works in practice, consider for example weak gauge boson
production: then Q

2 = M
2
V
, and for fixed

p
s the cut translates into a maximum rapidity

ymax = ln
MV
p
s
+ �0Hcut ln

M
2
V

⇤2
. (3.3)

Thus in the case of W boson production at
p
s = 7 TeV, a cut of the form of Eq. (3.2) with

Hcut = 0.5 (0.7) would imply that cross-sections with rapidities above ymax ' 0.3 (1.3) would
be excluded from the fit. In this case, the first (tighter) cut excludes all the LHC gauge boson
production data except for a handful of points from the ATLAS and CMS measurements in
the most central rapidity region. The second (looser) cut instead allows to include most of the
ATLAS and CMS gauge boson production data. However, the LHCb measurements are removed
altogether for both values of the cut, highlighting the sensitivity of forward W,Z production
data to the small-x region.

It remains to determine the optimal value of Hcut, in a way that minimizes at the same time
the amount of information lost from the dataset reduction, but also the possible theoretical bias
due to the missing small-x resummed coe�cient functions. In this work we will present results
with three di↵erent values, namely Hcut = 0.5, 0.6 and 0.7. In Sect. 4 we will motivate the choice
of Hcut = 0.6 as our default value, and show explicitly how the main findings on this work are
independent of the specific value of Hcut adopted.

Here we attempt to provide an a priori argument to justify our choice by estimating the size
of the resummation corrections through a comparison of the results obtained with fixed order
and resummed parton evolution. Specifically, we take a fixed input PDF set (NNPDF3.1 NNLO)
at Q0 = 1.65 GeV and evolve it using either NNLO or NNLO+NLLx theory, and then compute
the convolution with fixed-order partonic coe�cient functions. The comparison is represented
in Fig. 3.1, where we show the ratio of hadronic cross-sections computed using NNLO+NLLx
evolution over those computed using NNLO evolution. We show the results for ATLAS, CMS,
LHCb, and the Tevatron data points included in NNPDF3.1, indicating the division of each
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‣ the smaller Hcut, the tighter the cut 

‣ we find Hcut=0.6 to be a good 
compromise  

‣ we keep ~70% of hadronic data

hadronic resummed cross-sections [44,186], where it was found that the most common situation
is a partial cancellation between the resummation corrections from evolution and those in the
partonic cross-section. It follows that estimates based on the corrections due to resummed
evolution alone will probably be conservative, in the sense that they will over-estimate the total
resummation correction to the hadronic cross-section.

In order to implement these cuts, we first introduce a parametrization of the resummation
region in the (x,Q2) plane. Small-x logarithmic corrections should in principle be resummed
when ↵s(Q2) ln 1/x approaches unity, since the fixed-order perturbative expansion then breaks
down. We thus define our kinematic cut to the hadronic data in the NNPDF3.1sx fits such as
to removes those data points for which

↵s(Q
2) ln

1

x
� Hcut , (3.1)

where Hcut . 1 is a fixed parameter: the smaller Hcut, the more data are removed. Assuming
one-loop running for the strong coupling constant (which is enough for our purposes), Eq. (3.1)
can instead be expressed as

ln
1

x
� �0Hcut ln

Q
2

⇤2
, (3.2)

where ⇤ ' 88 MeV is the QCD Landau pole for nf = 5, and �0 ' 0.61. Thus the cut is a

straight line in the plane of ln 1
x
and ln Q

2

⇤2 , with gradient �0Hcut.
Note that the variable x used in the definition of the cut, Eq. (3.1), can in general only

be related to the final-state kinematic variables of hadronic observables by assuming leading-
order kinematics. To see how this works in practice, consider for example weak gauge boson
production: then Q

2 = M
2
V
, and for fixed

p
s the cut translates into a maximum rapidity

ymax = ln
MV
p
s
+ �0Hcut ln

M
2
V

⇤2
. (3.3)

Thus in the case of W boson production at
p
s = 7 TeV, a cut of the form of Eq. (3.2) with

Hcut = 0.5 (0.7) would imply that cross-sections with rapidities above ymax ' 0.3 (1.3) would
be excluded from the fit. In this case, the first (tighter) cut excludes all the LHC gauge boson
production data except for a handful of points from the ATLAS and CMS measurements in
the most central rapidity region. The second (looser) cut instead allows to include most of the
ATLAS and CMS gauge boson production data. However, the LHCb measurements are removed
altogether for both values of the cut, highlighting the sensitivity of forward W,Z production
data to the small-x region.

It remains to determine the optimal value of Hcut, in a way that minimizes at the same time
the amount of information lost from the dataset reduction, but also the possible theoretical bias
due to the missing small-x resummed coe�cient functions. In this work we will present results
with three di↵erent values, namely Hcut = 0.5, 0.6 and 0.7. In Sect. 4 we will motivate the choice
of Hcut = 0.6 as our default value, and show explicitly how the main findings on this work are
independent of the specific value of Hcut adopted.

Here we attempt to provide an a priori argument to justify our choice by estimating the size
of the resummation corrections through a comparison of the results obtained with fixed order
and resummed parton evolution. Specifically, we take a fixed input PDF set (NNPDF3.1 NNLO)
at Q0 = 1.65 GeV and evolve it using either NNLO or NNLO+NLLx theory, and then compute
the convolution with fixed-order partonic coe�cient functions. The comparison is represented
in Fig. 3.1, where we show the ratio of hadronic cross-sections computed using NNLO+NLLx
evolution over those computed using NNLO evolution. We show the results for ATLAS, CMS,
LHCb, and the Tevatron data points included in NNPDF3.1, indicating the division of each

13

�27

https://www.ge.infn.it/~bonvini/hell/


SIMONE MARZANI - VIENNA SEMINAR

 FIT RESULTS 
�
2
/Ndat ��

2
�
2
/Ndat ��

2

NLO NLO+NLLx NNLO NNLO+NLLx

NMC 1.35 1.35 +1 1.30 1.33 +9
SLAC 1.16 1.14 �1 0.92 0.95 +2
BCDMS 1.13 1.15 +12 1.18 1.18 +3
CHORUS 1.07 1.10 +20 1.07 1.07 �2
NuTeV dimuon 0.90 0.84 �5 0.97 0.88 �7

HERA I+II incl. NC 1.12 1.12 -2 1.17 1.11 �62
HERA I+II incl. CC 1.24 1.24 - 1.25 1.24 �1
HERA �

NC
c 1.21 1.19 �1 2.33 1.14 �56

HERA F
b
2 1.07 1.16 +3 1.11 1.17 +2

DY E866 �
d
DY/�

p
DY 0.37 0.37 - 0.32 0.30 -

DY E886 �
p 1.06 1.10 +3 1.31 1.32 -

DY E605 �
p 0.89 0.92 +3 1.10 1.10 -

CDF Z rap 1.28 1.30 - 1.24 1.23 -
CDF Run II kt jets 0.89 0.87 �2 0.85 0.80 �4
D0 Z rap 0.54 0.53 - 0.54 0.53 -
D0 W ! e⌫ asy 1.45 1.47 - 3.00 3.10 +1
D0 W ! µ⌫ asy 1.46 1.42 - 1.59 1.56 -

ATLAS total 1.18 1.16 �7 0.99 0.98 �2
ATLAS W,Z 7 TeV 2010 1.52 1.47 - 1.36 1.21 �1
ATLAS HM DY 7 TeV 2.02 1.99 - 1.70 1.70 -
ATLAS W,Z 7 TeV 2011 3.80 3.73 �1 1.43 1.29 �1
ATLAS jets 2010 7 TeV 0.92 0.87 �4 0.86 0.83 �2
ATLAS jets 2.76 TeV 1.07 0.96 �6 0.96 0.96 -
ATLAS jets 2011 7 TeV 1.17 1.18 - 1.10 1.09 �1
ATLAS Z pT 8 TeV (pllT ,Mll) 1.21 1.24 +2 0.94 0.98 +2
ATLAS Z pT 8 TeV (pllT , yll) 3.89 4.26 +2 0.79 1.07 +2
ATLAS �

tot
tt 2.11 2.79 +2 0.85 1.15 +1

ATLAS tt̄ rap 1.48 1.49 - 1.61 1.64 -

CMS total 0.97 0.92 �13 0.86 0.85 �3
CMS Drell-Yan 2D 2011 0.77 0.77 - 0.58 0.57 -
CMS jets 7 TeV 2011 0.88 0.82 �9 0.84 0.81 �3
CMS jets 2.76 TeV 1.07 0.98 �7 1.00 1.00 -
CMS Z pT 8 TeV (pllT , yll) 1.49 1.57 +1 0.73 0.77 -
CMS �

tot
tt 0.74 1.28 +2 0.23 0.24 -

CMS tt̄ rap 1.16 1.19 - 1.08 1.10 -

Total 1.117 1.120 +11 1.130 1.100 �121

Table 4.2. Same as Table 4.1, now for the global NNPDF3.1sx NLO, NLO+NLLx, NNLO and
NNLO+NLLx fits, corresponding to the baseline value of Hcut = 0.6 for the cut to the hadronic data.
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‣ the quality of NLO+NLLx 
and NLO fits is comparable 

‣ it’s expected because the 
two theories are rather 
similar 

‣ situation changes 
dramatically at NNLO 

‣ NNLO+NLLx provides the 
best fit 

‣ the bulk of the improvement  
comes from HERA data
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 PARTON DENSITIES WITH SMALL-X RESUMMATION
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Figure 4.8. Comparison of the NNPDF3.1sx NNLO and NNLO+NLLx global fits at Q = 100 GeV. We
show the gluon PDF and the charm, up, and down quark PDFs, normalized to the central value of the
baseline NNLO fit.
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‣ resulting PDFs show interesting features 

‣ agreement at large x but they’re much steeper 
at low x
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 IMPACT OF THEORETICAL UNCERTAINTIES
‣ we have seen that quark splitting functions and coefficient functions suffer from 

large theoretical uncertainties  

‣ the inclusion of theory errors in PDF fit is currently an active area of research 

‣ we can use a setting that varies from the standard one beyond NLLx 

‣ a DIS-only study shows that the fit quality is unchanged 

‣ qualitative behaviour on solid grounds, however quantitative results do change 
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Figure 4.4. Comparison between the gluon (left) and the total quark singlet (right plots) from the NNLO
and NNLO+NLLx DIS-only fits, including the variant of the resummation which di↵ers by subleading
terms, as discussed in the text.

the resummation of coe�cient functions and of Pqg. As the resummed gluon splitting function
depends on the resummed Pqg, all splitting functions and coe�cient functions are a↵ected by
this change. More specifically, the so-called LL0 anomalous dimension used in HELL 2.0 (and
hence in this work) is replaced with the full NLLx anomalous dimension, as proposed originally
in Refs. [46]. The e↵ect of this variation is contained within the uncertainty bands of Ref. [63].
The result of this fit, based on the same DIS-only dataset considered so far and performed at
NNLO+NLLx accuracy, is fully consistent with that obtained with the baseline theory settings.
The fit quality is essentially una↵ected, and the �

2 variations with respect to the numbers in
Table 4.1 are compatible with statistical fluctuations. Most PDFs are not sensitive to this
variation, except the gluon and the quark singlet, which do change a little, to accommodate the
di↵erent subleading terms in the splitting functions and coe�cient functions. These PDFs are
shown in Fig. 4.4 and compared with the default HELL 2.0 result. In both cases the new PDFs
are smaller than our default ones, i.e. closer to the NNLO results. This is mostly due to a harder
resummed Pqg in the varied resummation, which is therefore closer to its NNLO counterpart,
at intermediate values of x, than our default resummation. For the gluon in particular, the
new results are not compatible within the uncertainty bands with our default fit, highlighting
that the PDF uncertainty does not cover the theory uncertainty from missing higher orders.
However, all the qualitative conclusions remain unchanged.

4.2 Global fits

We now turn to consider the global fits, based on the complete dataset described in Sect. 3.2.
We first show the results of the fits, obtained with the default cut parameter Hcut = 0.6,
highlighting similarities and di↵erences with respect to the DIS-only fits, and we discuss the
impact of resummation on the PDFs. We then study the dependence of our results upon
variation of the value of Hcut. Finally, we discuss in some detail the description of the low-Q2

HERA bin which we include in the NNPDF31sx fits.

4.2.1 Fit results and comparison to the DIS-only fits

We start by considering the quality of the global NNPDF3.1sx fits at NLO, NLO+NLLx, NNLO
and NNLO+NLLx, using the default value of Hcut = 0.6 for the hadronic data cut discussed
in Sect. 3.2. The values of the �

2
/Ndat for the total and the individual datasets are shown

in Table 4.2. As in the DIS-only case, in this table we also include the absolute �
2 di↵erence

between the resummed and fixed-order results, ��
2 Eq. (4.1). We observe that the NNPDF3.1sx
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this shows the need 
for  NNLLx 
resummation (at least 
in the quark sector)
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 PERTURBATIVE STABILITY
‣ NNLO and NNLO+NLLx differ quite dramatically 

‣ one could question the reliability of the resummed 
procedure  

‣ what gives us confidence we’re not talking rubbish? 

‣ resummation cures perturbative instability of NNLO
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Figure 4.2. Comparison between the gluon (left) and quark singlet (right plot) PDFs in the NNPDF3.1sx
DIS-only fits using NLO, NNLO, and NNLO+NLLx theory at Q = 100 GeV, normalized to the central
value of the former.

Consider first the NLO+NLLx fit. Here the resummation has a moderate e↵ect: the resummed
gluon PDF is somewhat enhanced between x = 10�5 and x = 10�2, with the PDF uncertainty
bands only partially overlapping, whilst the shift in central values for the singlet is well within
the PDF uncertainties. This remains true down to the smallest values of x: even for values as
small as x ' 10�6 the shifts of the central value of the singlet and the gluon PDF due to the
resummation are less than 10%. This is a consequence of the fact that, as discussed in Sect. 2,
NLO theory is a reasonably good approximation to the fully resummed result at small-x, and
any di↵erences are such that can be reabsorbed into small changes in the gluon PDF.

The situation is rather di↵erent at NNLO+NLLx. In this case, we see that starting from
x . 10�3 the resummed gluons and quarks are systematically higher than in the baseline NNLO
fit, by an amount which ranges from 10% for x ⇠ 10�4 up to 20% for x ⇠ 10�5 (though note
that in this analysis there are no experimental constraints for x . 3⇥ 10�5). The shifts outside
central values are significantly outside the PDF uncertainty bands, yet result in an improvement
in the quality of the fit.

Note that we are performing these comparisons at the electroweak scale Q ⇠ 100 GeV,
where there are no DIS data and where the e↵ect of resummed evolution is combined with
the change of the fitted PDFs at low scales. This has the advantage of showing that several
observables at the LHC characterized by electroweak scales are likely to be sensitive to small-x
resummation through the PDFs, particularly when measurements can be performed at high
rapidities. Therefore, for such observables, the use of small-x resummed PDFs (and coe�cient
functions) is probably going to be necessary in order to obtain reliable theoretical predictions.

In Fig. 4.1 we observed that including resummation leads to a significantly larger shift in the
small-x quark singlet and gluon PDFs at NNLO than at NLO. This is so despite the fact that
from the point of view of small-x resummation the information added is the same in both cases,
and that the resummed splitting and coe�cient functions at small x are quite similar whichever
fixed-order calculation they are matched to. The explanation of this paradoxical result is that
fixed-order perturbation theory is unstable at small x due to the small-x logarithms, and while
this instability is quite small at NLO, due to accidental zeros in some of the coe�cients, it
is significant at NNLO, and would probably become very substantial at N3LO. In order to
better illustrate this e↵ect, and the way it is cured by resummation, in Fig. 4.2 we compare
the NLO, NNLO and NNLO+NLLx results for the gluon and singlet PDFs in the baseline
fits at Q = 100 GeV, normalized to the NLO prediction. We find that the NNLO results
are systematically below the NLO ones for x  10�2, and that the net e↵ect of adding NLLx
resummation to the NNLO fit is to bring it more in line with the NLO (and thus as well with
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 HERA STRUCTURE FUNCTIONS
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Figure 5.2. The longitudinal structure function FL(x,Q2) as a function of Q2 for di↵erent x bins for
the most recent H1 measurement [188], comparing the results of the NNLO and NNLO+NLLx fits.

instead exhibits a flat behavior even for the smallest values of Q
2. The larger value of FL

with the NNLO+NLLx theory leads to a lower reduced cross section at high y, with a more
pronounced turnover, thus giving a better description of �r,NC at small-x, as shown in Fig. 5.1.

Finally, in Fig. 5.3 we show a similar comparison to that of Fig 5.1, this time for the HERA
charm production reduced cross-sections. Here we also show the two Q

2 bins about the lower
Q

2
min cut, which in this case correspond to the Q2 = 5 and 7 GeV2 bins. We find that especially

for the bin with Q
2 = 5 GeV2, the NNLO+NNLx prediction agrees well with the HERA data

while the NNLO one overshoots it. We remind again the reader that these graphical comparisons
do not take into account the correlations between systematic uncertainties. The large di↵erence
between the �2 at NNLO and at NNLO+NLLx is therefore only partially captured by Fig. 5.3.
As we shall see in greater detail in Sect. 5.2, also in this case the deterioration of the NNLO
�
2 with respect to the NNLO+NNLx result shown in Table 4.2 stems mostly from the low-Q2,

low-x bins.
Note that the HERA charm cross-sections are extracted from the experimentally measured

fiducial cross-section [134] by extrapolation to the full phase space using the fixed-order O(↵2
s)

calculation of the HVQDIS program [190], based on the fixed-flavour number scheme. This should
be contrasted with the inclusive neutral current structure function measurements, which are de-
termined from the outgoing lepton kinematics and therefore do not assume any theory input.
Given that we have shown that fixed-order and resummed predictions for F

c

2 can exhibit im-
portant di↵erences at small-x, such theory-based extrapolation based on the O(↵2

s) fixed-order
calculation might introduce a bias whose size is di�cult to quantify. It is quite possible that a
more consistent analysis of the raw data based instead on an extrapolation using resummed the-
oretical predictions might further improve the already good agreement of the extracted charm
cross-section with the NNLO+NLLx fit.
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‣ the improved description of DIS structure 
functions is clearly visible 

‣ this is particularly true for FL where 
resummation effects starts at its LO
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 BFKL: THE GHOST OF CHRISTMAS PAST

Figure 5.4. The kinematic coverage of the HERA inclusive structure function data that enters the
NNPDF3.1sx fits. The tilted lines represent representative values of the cut to DIS data applied after
the fit to study evidence for BFKL e↵ects at small-x and small-Q2. Left plot: perturbative-inspired cut
Eq. (5.2); right plot: saturation-inspired cut Eq. (5.4). Note that the data points a↵ected by the various
cuts are plotted with di↵erent shades.

in the fit; here the parameter Dcut applies only to DIS structure functions and is used as an a
posteriori diagnosis tool after the fit has been performed.

In Fig. 5.5 we display the values of �2
/Ndat for the HERA neutral current inclusive (top left)

and charm (bottom left) reduced cross-sections as a function of Dcut. First of all, we observe
that at NNLO the �

2
/Ndat increases sharply for Dcut & 2, or, equivalently, as more data from

the small-x and small-Q2 region are included, both for the inclusive and the charm data. On the
other hand, this trend disappears for the NNLO+NLLx fits: in this case the value of �2

/Ndat

is flat for all Dcut values in the studied range.
Another interesting feature of these plots is that the stability with respect to the value of

Dcut is also present for the NLO and NLO+NLLx fits. Indeed, the �
2
/Ndat values for the

NLO, NLO+NLLx, and NNLO+NLLx fits all exhibit a rather similar shape. This is of course
a consequence of the fact that, as shown in Sect. 4, the PDFs obtained from the fits using these
three theories are rather close to each other, whereas the NNLO PDFs are very di↵erent at small
x. Remarkably, for the inclusive data especially the NNLO+NLLx fits lead to a better �2

/Ndat

than the NLO and NLO+NLLx ones, presumably due to the additional NNLO corrections
included in the NNLO+NLLx matched calculations. This result highlights the importance of
the NNLO corrections for the optimal description of the medium and large-x HERA data.

The results of Fig. 5.5 demonstrate that fixed-order NNLO theory does not provide a sat-
isfactory description of either the inclusive or charm DIS data at small x and small Q2. The
better description is instead achieved by including NLLx e↵ects, providing direct evidence of
the need for small-x resummation at small-x. Moreover, we observe that the rise in the �2

/Ndat

values of the NNLO fits becomes very significant for Dcut & 2. This means that BFKL e↵ects
at NNLO approximately start to become important when

ln
1

x
& 1.2 ln

Q
2

⇤2
, (5.3)

see Eq. (3.2), which implies, for instance, that the e↵ects of small-x resummation become phe-
nomenologically relevant around x ' 8⇥ 10�4 (2.7⇥ 10�4) for Q2 = 2.7 GeV2 (6.5 GeV2). This
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Figure 5.5. Upper left: the values of �2
/Ndat in the NNPDF3.1sx global fits for the HERA NC inclusive

structure function data for di↵erent values of the cut Dcut Eq. (5.2), comparing the results of the NLO,
NLO+NLLx, NNLO, and NNLO+NLLx fits. Upper right: same comparison, now between the global
NNLO and NNLO+NLLx baseline fits with the NNLO+NLLx global fits with Hcut = 0.5 and 0.7 and
with the DIS-only fit. Bottom left: same as above for the HERA charm production data. Bottom right:
same as upper left, now with the saturation-inspired cut Eq. (5.4).

estimate is consistent with the results presented in Sects. 2 and 4.
To study whether the treatment of the hadronic data in the PDF fits can modify this con-

clusion, in the upper right panel of Fig. 5.5 we also compare the �
2
/Ndat values as a function

of Dcut for the NNPDF3.1sx NNLO+NLLx global fits with the three Hcut values discussed in
Sect. 4.2.3, namely Hcut = 0.5, 0.6 and 0.7, as well as with the global Hcut = 0.6 NNLO fit and
the NNLO+NLLx DIS-only fit. These comparison illustrate that our quantitative conclusions
are to a very good approximation independent of the specific cut applied to the hadronic data:
very similar NNLO+NLLx results are found in the global fit irrespective of the value of Hcut, as
well as for the corresponding DIS-only fit. We have also verified that the same conclusion holds
for the NLO and NLO+NLLx fits.

In Refs. [65,66], a similar cutting exercise was performed, but in that case the specific form
of the cut to the small-x and small-Q2 data was inspired by saturation arguments. Specifically,
the condition used to exclude data points was

Q
2
x
�
� Acut , (5.4)

with � = 0.3. The value of Acut determines how stringent is the cut: the larger its value, the
more data points excluded (so 1/Acut behaves qualitatively in the same way as Dcut). While
the inspiration for the cut Eq. (5.4) is di↵erent from that of Eq. (5.2) (which is based instead
on perturbative considerations), the practical result is the same, with only some di↵erences on
the exact shape of the cut in the (x,Q2) plane (see the right panel of Fig. 5.4). The results for
the �

2
/Ndat as a function of 1/Acut are shown in the bottom right panel of Fig. 5.5, and indeed
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Figure 5.3. Same as Fig 5.1 for the HERA charm production cross-sections.

5.2 Quantifying the onset of small-x resummation in the HERA data

In this section we resort to a number of statistical estimators to identify more precisely the onset
of small-x resummation in the inclusive and charm HERA measurements. First, we perform a
detailed �

2 analysis, which we then complement by a study of the pulls between theory and
HERA data.

5.2.1 �
2 analysis

The �2
/Ndat values summarized in Table 4.2 indicate that the fit quality of the inclusive HERA

structure functions improves when resummation e↵ects are included: this is particularly true
at NNLO, where the total �2 drops by ��

2 = �121 units in the NNLO+NLLx fit. We now
want to identify the origin of this improvement, and investigate to what extent it arises from a
better description of the data in the small-x and small-Q2 region where the e↵ects of small-x
resummation are expected to be most important.

To achieve this goal, we have recomputed the �
2
/Ndat values of the HERA inclusive and

charm cross-sections using the NNPDF3.1sx NLO, NNLO, NLO+NLLx, and NNLO+NLLx
global fits with the default choice Hcut = 0.6, excluding those data points for which

↵s(Q
2) ln

1

x
� Dcut . (5.2)

The condition Eq. (5.2) is designed to exclude data for which the small-x logarithmic terms are
expected to be of the same size at all orders in the coupling ↵s, thus potentially spoiling the
perturbative behaviour of the theoretical predictions at fixed order.

From basic considerations (see also Sect. 3.2), one would expect fixed-order perturbation
theory to break down for ↵s(Q2) ln 1

x
of order 1. The parameter Dcut should thus be of order

1 as well. By varying the value of Dcut, we can vary the number of data points excluded from
the computation of the �

2
/Ndat. For su�ciently small values of Dcut, all contributions which

potentially spoil perturbation theory should be cut away, and we should thus find that small-x
resummation does not improve the quality of the fit. Then as we increase Dcut, more data points
at small x and Q

2 will be included, and the e↵ects of the resummation should become apparent.
A kinematic plot showing the HERA structure function data which are cut for various values of
Dcut is shown in the left panel of Fig. 5.4. We emphasize that this cut should not be confused
with the Hcut cut defined in Eq. (3.1), which was used to determine which hadronic data enter
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‣ How does the fit-quality change if we include 
data at smaller and smaller x? 

‣ similar strategy as for hadronic data
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 BFKL: THE GHOST OF CHRISTMAS PRESENT
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Figure 6.5. The UHE neutrino-nucleus charged-current cross-section �CC(E⌫) as a function of the
neutrino energy E⌫ , comparing the results obtained using the NNPDF3.1sx NNLO fits with those of the
its resummed NNLO+NLLx counterpart.

6.2 The ultra-high energy neutrino-nucleus cross-section

We next briefly explore the implication of the NNPDF3.1sx fits for the calculation of the total
neutrino-nucleus cross-sections at ultra-high energies (UHE). The interpretation of available
and future UHE data from neutrino telescopes, such as IceCube [196] and KM3NET [197],
requires precision predictions for the UHE cross-sections. With this motivation, a number
of phenomenological studies of the UHE cross-sections and the associated uncertainties has
been presented, both in the framework of collinear DGLAP factorization [198–204] and beyond
it [205–209], the latter including for instance the e↵ects of non-linear evolution or saturation.

Here we focus on the charged-current (CC) neutrino-nucleus inclusive cross-sections. Mea-
suring neutrino-nucleus interactions at the highest values of E⌫ accessible at neutrino telescopes
explores values of x down to ⇠ 10�9 for Q ⇠ MW , thus representing a unique testing ground
of small-x QCD dynamics. We have computed the theoretical predictions with APFEL+HELL for
NNLO and NNLO+NLLx theory, using the corresponding NNPDF3.1sx fits as input. Heavy
quark mass e↵ects are included using the FONLL scheme, although these mass corrections are
negligible at the relevant intermediate and high neutrino energies, so the calculation is e↵ectively
a massless one.

In Fig. 6.5 we show the UHE neutrino-nucleus charged-current cross-section �CC(E⌫) as a
function of the neutrino energy E⌫ for the fixed-order and for the resummed predictions. We
show both the absolute cross-sections, and the cross-sections normalized to the central value of
the NNLO prediction. The error bands indicate the one-sigma PDF uncertainties. The upper
limit in E⌫ corresponds to the foreseeable range of the current generation of neutrino telescopes.

As we can see from the comparison of Fig. 6.5, the main e↵ect of small-x resummation is
to increase the cross-section at the highest energies, by an amount that can be as large as 50%
or more. The PDF errors are however large, and the NNLO and NNLO+NLLx predictions
agree at the one-sigma level on the whole range of energy considered. Given the large PDF
uncertainties, it appears di�cult to tell apart distinctive BFKL signatures in the total UHE
inclusive cross-section. However, it is interesting to note that the e↵ect of small-x resummation
on the UHE cross-sections is the opposite of that obtained in calculations based on non-linear
QCD dynamics, which instead predict a smaller cross-section at high energy (see e.g. [205]).

A promising strategy towards reducing the large PDF errors that a↵ect �CC(E⌫) in Fig. 6.5
is provided by the inclusion of charm production data from LHCb [210–212] in the PDF fits. As
demonstrated in [14, 213, 214], the inclusion of LHCb D-meson production cross-sections gives
a significant reduction in PDF uncertainties in the small-x region (up to an order of magnitude
at x ' 10�6), which in turns leads to UHE cross-sections with few-percent theory errors up to
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Figure 6.1. The gluon-gluon, quark-gluon, quark-antiquark and quark-quark PDF luminosities,
Eq. (2.3), at

p
s = 13 TeV as a function of the final-state invariant mass MX , comparing the NNPDF3.1sx

NNLO and NNLO+NLLx global fits.

It is important to emphasize here that the luminosity comparison in Fig. 6.1 provides
only a rough estimate of the actual di↵erences between the NNLO and the fully resummed
NNLO+NLLx cross-sections, since a quantitative assessment requires the resummation of the
partonic cross-sections for the relevant processes, and this can be as large as the di↵erence in
the luminosities [44, 186]. This said, the results of Fig. 6.1 show that the e↵ects of small-x
resummation are potentially significant for LHC cross-sections, in particular for those with large
gluon-initiated contributions.

Next, in Fig. 6.2 we show same comparison but this time between the NLO and NLO+NLLx
fits. As discussed in Sect. 4, we expect the di↵erences to be more moderate compared to the
NNLO fits case. Indeed, the di↵erences are now much smaller, both for the gluon-initiated
and for the quark-initiated luminosities. The most significant e↵ect of resummation can again
be seen in the gg luminosity, but now only at the 10% level at MX . 10 GeV. The other
luminosities all agree within uncertainties. Henceforth, we will focus on the comparison between
the NNLO+NLLx and and the NNLO fits, as in all cases the corresponding di↵erences between
NLO+NLLx and NLO would always be much smaller.

Now we move to compare PDF luminosities which are di↵erential in rapidity, Eq. (6.1). As
already mentioned, these luminosities allow for a more direct mapping between the final state
kinematics and the regions of x,Q2 of the underlying PDFs. For simplicity, we focus here on the
gluon-gluon and quark-antiquark luminosities, as the behaviour of the gluon-quark and quark-
quark is closely related to these two. In Fig. 6.3 we compare the PDF luminosities of the NNLO
and NNLO+NLLx fits, normalized to the central value of the former. We show the results as a
function of y for three di↵erent values of MX , namely 10 GeV, 30 GeV, and 100 GeV.
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‣ to investigate LHC phenomenology we need 
resummed coefficient functions 

‣ we can have a look at parton luminosities: 
qqbar doesn’t change much but the change 
in gg is striking! 

‣ consistent phenomenology for cosmic ray 
neutrinos (CC-DIS)

‣ unique “lab” for 
low-x physics
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Ndat �
2
/Ndat ��

2

NNLO NNLO+NLLx

HERA I+II incl. NC 922 1.22 1.07 -138

LHeC incl. NC 148 1.71 1.22 -73

FCC-eh incl. NC 98 2.72 1.34 -135

Total 1168 1.407 1.110 -346

Table 6.1. Same as Table 4.1 for the NNPDF3.1sx NNLO and NNLO+NLLx fits including both the
LHeC and the FCC-eh pseudo-data. We show only the �

2
/Ndat values for the HERA inclusive cross-

sections and for the LHeC and FCC-eh pseudo-data, since for all other experiments the values presented
in Table 4.1 are essentially unchanged. The last row corresponds to the sum of the three experiments
listed on the table.

data presented in Sect. 5. Such a program would illustrate the unique role of the LHeC/FCC-eh
in the characterization of small-x QCD dynamics, and would provide an important input to
strengthen the physics case of future high-energy lepton-proton colliders.

As a first step in this direction, we have performed variants of the NNPDF3.1sx fits including
various combinations of the LHeC and FCC-eh pseudo-data of �red

NC. Specifically, we have used
the LHeC (FCC-eh) pseudo-data on Ep = 7 (50) TeV + Ee = 60 GeV collisions, where the
central value of the pseudo-data has been assumed to correspond to the NNLO+NLLx predic-
tion computed with the corresponding resummed PDFs. All experimental uncertainties of the
pseudo-data have been added in quadrature. The fits have been performed at the DIS-only level,
since we have demonstrated in Sect. 5 that the small-x results are independent of the treatment
of the hadronic data. Here we will show results of the fits including both LHeC and FCC-eh
pseudo-data, other combinations lead to similar qualitative results.

First of all we discuss the fit results at the �
2
/Ndat level. For simplicity, we show only the

results of the HERA inclusive cross-sections as well as that of the LHeC and FCC-eh pseudo-
data: for all other experiments, the values presented in Table 4.1 are essentially unchanged.
As shown in Table 6.1, it is not possible to satisfactory fit the LHeC/FCC-eh pseudo-data on
inclusive cross-sections using NNLO theory while assuming that NNLO+NLLx theory is the
correct underlying theory, as we have done here. As expected, the most marked di↵erences
are observed for the FCC-eh pseudo-data. Note that the last row in Table 6.1 corresponds to
the sum of the three experiments listed on the table. By performing the same analysis as in
Fig. 5.5, we have verified that the significant improvement in �

2
/Ndat between the NNLO and

NNLO+NLLx fits arises from the bins in the small-x and small-Q2 region.
Next in Fig. 6.8 we show the comparison between the gluon and the singlet PDFs at

Q = 100 GeV in the NNPDF3.1sx NNLO+NNLx fits without and with the LHeC+FCC-eh
pseudo-data on inclusive structure functions. Note that the latter is a DIS-only fit, hence the
di↵erences observed at large-x. For completeness, we also show the results of the corresponding
NNPDF3.1sx NNLO fit with LHeC+FCC-eh pseudo-data. In the case of the NNLO+NLLx, we
see that the central values coincide within uncertainties (as expected by construction) and there
is a significant uncertainty reduction both for the gluon and for the singlet. In particular, the
LHeC+FCC-eh kinematic coverage ensures that a precision measurement of the small-x gluon,
with few-percent errors down to x ' 10�7, would be within reach.

From Fig. 6.8 we also see that for the gluon case, the NNLO and NNLO+NNLx fits with
LHeC+FCC-eh pseudo data are very di↵erent from each other. For instance, at x ' 10�5,
where we gluon can be pinned down with 1% errors, the central values of the two fits di↵er
by ⇠ 15%. This comparison highlights that the fixed-order description of the small-x region at
these future high-energy colliders would be completely unreliable, and that accounting for the
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Figure 6.7. Predictions for the F2 and FL structure functions using the NNPDF3.1sx NNLO and
NNLO+NLLx fits at Q2 = 5 GeV2 for the simulated kinematics of the LHeC and FCC-eh. In the case
of F2, we also show the expected total experimental uncertainties based on the simulated pseudo-data,
assuming the NNLO+NLLx values as central prediction. A small o↵set has been applied to the LHeC
pseudo-data as some of the values of x overlap with the FCC-eh pseudo-data points. The inset in the left
plot shows a magnified view in the kinematic region x > 3⇥ 10�5, corresponding to the reach of HERA
data.

prediction. To compare with the kinematic region within the reach of HERA data, we also show
in the inset of the left plot the values of F2 in a range restricted to x > 3 ⇥ 10�5. The total
uncertainties of the simulated pseudo-data are at the few percent level at most, hence much
smaller than the PDF uncertainties in most of the kinematic range. No simulated pseudo-data
is currently available for FL using the latest scenarios for the two colliders, thus in this case we
show only the theoretical predictions.

We now discuss in turn some of the interesting features in Fig. 6.7. First of all, we clearly
see how with the FCC-eh one can probe the small-x region deeper than the LHeC by about
an order of magnitude. Second, we find that the di↵erences between NNLO and NNLO+NLLx
are moderate for F2, especially if we take into account the large PDF uncertainties. The di↵er-
ence between the central values is in fact at the 15% level at x ' 10�6, but the current PDF
uncertainties are much larger. However, given the precision that the data could have, measur-
ing F2 (or alternatively the reduced cross-section �r,NC) at the LHeC/FCC-eh would provide
discrimination between the two theoretical scenarios of small-x dynamics. Indeed, we see that
the di↵erences between the central values of the fixed-order and resummed fits in the restricted
kinematic region covered by HERA are already comparable or larger than the size of the simu-
lated pseudo-data uncertainties. This suggests that the inclusion of the LHeC/FCC-eh data for
F2 into a global fit would also provide discrimination power between the two theories, even if
restricted to the HERA kinematic range. Finally, we see that di↵erences are more marked for
FL, with central values di↵ering by several sigma (in units of the PDF uncertainty) in a good
part of the accessible kinematic range. This is yet another illustration of the crucial relevance
of measurements of FL to probe QCD in the small-x region (as highlighted also by Fig. 5.2).

The comparisons of Fig. 6.7 do not do justice to the immense potential of future high-energy
lepton-proton colliders to probe QCD in a new dynamical regime. A more detailed analysis,
along the lines of Ref. [216], involves including various combinations of LHeC/FCC-eh pseudo-
data (�red

NC, FL, F
c

2 , etc.) into the PDF global analysis, allowing one to use the pseudo-data to
reduce the PDF uncertainties and to quantify more precisely the discriminating power for small-
x resummation e↵ects with various statistical estimators, generalizing the analysis of the HERA

52

‣ small-x physics will be crucial at future circular colliders 

‣ e (60 GeV) - p (7 TeV or 50 TeV) collisions 

‣ to gauge the impact: fits including                   
(resummed) pseudo-data
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‣ how to merge together the two resummation 
developed so far? 

‣ look at singularity structure in Mellin space
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FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

and at small-x [90, 91]. This opens up the possibility of
achieving fully consistent resummed results. While we
presently concentrate on the Higgs production cross sec-
tion, our technique is fully general and can be applied
to other important processes, such as the Drell-Yan pro-
cess or heavy-quark production. We leave further phe-
nomenological analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section
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where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [86]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [86], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [92]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
86, 93]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [63, 84], which we have now imple-
mented in the code HELL [87, 88]. The technical details of
the implementation will be presented elsewhere [94]. Our
calculation keeps finite top-mass e↵ects where possible.
In particular, in the fixed-order part they are included
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‣ double-resummed result respects singularity structure 
order-by-order Ball, Bonvini, Forte, SM, Ridolfi (2013)
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‣ ideally we would like to use double-resummed PDFs 

‣ we have to make a choice: small-x resummation strongly affects the 
NNLO gluon PDF, while threshold is a small correction 

‣ use small-x resummed PDFs for double resummation
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Bonvini and SM (2018)

‣ faster convergence of perturbative expansion 

‣ reliable theoretical uncertainties using scale variations and 
subleading logs)  

‣ large effect at 100 TeV driven by small-x resummation of the gluon

https://www.ge.infn.it/~bonvini/hell/
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CONCLUSIONS & OUTLOOK
‣ Better determinations of PDFs require both data and theory 

‣ resummation offers a complementary direction 

‣ large-x resummed fits performed with restrict data set 

‣ small-x resummed fit shows evidence of BFKL dynamics in HERA 
inclusive data 

‣ LHC application: double-resummed Higgs cross-section 

‣ towards truly global resummed fits: 

‣ DY at small x is the next item on the agenda 

‣ then jets, both at large- and small-x
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THANK YOU!
if we have seen further it is only by 
standing on the shoulders of giants
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