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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, mt̃1
, with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for mt̃1

in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for mt̃1

below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m
2
h
= M

2
Z
cos2 2� + �

2
v
2 sin2 2� + �
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t
, (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [107] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.35GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (59)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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FIG. 3: Left: two dimensional 95% C.L. exclusion limits in the neutralino-stop mass plane. Our derived limits are shown in
red (with expected limits shown as a dashed line), LEP limits [63] in gray while the CMS direct stop search in the light stop
region [25] is shown in blue. Right: excluded regions for massless neutralino in the stop-top mass plane. Excluded region from
our analysis derived using the top cross section alone (i.e. without assuming prior knowledge of the top mass) are shaded in
red, while the LEP limits are shown in gray. The e↵ect of combining the �tt̄ measurement with current mt measurements
(assuming no stop contamination) is shown as a blue line. Expected limits are shown as dashed lines. For both plots we assume
right-handed stop, t̃R.

limits [63] beyond the LEP kinematical range into a re-
gion currently unconstrained by LHC direct searches.
Stop mass limits based on the top cross section may
reach and extend beyond the top mass, with the bino
LSP case being more strongly constrained at higher stop
masses and being less constrained, for t̃R decays around
80 � 100GeV, due to the less e�cient t ! t̃�0

1 decays,
see Fig. 1 (right).

In Fig. 3a we present the case where the bino mass
is allowed to move in the (m

t̃
, m�

0
1
) plane, comparing

our limits to those obtained by other existing direct stop
searches [25, 63]. Our method is closing the stealth stop
window for low neutralino masses, m�

0
1
. 20GeV, while

it is not e↵ective for higher masses because signal rates
rapidily become too low with increasing m�

0
1
.

Finally, in Fig. 3b we consider the case where the as-
sumption of a known top mass is relaxed. We use the
mt dependence of �tt̄ presented in [59]. We show the
limits of this scenario in the (m

t̃
,mt) plane for massless

bino. If mt is not known, either due to stop contam-
ination or to theoretical uncertainties [77], an increase
in mt can reduce �tt̄, thus compensating the e↵ects of
the extra SUSY contributions. Therefore the top cross
section is now allowing a significantly larger band in the
top–stop mass plane. However a 10GeV shift in the top

mass is required to re-open the stop window all the way
below 150GeV. While this shift is likely too large to
be allowed by current top mass measurements given the
agreement across di↵erent analysis techniques and given
the O(2GeV) uncertainty on mt in the endpoint analy-
sis in [78], the precise extent of the allowed regions can
ultimately be constrained only by studying SUSY con-
tamination in top mass analyses. In Fig. 3b we also
show the limit that would be achieved by combining the
cross section measurement with a mass measurement of
mt = 173.34 ± 0.76GeV [79], in order to illustrate the
sensitivity assuming present mass measurements are not
significantly impacted by the presence of stops.

Discussion: We have introduced a novel method for
constraining light stops with precision top cross sec-
tion measurements at the LHC. The idea of using preci-
sion SM measurements to constrain BSM physics is well
known for indirect observables (like electroweak preci-
sion measurements or flavor violating observables), but
mostly unexplored at high energy colliders, such as the
LHC, where a dichotomy between “measurements” and
“searches” is often present. This type of studies can be
very powerful in covering the shortcomings of standard
searches, but clearly require high precision for both the-
ory and experiment which, at present, makes them appli-
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The Higgs sector of the MSSM depends, at tree-level, on the ratio of the vevs, tan �, and on

the pseudoscalar mass mA, which determines the mixing between the two CP even scalars. In

this section, we focus on the decoupling limit, mA � mZ , where the lightest CP even Higgs is

SM-like in its coupling and has the largest possible tree-level mass (away from the decoupling

limit, mixing drives the lightest mass eigenstate lighter). In the decoupling limit, the tree-

level Higgs mass is given by mZ cos 2� and is maximized at high tan �, but is always far below

125 GeV.

At the one-loop level, stops contribute to the Higgs mass and three more parameters become

important, the stop soft masses, mQ3 and mu3 , and the stop mixing parameter Xt = At�µ cot �.

The dominant one-loop contribution to the Higgs mass depends on the geometric mean of the

stop masses, m2
t̃
= mQ3mu3 , and is given by,

m
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. (4)

The Higgs mass is sensitive to the degree of stop mixing through the second term in the brackets,

and is maximized for |Xt| = X
max
t

=
p
6mt̃, which is referred to as “maximal mixing.” The Higgs

mass depends logarithmically on the stop masses, which means, of course, that the necessary

stop mass depends exponentially on the Higgs mass. Therefore, an accurate loop calculation is

essential in order to determine which stop mass corresponds to a 125 GeV Higgs.

We use the Suspect [10] and FeynHiggs [11] packages to calculate the Higgs mass, which

include the full one-loop and leading two-loop contributions. In Figure 4 we give the mh = 124

and 126 GeV contours in the (Xt,mt̃) plane, with Suspect shown in red and FeynHiggs shown

in blue. For both curves, the axes are consistently defined in the DR renormalization scheme.

The left and right-handed top squark mass parameters are taken equal, mQ3 = mu3 , since the

Higgs mass depends only mildly on the ratio. As we shall show, this choice results in the lowest

fine-tuning for a given mt̃, since the stop contribution to fine-tuning is dominated by the largest

soft mass. The loop contribution depends slightly on the choice of some of the other SUSY

parameters: we have fixed all gaugino masses to 1 TeV, the Higgsino mass to µ = 200 GeV, and

mA = 1 TeV. We find that the Suspect and FeynHiggs results have considerable di↵erences. The

two programs use di↵erent renormalization prescriptions, and we take the di↵erence between the

two programs as a rough estimate of the theoretical uncertainty in the Higgs mass calculation.

For an earlier comparison, see [23]. The uncertainty should be reduced if one takes into account

the results of recent three-loop calculations [24], although this is beyond the scope of our work.

For a detailed discussion of the two-loop calculations, see for example [25]. Fortunately, the two

programs agree to within a factor of two on the necessary stop mass in the maximal mixing

regime: mt̃ = 500� 1000 GeV for Xt ⇠
p
6mt̃ and mt̃ ⇠ 800� 1800 GeV for Xt ⇠ �

p
6mt̃, for

a Higgs mass in the 124–126 GeV range.
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Fragmentation uncertainties in hadron observables for top quark mass measurements

June 5, 2017

1 Introduction

Motivation for mtop ...

At present several attempts have been made to overcome the difficul-
ties of the standard methods and in particular the need to calibrate jets
energy to very high accuracy. Some attempts involved using the W bo-
sonmass as a constraint to calibrate in-situ the jet reconstruction [1]. This
method, however, cannot account for the differences between b-jets and
light flavored jets, as the W boson only produces light flavored quarks
and some charm. In other attempts the jet energy scale has been ef-
fectively constrained exploiting the anti-correlation of b-jets energy and
angular variables [2] imposed by the V −A decay matrix element that in
the Standard Model describes the top quark decay.

Despite all these efforts the jet energy scale keeps being a bottleneck
for the improvement of standard mass measurements methods. There-
fore new methods have been conceived to go around this uncertainty.
Among the earliest we recall the methods based on exclusive J/ψ [3, 4]
fragmentation of the b-quark and studies of the decay length of the B
hadrons [5, 6]. In the J/ψ method leptonic decays of the J/ψ are used
to identify the resonance. The distribution of the invariant mass of two
leptons from the J/ψ and the lepton from the W boson decay, mℓℓ̄ℓ′ ,
is then calculated and, thanks to theoretical calculations, related to the
mass of the top quark. No jet energy measurement is directly involved in
the measurement of the quantity sensitive to the top quark mass, there-

fore this type of measurement is free from jet energy calibration issues 1.
Similarly, the measurement of the decay length of theB hadron does not
involve directly any jet energy measurement, as it is based on the identi-
fication of the secondary vertex in the event through tracking. Therefore
a measurement of this type is clean from jet energy calibration issues.
For all methods involving the tagging of exclusive hadronic final states,

e.g. the di-lepton J/ψ final state mentioned above, we expect a number
or recorded events at LHC14

Nev ∼ 105
L

1/ab
ϵtagging
10−4

· ϵcuts ·BR(tt̄) (1)

for a tt̄ final state having branching fraction BR(tt̄) in a data sample
that retains a fraction ϵcuts of the total tt̄ sample for a given tagging effi-
ciency ϵtagging. For the J/ψ clean di-lepton tag ϵtagging will be few · 105
just taking into account branching fractions. Adding up all decay modes
of B hadrons that can be reconstructed from just charged tracks (e.g.
B+ → K+π+π−) we may increase the number of events by a factor few,

1The events on which the leptonic J/ψ is sought have been selected by imposing
selections on the events, which usually involves jets. Therefore, via the selection cuts,
this measurement is affected by jet energy issues. However this effect is not direct: the
mismeasurement of energy affects only the phase-space of the events used in the mea-
surement, not the observable itself. The theory calculations needed to extract the top
quark mass from the observed distribution are carried out for the nominal phase-space,
which is not identical to phase-space of the events recorded in the experiment. This
difference in practice has very marginal effects on the extracted top quark mass, as can
be checked by slightly changing the phase space in the theory calculations.

1

 0906.5371 

CMS-PAS-TOP-12-030

B → ℓ + X
Lxy

B → J/ψ + X
B → tracks

B → tracks + neutral

εtagging

O(1)

O(10-4)

CMS-PAS-TOP-15-014

1603.06536

• Mass measurement methods using 
jets ⇒ Jet Energy Scale uncertainty  

• Useful to look at mass measurement 
that do not have Jet Energy Scale 
uncertainty

B E Y O N D  J E T S

P L E N T Y  O F  B - H A D R O N  E V E N T S  AT  L H C
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1006.0910 - Biswas, Melnikov, Schulze

pp → tt ̅⊗ NLO fragmentation function
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Figure 2: Result of the linear fit to ⟨mBl⟩
NLO is shown, with all kinematic cuts on the final state particles applied.

See text for details.

3. Dilepton channel

In the previous Section we saw that top quark decays to final states with identified hadrons
provide an interesting way to determine the top quark mass. In this Section we study inclusive
final states. We focus on the case where the top and the anti-top quarks decay semileptonically,
e.g. t → W+b → l+νb. We study the kinematic distribution of an invariant mass of a b-jet
and a lepton, and the distributions of the sum of energies of the two leptons and the two b-jets.
We employ the NLO QCD corrections to top quark pair production and decay, as computed in
Ref. [13]. Throughout this Section, the center-of-mass energy of proton collisions is 14 TeV.

We begin by summarizing the kinematic cuts that are employed to identify dilepton tt̄ events [4].
Leptons are required to be central |ηl| < 2.5 and have large transverse momentum pl

⊥
> 25 GeV.

There should be missing energy in the event, Emiss
⊥

> 40 GeV. The jet transverse momentum cut
is p⊥,j > 25 GeV. We employ the k⊥ jet algorithm with R = 0.4.

3.1. Invariant mass of a lepton and a b-jet

It is pointed out in Ref. [4] that an average value of the invariant mass squared of a b-jet and a
lepton m2

lb and an average value of the the angle between the lepton and the b-jet in the W boson
rest frame, can be used to construct an estimator of the top quark mass. The estimator reads

M2
est = m2

W +
2⟨m2

lb⟩
1− ⟨cos θlb⟩

. (39)

To see that this is a good estimator, we note that for the top quark decay computed at leading
order in perturbative QCD and without any restrictions on the final state Mest equals to mt

⟨m2
lb⟩ =

m2
t −m2

W

2
(1− ⟨cos θlb⟩) , ⟨cos θlb⟩ =

m2
W

m2
t + 2m2

W

⇒ M2
est = m2

t . (40)

In reality Mest is not equal to mt for a variety of reasons including i) kinematic cuts required to
identify the dilepton events; ii) effects of higher order QCD corrections; iii) impossibility to choose
the “correct” pair of a lepton and a b-jet and iv) the experimental issues with b-jet misidentification
and the jet energy resolution. The computation reported in Ref. [13] allows us to calculate M2

est

within the framework of perturbative QCD, accounting for the points i)-iii) exactly.
We point out that the computation of NLO QCD corrections to pp → tt̄ process reported in

[13] includes exact spin correlations, one-loop effects in top quark decays and allows arbitrary
constraints to be imposed on top quark decay products. These features are crucial for reproducing
experimental procedures. Indeed, experimentally, it is not possible to determine the charge of the
b-jet. Hence, it is unclear which of the two b-jets should be combined with the chosen, definite-
sign, lepton. For the purpose of mlb reconstruction, one pairs the lepton with the b-jet that gives
the smallest mlb value [4]. The parameter ⟨cos θlb⟩ in Eq. (39) is not measured and should be
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Figure 2: Result of the linear fit to ⟨mBl⟩
NLO is shown, with all kinematic cuts on the final state particles applied.

See text for details.
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[13] includes exact spin correlations, one-loop effects in top quark decays and allows arbitrary
constraints to be imposed on top quark decay products. These features are crucial for reproducing
experimental procedures. Indeed, experimentally, it is not possible to determine the charge of the
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sign, lepton. For the purpose of mlb reconstruction, one pairs the lepton with the b-jet that gives
the smallest mlb value [4]. The parameter ⟨cos θlb⟩ in Eq. (39) is not measured and should be

12

Maybe NNLO ⊗ fragmentation functions
1606.07737

F R O M  F R A G M E N TAT I O N  F U N C T I O N S

Most likely N3LO ⊗ fragmentation functions



H A D R O N  S P E C T R U M

170 175 180

40

42

44

46

48

50

mtop [GeV]

E� B
-t
ag

[G
eV

]

Agashe, RF, Kim, Schulze - 1603.06536

pp → tt ̅⊗ NLO fragmentation function

LO

NLO

dominated by fragmentation scale

F R O M  F R A G M E N TAT I O N  F U N C T I O N S



H A D R O N  S P E C T R U M

170 175 180

40

42

44

46

48

50

mtop [GeV]

E� B
-t
ag

[G
eV

]

Agashe, RF, Kim, Schulze - 1603.06536

NLO sensitive to the scale 
choice: ±3.5 GeV on mtop

pp → tt ̅⊗ NLO fragmentation function

LO

NLO

dominated by fragmentation scale

F R O M  F R A G M E N TAT I O N  F U N C T I O N S



H A D R O N  S P E C T R U M

pp → tt ̅@ NLO ⊗ Parton Shower + Non-Perturabtive Models

F R O M  M O N T E  C A R L O  E V E N T  G E N E R AT O R S

Today’s talk



E V E N T  G E N E R AT O R S

Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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above all, models for hadronization and underlying events are different.
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The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
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As far as HERWIG is concerned, hadronization occurs according to the
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respect to the default parametrization, although some discrepancy still
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and hadronization parameters and vary them by at most 20% around their
respective default values.
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The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
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which just accounted for cluster-hadronization parameters, we shall also
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parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
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for the discussion on its relation with respect to the standard ⇤QCD in the
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string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Figure 7. The B-fragmentation as measured by SLD [30]
and predicted by the dipole shower with the improved kine-
matics for massive quarks. More details will be presented
in a forthcoming publication [29].

improve the convergence of the reweighted results at
the expense of a less e�cient algorithm for the central
prediction.

Reweighting is available in both showers. Multiple
variations can be included in a single run and each vari-
ation requires a unique name, ‘varName’, which is used
to identify the weight in the HepMC record. Each vari-
ation corresponds to a pair of scale factors, ⇠R and ⇠F ,
to be applied to the renormalization and factorization
scales respectively. Finally each variation can be ap-
plied to the showering of the hard process only (Hard),
secondary processes only (Secondary) or to both parts
(All):

do ShowerHandler:AddVariation VarName xR xF
Hard/Secondary/All
set SplittingGenerator:Detuning Factor

do DipoleShowerHandler:AddVariation VarName
xiR xiF Hard,Secondary,All
set DipoleShowerHandler:Detuning Factor

On top of using reweighting for the shower varia-
tions, the dipole shower o↵ers a number of reweight-
ing and biasing facilities which are e.g. used for
the KrkNLO method (see below). These are avail-
able through the DipoleSplittingReweight and
DipoleEventReweight classes. Very flexible veto func-
tionality is also available for the angular ordered
shower through the ShowerVeto and FullShowerVeto
classes.

7 KrkNLO

This version of Herwig contains an implementation of
the KrkNLO method [32]. This provides NLO QCD
corrections to LO matrix elements for specific pro-
cesses following this paradigm as an alternative to the

other matching schemes available. The implementation
currently supports the Drell-Yan (Z/�⇤) process, and
Higgs production via gluon-fusion (in the large top-
mass limit) and is available for the dipole shower [9,33].
For the Drell-Yan process, it is possible to use both
the MC and MCDY variants of the MC scheme [34].
This module was validated against a previous, inde-
pendent, implementation using the published DY re-
sults of Ref. [32] and was also used to simulate the
first results for this method in Higgs production [35].
KrkNLO can be enabled by using

read Matchbox/KrkNLO-DipoleShower.in
set KrkNLOEventReweight:Mode H
set KrkNLOEventReweight:PDF MC
set KrkNLOEventReweight:AlphaS R Q2
set KrkNLOEventReweight:AlphaS V M2

in combination with an MC-scheme PDF. The MC-
scheme PDFs, example input-cards, and other relevant
codes are hosted at https://krknlo.hepforge.org/.

8 Other Changes

Besides the major physics improvements highlighted in
the previous sections, we have also made a number of
smaller changes to the code and build system which we
will summarize below. Please refer to the online doc-
umentation for a fully detailed description or contact
the authors.

8.1 Steering, input files and weights

The steering of the Herwig executable has seen a num-
ber of improvements, mainly:

– A new run mode has been added to solely perform
the merging of integration grids from parallel inte-
gration runs,

Herwig mergegrids <run file name>

– A high-level run-time interface is now available to
steer Herwig within more complex frameworks such
as experimental software without the need to ex-
ecute the binary. This includes all of the read,
build, integrate, mergegrids and run steps.

The structure of input files for non-Matchbox-based
processes has been adapted to use the snippet input
file mechanism and is now in line with steering matched
and merged processes. On top of this, a large number
of input file switches which have before used On,Off or
True,False to indicate their state have been changed
to Yes,No.

As far as integration and event generation are con-
cerned, we have made a choice that by default sampling
is run in AlmostUnweighted mode, i.e. events carry
in general varying weights, most of which are unity.
This is to account for the fact that the grid adaption
might only have encountered a maximum weight close
to the true maximum weight and strict unweighting
in this case could skew distributions and cross section

Figure 5: Data from LEP and SLD experiments, compared with the NLO+NLL calcu-
lation convoluted with the Kartvelishvili model (solid) and HERWIG 6.506, using the
default parametrization (dashed) and our tuning (dotted).

Figure 6: As in Fig. 5, but comparing data and the NLO+NLL calculation with default
(dashed) and tuned (dotted) PYTHIA 6.220. Also shown is the PYTHIA prediction,
using our tuning of the hadronization model, but without rejecting the showers which
do not fulfil angular ordering (dot-dashed).

tions quoted in Table 1 to predict the xB distribution in H → bb̄ and t → bW . In Higgs
decay we shall investigate the cases mH = 120 and 500 GeV; in top decay we shall as-
sume mt = 175 GeV and mW = 80.425 GeV. The other quantities will be set consistently
with the values employed in the fit to the e+e− data.

In Fig. 7, we plot the B-hadron spectrum in H → bb̄ processes, using HERWIG,
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables

7

H E R W I G  PA R A M E T E R S

VXCUT

ΛQCD 

B direction

• QCDLAM can be identified at high momentum fractions (x or z) with the funda-
mental 5-flavour QCD scale Λ(5)

MS
. However, this relation does not necessarily

hold in other regions of phase space, since higher order corrections are not
treated precisely enough to remove renormalisation scheme ambiguities [13].

• RMASS(1, 2, 3, 13) are effective light quark and gluon masses used in the hadron-

ization phase of the program. They can be set to zero provided the parton
shower cutoffs VQCUT and VGCUT are large enough to prevent divergences (see

below).

• For cluster hadronization, it must be possible to split gluons into qq̄, i.e.
RMASS(13) must be at least twice the lightest quark mass. Similarly it may

be impossible for heavy-flavoured clusters to decay if RMASS(4, 5) are too low.

• VQCUT and VGCUT are needed if the quark and gluon effective masses become
small. The condition to avoid divergences in parton showers is

1

Qi
+

1

Qj
<

1

QCDL3

for either i or j or both gluons, where Qi = RMASS(i) + VQCUT for quarks,

RMASS(13) + VGCUT for gluons, and QCDL3 is the three-flavour QCD scale used
internally by HERWIG. QCDL3 is obtained by matching at the b- and c-quark

mass scales from the internal five-flavour scale

QCDL5 = QCDLAM × exp

(
151− 9π2

138

)
/
√

2 = 1.109× QCDLAM .

Note that, in the notation of ref. [13] and section 3.2, QCDL5 = Λphys/
√

2 for

five flavours.

• VPCUT is the analogous quantity for photon emission. It now defaults to
0.4 GeV. Previous versions defaulted to

√
s, switching off such emission. Re-

sults after experimental cuts are insensitive to its exact value in the range 0.1
to 1.0GeV.

• CLMAX and CLPOW determine the maximum allowed mass of a cluster made from

quarks i and j as follows

MCLPOW < CLMAXCLPOW + (RMASS(i) + RMASS(j))CLPOW .

Since the cluster mass spectrum falls rapidly at high mass, results become
insensitive to CLMAX and CLPOW at large values of CLMAX. Smaller values of

CLPOW will increase the yield of heavier clusters (and hence of baryons) for heavy
quarks, without affecting light quarks much. For example, the default value

gives no b-baryons whereas CLPOW = 1.0 makes b-baryons/b-hadrons about 1/4.
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P Y T H I A

and we use it throughout the analysis. Our choices for the observables are
reported in Table 4. Example spectra in observables that are potentially
interesting for the calibration of the Monte Carlo parameters are shown
in Figure 3, in which the thick part of the histograms corresponds to the
FWHM range.

4.1 Dependence on the top-quark mass

A preliminary step for the Monte Carlo tuning is the assessment of the
dependence of the calibration observables on the top-quark mass. Ideally, a
calibration observable should have no dependence on mt, so that it could be
used to constrain the Monte Carlo parameters without any concern about
a potential bias in the mt measurement. In practice, all quantities have
some sensitivity to mt, so the only viable approach is using observables with
minimal sensitivities to the top-quark mass. In this section we study the
dependence on mt of the calibration observables, so that one can restrict
the analysis to a specific set of quantities, clearly aimed at calibration.

We determine the dependence on mt of the first Mellin moments, ob-
tained from 21 mt values in-between 163 GeV and 183 GeV, by fitting a
straight line. We then compute the sensitivities defined in eq. (2) and re-
peat this procedure for the several Monte Carlo settings needed to explore
the dependence on the parameters in Table 1. The Mellin moments and
the straight-line fits for some illustrative parametrizations are presented in
Figure 4. Once we have collected the values of the sensitivity to mt for all
the variations of the Monte Carlo parameters, we calculate the mean value
and standard deviation for each observable. We highlight the fact that
the standard deviation, arising from the discrepancies in the straight-line
fits to data with different parametrizations, is to be read as a measure of
the sensitivity of our result to the Monte Carlo setting employed in the
computation.

The results are reported in Table 4; a few comments are in order. First
of all we remark that for our purposes it is sufficient to present the broad
picture of the sensitivity of the observables to showering and hadronization
parameters, and therefore we can content ourself with one or two digits of
accuracy in the determination of sensitivity parameters. This accuracy will
be more than sufficient to draw informative conclusions. Concerning the
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Figure 3: Example spectra for ⇢(r), �B(Ejb + Ej̄b), EB/E`, �R(BB) �

�R(jb̄jb), pT,B/pT,jb , and mBB̄/mjb j̄b for mt = 174 GeV.
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O Range �(MO)
mt

�(MO)
✓

↵s,FSR mb pT,min a b rB recoil
⇢(r) 0-0.04 -0.007(7) 0.78(1) 0.204(4) -0.1286(8) 0.029(3) -0.043(4) 0.056(7) 0.020(1)

pT,B/pT,jb 0.6-0.998 -0.053(1) -0.220(3) -0.1397(8) 0.0353(5) -0.0187(4) 0.0451(6) -0.0518(9) -0.0108(3)
EB/Ejb 0.6-0.998 -0.049(1) -0.220(3) -0.1381(8) 0.0360(5) -0.0186(4) 0.0447(6) -0.052(1) -0.0107(3)
EB/E` 0.05-1.5 -0.155(7) -0.156(3) -0.053(3) 0.0149(7) -0.007(2) 0.016(2) -0.016(10) -0.0087(7)

EB/(E` + E¯̀) 0.05-1.0 0.021(5) -0.231(2) -0.082(4) 0.0228(4) -0.011(2) 0.026(2) -0.028(6) -0.0113(3)
m(jb̄)/GeV 8-20 0.229(3) 0.218(1) 0.022(1) -0.0219(7) 0.000(1) -0.001(1) 0.001(3) 0.0050(3)

�B(
p

smin,bb) 0.075-0.875 -0.177(4) -0.262(4) -0.086(1) 0.0255(3) -0.0105(10) 0.027(1) -0.031(3) -0.0137(2)
�B

�
Ejb + Ej̄b

�
0.175-1.375 -0.109(2) -0.357(4) -0.134(1) 0.0373(3) -0.016(1) 0.040(1) -0.045(4) -0.0175(3)

�B(mjbjb̄) 0.175-1.375 -0.089(3) -0.252(3) -0.080(1) 0.0248(3) -0.010(1) 0.024(1) -0.028(5) -0.0126(2)
�B

�
|pT,jb | +

��pT,j̄b
��� 0.46-1.38 -0.15(2) -0.47(1) -0.189(10) 0.054(3) -0.023(10) 0.06(1) -0.07(4) -0.022(2)

mBB/mjbjb̄ 0.8-0.95 -0.0191(8) -0.0623(7) -0.0464(5) 0.0146(2) -0.0093(3) 0.0180(4) -0.0212(9) -0.00296(10)
��(jbjb̄) 0.28-3. -0.210(7) 0.027(3) 0.001(2) -0.0014(5) -0.000(3) -0.000(1) -0.003(9) 0.0003(5)
�R(jbjb̄) 1.4-3.3 -0.071(3) 0.010(1) 0.0005(10) -0.0004(2) -0.000(1) 0.0004(9) 0.001(3) 0.0001(2)
��(BB) 0.28-3. -0.207(7) 0.026(2) 0.001(1) -0.0008(4) 0.000(4) 0.000(2) -0.000(8) 0.0002(5)
�R(BB) 1.4-3.3 -0.070(3) 0.009(1) 0.000(1) -0.0003(2) -0.0003(10) 0.0002(9) -0.000(4) 0.0001(2)

|��(BB) � ��(jbjb̄)| 0-0.0488 0.06(1) 0.734(6) 0.099(5) -0.088(2) 0.006(5) -0.004(5) 0.01(2) 0.026(2)
|�R(BB) � �R(jbjb̄)| 0-0.0992 0.10(1) 0.920(3) 0.079(5) -0.075(1) -0.000(4) 0.005(4) -0.00(2) 0.0418(8)

Table 4: Sensitivity of the calibration observables to the top quark mass and to the parameters of PYTHIA parton shower and hadronization. The quantities �(MO)
mt

and �(MO)
✓ are defined in the text. ✓ = {↵s,FSR, mb, pT,min, a, b, rB , recoil} denotes a generic PYTHIA parameter.
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• ⇢(r) = 1
�r

1
Ej

P
track E(track)✓ (|r � �Rj,track| < �r): the radial jet-

energy density, defined and measured as in [57].

We remark that these observables are sensitive to the presence of the heavy
hadron and to the energy distribution in the jet. Hence, they are suitable
to probe the dynamics of the conversion of a single parton into a hadron,
but feel only indirectly the effects of other partons (hadrons) in the event.
However, for the precision we are aiming at, it is important to test the
possible cross-talk among partons in the event: in fact, in the hadronization
transition, each parton is necessarily connected with the others, due to the
need to form color-singlet hadrons. To probe these global effects in the
formation of hadrons, we study the following variables:

• �B = 2EB/XB, where possible options for XB are mjbjb̄ ,
p

smin,
|pT,jb | +

��pT,j
b̄

�� and Ejb + Ej̄
b̄
.

These variables are sensitive (in different manners) to the existence of a
bb̄ system, hence they probe hadronization in a more global way than
the single b-jet-associated observables examined in [56] and [37]. All the
options for XB tend to

p
s in e+e� collisions or any other fixed partonic

center-of-mass energy. In this context, this property is useful as it allows
a more direct comparison to e+e� data, if necessary.

The options for XB are sensitive to different aspects of the pp !

bW+b̄W� + X kinematics, such as the relation between the b quarks with
the initial state, which, being colored, can influence the hadronization.
For example, in Figure 2 we display two configurations (first and second
event sketches) that can have similar total hardness, e.g., measured by
|pT,jb | +

��pT,j
b̄

��, but might have considerably different mjbjb̄ . For small
mjbjb̄ , the two b quarks will tend to be more collinear, hence they have a
greater chance to interfere with each other when hadronizing. On the other
hand, the first and third event sketches might have similar |pT,jb | +

��pT,j
b̄

��
and mjbjb̄ , but the hadronization may still differ because of the different
center-of-mass energy, which is larger in the third type of events. The no-
tion of center-of-mass energy of the initial partons in presence of invisible
particles can be captured by the variable p

smin proposed in [58], which
would be a discriminant between the third and the first type of event.

jb j̄b

�! x�
!

y jb

j̄b

jb j̄b

jg

W+ W� W�

W+

W+ W�

Figure 2: Spacial representation of three kinematic configurations of the W
bosons and jets in the transverse plane. The three configurations depicted can

be distinguished looking at several �B(X) variables. The first two can have the

same |pT,jb | +
��pT,jb̄

��, but different mjbjb̄ , whereas the first and the third differ

for
p

smin, despite having the same mjbjb̄ and |pT,jb | +
��pT,jb̄

��.

In addition, if one wishes to probe the whole kinematic phase-space of
the bb̄ system and its hadrons, one can think of further observables. For
a probe of emissions from the b quarks we can use the relative azimuthal
angle ��(jbjb̄), that is affected by b ! bg splittings, hence it can be mean-
ingful to constrain parton shower parameters. A similar angular observable
for B-hadrons ��(BB̄) can also be employed thanks to its sensitivity to
the angular features of the transition of quark into hadrons. Attempting
to isolate the fragmentation effect of these angular observables, in the fol-
lowing we will also consider the difference between hadron and jet angular
separation, that is |��(jbjb̄) � ��(BB̄)|. Besides employing the azimuth
�, we use the complementary information of polar angles in the distribu-
tions of �R(jbjb̄), �R(BB̄), and |�R(jbjb̄) � �R(BB̄)|.6 Moreover, we
consider, as possible candidate calibration observables, the mass of the b-
jet, mjb , which might help to constrain the shower parameters, and the
ratio of the invariant mass of two B-hadrons over the mass of the two jets,
namely mBB̄/mjbjb̄ .

6
In general, given two particles at azimuthal angles �1 and �2 with rapidities ⌘1 and

⌘2, it is �R =
p

(�1 � �2)2 + (⌘1 � ⌘2)2.
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for the tuning or the calibration of Monte Carlo parameters. For the for-
mulation of how to compute these observables, we will follow the naming
scheme for tt̄ final states that we illustrate in Figure 1.
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b̄
defined in [31]. To the best of

our knowledge, the variable mBB`` has not been considered before. It is
meant to be sensitive to mt as it probes the the total mass of the tt̄ system.
Therefore, we expect the bulk of its distribution to be sensitive to the top
mass in a way similar to the bulk of the mB` distribution. In the lower tail,

j̄b

B̄

Ā

t̄

t

Figure 1: Schematic view of the event, including the transformation of a b̄
quark into hadrons, namely into a B̄ and other light-flavored hadrons denoted

collectively as Ā, which together form a b-tagged jet jb̄. Similarly, a b quark

coming from the t gives rise to jets and hadrons denoted by the same symbols

without a bar.
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We remark that these observables are sensitive to the presence of the heavy
hadron and to the energy distribution in the jet. Hence, they are suitable
to probe the dynamics of the conversion of a single parton into a hadron,
but feel only indirectly the effects of other partons (hadrons) in the event.
However, for the precision we are aiming at, it is important to test the
possible cross-talk among partons in the event: in fact, in the hadronization
transition, each parton is necessarily connected with the others, due to the
need to form color-singlet hadrons. To probe these global effects in the
formation of hadrons, we study the following variables:

• �B = 2EB/XB, where possible options for XB are mjbjb̄ ,
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These variables are sensitive (in different manners) to the existence of a
bb̄ system, hence they probe hadronization in a more global way than
the single b-jet-associated observables examined in [56] and [37]. All the
options for XB tend to
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s in e+e� collisions or any other fixed partonic

center-of-mass energy. In this context, this property is useful as it allows
a more direct comparison to e+e� data, if necessary.

The options for XB are sensitive to different aspects of the pp !

bW+b̄W� + X kinematics, such as the relation between the b quarks with
the initial state, which, being colored, can influence the hadronization.
For example, in Figure 2 we display two configurations (first and second
event sketches) that can have similar total hardness, e.g., measured by
|pT,jb | +

��pT,j
b̄

��, but might have considerably different mjbjb̄ . For small
mjbjb̄ , the two b quarks will tend to be more collinear, hence they have a
greater chance to interfere with each other when hadronizing. On the other
hand, the first and third event sketches might have similar |pT,jb | +

��pT,j
b̄

��
and mjbjb̄ , but the hadronization may still differ because of the different
center-of-mass energy, which is larger in the third type of events. The no-
tion of center-of-mass energy of the initial partons in presence of invisible
particles can be captured by the variable p

smin proposed in [58], which
would be a discriminant between the third and the first type of event.
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In addition, if one wishes to probe the whole kinematic phase-space of
the bb̄ system and its hadrons, one can think of further observables. For
a probe of emissions from the b quarks we can use the relative azimuthal
angle ��(jbjb̄), that is affected by b ! bg splittings, hence it can be mean-
ingful to constrain parton shower parameters. A similar angular observable
for B-hadrons ��(BB̄) can also be employed thanks to its sensitivity to
the angular features of the transition of quark into hadrons. Attempting
to isolate the fragmentation effect of these angular observables, in the fol-
lowing we will also consider the difference between hadron and jet angular
separation, that is |��(jbjb̄) � ��(BB̄)|. Besides employing the azimuth
�, we use the complementary information of polar angles in the distribu-
tions of �R(jbjb̄), �R(BB̄), and |�R(jbjb̄) � �R(BB̄)|.6 Moreover, we
consider, as possible candidate calibration observables, the mass of the b-
jet, mjb , which might help to constrain the shower parameters, and the
ratio of the invariant mass of two B-hadrons over the mass of the two jets,
namely mBB̄/mjbjb̄ .
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In addition, if one wishes to probe the whole kinematic phase-space of
the bb̄ system and its hadrons, one can think of further observables. For
a probe of emissions from the b quarks we can use the relative azimuthal
angle ��(jbjb̄), that is affected by b ! bg splittings, hence it can be mean-
ingful to constrain parton shower parameters. A similar angular observable
for B-hadrons ��(BB̄) can also be employed thanks to its sensitivity to
the angular features of the transition of quark into hadrons. Attempting
to isolate the fragmentation effect of these angular observables, in the fol-
lowing we will also consider the difference between hadron and jet angular
separation, that is |��(jbjb̄) � ��(BB̄)|. Besides employing the azimuth
�, we use the complementary information of polar angles in the distribu-
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O Range �(MO)
mt

�(MO)
✓

↵s,FSR mb pT,min a b rB recoil
⇢(r) 0-0.04 -0.007(7) 0.78(1) 0.204(4) -0.1286(8) 0.029(3) -0.043(4) 0.056(7) 0.020(1)

pT,B/pT,jb 0.6-0.998 -0.053(1) -0.220(3) -0.1397(8) 0.0353(5) -0.0187(4) 0.0451(6) -0.0518(9) -0.0108(3)
EB/Ejb 0.6-0.998 -0.049(1) -0.220(3) -0.1381(8) 0.0360(5) -0.0186(4) 0.0447(6) -0.052(1) -0.0107(3)
EB/E` 0.05-1.5 -0.155(7) -0.156(3) -0.053(3) 0.0149(7) -0.007(2) 0.016(2) -0.016(10) -0.0087(7)

EB/(E` + E¯̀) 0.05-1.0 0.021(5) -0.231(2) -0.082(4) 0.0228(4) -0.011(2) 0.026(2) -0.028(6) -0.0113(3)
m(jb̄)/GeV 8-20 0.229(3) 0.218(1) 0.022(1) -0.0219(7) 0.000(1) -0.001(1) 0.001(3) 0.0050(3)

�B(
p

smin,bb) 0.075-0.875 -0.177(4) -0.262(4) -0.086(1) 0.0255(3) -0.0105(10) 0.027(1) -0.031(3) -0.0137(2)
�B

�
Ejb + Ej̄b

�
0.175-1.375 -0.109(2) -0.357(4) -0.134(1) 0.0373(3) -0.016(1) 0.040(1) -0.045(4) -0.0175(3)

�B(mjbjb̄) 0.175-1.375 -0.089(3) -0.252(3) -0.080(1) 0.0248(3) -0.010(1) 0.024(1) -0.028(5) -0.0126(2)
�B

�
|pT,jb | +

��pT,j̄b
��� 0.46-1.38 -0.15(2) -0.47(1) -0.189(10) 0.054(3) -0.023(10) 0.06(1) -0.07(4) -0.022(2)

mBB/mjbjb̄ 0.8-0.95 -0.0191(8) -0.0623(7) -0.0464(5) 0.0146(2) -0.0093(3) 0.0180(4) -0.0212(9) -0.00296(10)
��(jbjb̄) 0.28-3. -0.210(7) 0.027(3) 0.001(2) -0.0014(5) -0.000(3) -0.000(1) -0.003(9) 0.0003(5)
�R(jbjb̄) 1.4-3.3 -0.071(3) 0.010(1) 0.0005(10) -0.0004(2) -0.000(1) 0.0004(9) 0.001(3) 0.0001(2)
��(BB) 0.28-3. -0.207(7) 0.026(2) 0.001(1) -0.0008(4) 0.000(4) 0.000(2) -0.000(8) 0.0002(5)
�R(BB) 1.4-3.3 -0.070(3) 0.009(1) 0.000(1) -0.0003(2) -0.0003(10) 0.0002(9) -0.000(4) 0.0001(2)

|��(BB) � ��(jbjb̄)| 0-0.0488 0.06(1) 0.734(6) 0.099(5) -0.088(2) 0.006(5) -0.004(5) 0.01(2) 0.026(2)
|�R(BB) � �R(jbjb̄)| 0-0.0992 0.10(1) 0.920(3) 0.079(5) -0.075(1) -0.000(4) 0.005(4) -0.00(2) 0.0418(8)

Table 4: Sensitivity of the calibration observables to the top quark mass and to the parameters of PYTHIA parton shower and hadronization. The quantities �(MO)
mt

and �(MO)
✓ are defined in the text. ✓ = {↵s,FSR, mb, pT,min, a, b, rB , recoil} denotes a generic PYTHIA parameter.
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We remark that these observables are sensitive to the presence of the heavy
hadron and to the energy distribution in the jet. Hence, they are suitable
to probe the dynamics of the conversion of a single parton into a hadron,
but feel only indirectly the effects of other partons (hadrons) in the event.
However, for the precision we are aiming at, it is important to test the
possible cross-talk among partons in the event: in fact, in the hadronization
transition, each parton is necessarily connected with the others, due to the
need to form color-singlet hadrons. To probe these global effects in the
formation of hadrons, we study the following variables:

• �B = 2EB/XB, where possible options for XB are mjbjb̄ ,
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bb̄ system, hence they probe hadronization in a more global way than
the single b-jet-associated observables examined in [56] and [37]. All the
options for XB tend to

p
s in e+e� collisions or any other fixed partonic

center-of-mass energy. In this context, this property is useful as it allows
a more direct comparison to e+e� data, if necessary.

The options for XB are sensitive to different aspects of the pp !

bW+b̄W� + X kinematics, such as the relation between the b quarks with
the initial state, which, being colored, can influence the hadronization.
For example, in Figure 2 we display two configurations (first and second
event sketches) that can have similar total hardness, e.g., measured by
|pT,jb | +

��pT,j
b̄

��, but might have considerably different mjbjb̄ . For small
mjbjb̄ , the two b quarks will tend to be more collinear, hence they have a
greater chance to interfere with each other when hadronizing. On the other
hand, the first and third event sketches might have similar |pT,jb | +

��pT,j
b̄

��
and mjbjb̄ , but the hadronization may still differ because of the different
center-of-mass energy, which is larger in the third type of events. The no-
tion of center-of-mass energy of the initial partons in presence of invisible
particles can be captured by the variable p

smin proposed in [58], which
would be a discriminant between the third and the first type of event.
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��, but different mjbjb̄ , whereas the first and the third differ
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In addition, if one wishes to probe the whole kinematic phase-space of
the bb̄ system and its hadrons, one can think of further observables. For
a probe of emissions from the b quarks we can use the relative azimuthal
angle ��(jbjb̄), that is affected by b ! bg splittings, hence it can be mean-
ingful to constrain parton shower parameters. A similar angular observable
for B-hadrons ��(BB̄) can also be employed thanks to its sensitivity to
the angular features of the transition of quark into hadrons. Attempting
to isolate the fragmentation effect of these angular observables, in the fol-
lowing we will also consider the difference between hadron and jet angular
separation, that is |��(jbjb̄) � ��(BB̄)|. Besides employing the azimuth
�, we use the complementary information of polar angles in the distribu-
tions of �R(jbjb̄), �R(BB̄), and |�R(jbjb̄) � �R(BB̄)|.6 Moreover, we
consider, as possible candidate calibration observables, the mass of the b-
jet, mjb , which might help to constrain the shower parameters, and the
ratio of the invariant mass of two B-hadrons over the mass of the two jets,
namely mBB̄/mjbjb̄ .

6
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for the tuning or the calibration of Monte Carlo parameters. For the for-
mulation of how to compute these observables, we will follow the naming
scheme for tt̄ final states that we illustrate in Figure 1.

3.1 mt-determination observables

We first list up the observables that we consider for the top-quark mass
measurement.

• EB: energy of each tagged B-hadron;

• pT,B: B-hadron transverse momentum;

• EB+EB̄ and pT,B+pT,B̄: sum of the energies and transverse momenta
of B and B̄ (in events where both B hadrons are tagged);

• mB`: invariant mass of the B-hadron and one lepton from W decay
(the prescription for combinatorial ambiguity arising in forming mB`

will be discussed shortly);

• mT2 [49] and mT2,? [50] of the B and the B` subsystems defined
below;

• mBB``, the total mass of the system constructed by the two leptons
and the two tagged B-hadrons in the event.

We choose these observables because some of them have already been dis-
cussed in the literature to carry out measurements of mt from hadronic
exclusive final states: for instance, mB` [31], mT2 and its variants [51, 52]
and EB [32]. Furthermore, we consider observables that have been dis-
cussed for b-jets, and can naturally extend them by replacing b-jets with B
hadrons. For instance, the sum of B-hadron energies EB + EB̄ is inspired
by the analogous b-jet quantity Ejb + Ej

b̄
defined in [31]. To the best of

our knowledge, the variable mBB`` has not been considered before. It is
meant to be sensitive to mt as it probes the the total mass of the tt̄ system.
Therefore, we expect the bulk of its distribution to be sensitive to the top
mass in a way similar to the bulk of the mB` distribution. In the lower tail,

j̄b

B̄

Ā

t̄

t

Figure 1: Schematic view of the event, including the transformation of a b̄
quark into hadrons, namely into a B̄ and other light-flavored hadrons denoted

collectively as Ā, which together form a b-tagged jet jb̄. Similarly, a b quark

coming from the t gives rise to jets and hadrons denoted by the same symbols

without a bar.
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to probe the dynamics of the conversion of a single parton into a hadron,
but feel only indirectly the effects of other partons (hadrons) in the event.
However, for the precision we are aiming at, it is important to test the
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transition, each parton is necessarily connected with the others, due to the
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a more direct comparison to e+e� data, if necessary.

The options for XB are sensitive to different aspects of the pp !

bW+b̄W� + X kinematics, such as the relation between the b quarks with
the initial state, which, being colored, can influence the hadronization.
For example, in Figure 2 we display two configurations (first and second
event sketches) that can have similar total hardness, e.g., measured by
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��, but might have considerably different mjbjb̄ . For small
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center-of-mass energy, which is larger in the third type of events. The no-
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In addition, if one wishes to probe the whole kinematic phase-space of
the bb̄ system and its hadrons, one can think of further observables. For
a probe of emissions from the b quarks we can use the relative azimuthal
angle ��(jbjb̄), that is affected by b ! bg splittings, hence it can be mean-
ingful to constrain parton shower parameters. A similar angular observable
for B-hadrons ��(BB̄) can also be employed thanks to its sensitivity to
the angular features of the transition of quark into hadrons. Attempting
to isolate the fragmentation effect of these angular observables, in the fol-
lowing we will also consider the difference between hadron and jet angular
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O Range �(MO)
mt

�(MO)
✓

↵s,FSR mb pT,min a b rB recoil
⇢(r) 0-0.04 -0.007(7) 0.78(1) 0.204(4) -0.1286(8) 0.029(3) -0.043(4) 0.056(7) 0.020(1)

pT,B/pT,jb 0.6-0.998 -0.053(1) -0.220(3) -0.1397(8) 0.0353(5) -0.0187(4) 0.0451(6) -0.0518(9) -0.0108(3)
EB/Ejb 0.6-0.998 -0.049(1) -0.220(3) -0.1381(8) 0.0360(5) -0.0186(4) 0.0447(6) -0.052(1) -0.0107(3)
EB/E` 0.05-1.5 -0.155(7) -0.156(3) -0.053(3) 0.0149(7) -0.007(2) 0.016(2) -0.016(10) -0.0087(7)

EB/(E` + E¯̀) 0.05-1.0 0.021(5) -0.231(2) -0.082(4) 0.0228(4) -0.011(2) 0.026(2) -0.028(6) -0.0113(3)
m(jb̄)/GeV 8-20 0.229(3) 0.218(1) 0.022(1) -0.0219(7) 0.000(1) -0.001(1) 0.001(3) 0.0050(3)

�B(
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smin,bb) 0.075-0.875 -0.177(4) -0.262(4) -0.086(1) 0.0255(3) -0.0105(10) 0.027(1) -0.031(3) -0.0137(2)
�B

�
Ejb + Ej̄b

�
0.175-1.375 -0.109(2) -0.357(4) -0.134(1) 0.0373(3) -0.016(1) 0.040(1) -0.045(4) -0.0175(3)

�B(mjbjb̄) 0.175-1.375 -0.089(3) -0.252(3) -0.080(1) 0.0248(3) -0.010(1) 0.024(1) -0.028(5) -0.0126(2)
�B

�
|pT,jb | +

��pT,j̄b
��� 0.46-1.38 -0.15(2) -0.47(1) -0.189(10) 0.054(3) -0.023(10) 0.06(1) -0.07(4) -0.022(2)

mBB/mjbjb̄ 0.8-0.95 -0.0191(8) -0.0623(7) -0.0464(5) 0.0146(2) -0.0093(3) 0.0180(4) -0.0212(9) -0.00296(10)
��(jbjb̄) 0.28-3. -0.210(7) 0.027(3) 0.001(2) -0.0014(5) -0.000(3) -0.000(1) -0.003(9) 0.0003(5)
�R(jbjb̄) 1.4-3.3 -0.071(3) 0.010(1) 0.0005(10) -0.0004(2) -0.000(1) 0.0004(9) 0.001(3) 0.0001(2)
��(BB) 0.28-3. -0.207(7) 0.026(2) 0.001(1) -0.0008(4) 0.000(4) 0.000(2) -0.000(8) 0.0002(5)
�R(BB) 1.4-3.3 -0.070(3) 0.009(1) 0.000(1) -0.0003(2) -0.0003(10) 0.0002(9) -0.000(4) 0.0001(2)

|��(BB) � ��(jbjb̄)| 0-0.0488 0.06(1) 0.734(6) 0.099(5) -0.088(2) 0.006(5) -0.004(5) 0.01(2) 0.026(2)
|�R(BB) � �R(jbjb̄)| 0-0.0992 0.10(1) 0.920(3) 0.079(5) -0.075(1) -0.000(4) 0.005(4) -0.00(2) 0.0418(8)

Table 4: Sensitivity of the calibration observables to the top quark mass and to the parameters of PYTHIA parton shower and hadronization. The quantities �(MO)
mt

and �(MO)
✓ are defined in the text. ✓ = {↵s,FSR, mb, pT,min, a, b, rB , recoil} denotes a generic PYTHIA parameter.
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�B(mjbjb̄) 0.175-1.375 -0.089(3) -0.252(3) -0.080(1) 0.0248(3) -0.010(1) 0.024(1) -0.028(5) -0.0126(2)
�B

�
|pT,jb | +

��pT,j̄b
��� 0.46-1.38 -0.15(2) -0.47(1) -0.189(10) 0.054(3) -0.023(10) 0.06(1) -0.07(4) -0.022(2)

mBB/mjbjb̄ 0.8-0.95 -0.0191(8) -0.0623(7) -0.0464(5) 0.0146(2) -0.0093(3) 0.0180(4) -0.0212(9) -0.00296(10)
��(jbjb̄) 0.28-3. -0.210(7) 0.027(3) 0.001(2) -0.0014(5) -0.000(3) -0.000(1) -0.003(9) 0.0003(5)
�R(jbjb̄) 1.4-3.3 -0.071(3) 0.010(1) 0.0005(10) -0.0004(2) -0.000(1) 0.0004(9) 0.001(3) 0.0001(2)
��(BB) 0.28-3. -0.207(7) 0.026(2) 0.001(1) -0.0008(4) 0.000(4) 0.000(2) -0.000(8) 0.0002(5)
�R(BB) 1.4-3.3 -0.070(3) 0.009(1) 0.000(1) -0.0003(2) -0.0003(10) 0.0002(9) -0.000(4) 0.0001(2)

|��(BB) � ��(jbjb̄)| 0-0.0488 0.06(1) 0.734(6) 0.099(5) -0.088(2) 0.006(5) -0.004(5) 0.01(2) 0.026(2)
|�R(BB) � �R(jbjb̄)| 0-0.0992 0.10(1) 0.920(3) 0.079(5) -0.075(1) -0.000(4) 0.005(4) -0.00(2) 0.0418(8)

Table 4: Sensitivity of the calibration observables to the top quark mass and to the parameters of PYTHIA parton shower and hadronization. The quantities �(MO)
mt

and �(MO)
✓ are defined in the text. ✓ = {↵s,FSR, mb, pT,min, a, b, rB , recoil} denotes a generic PYTHIA parameter.
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be in general very modest. In fact, the standard deviations read off the
diagonal elements of cov d✓

✓

are all around or above 100% relative uncer-
tainty. The origin of this fact can easily be tracked back to the fact that
the matrix �(MO)

mt
has several small singular values: for Table 4 the singu-

lar values read 1.7, 0.26, 0.048, 0.0075, 0.005, 0.0033, 0.0014. This means
that the information contained in the FWHM Mellin moments of the sev-
eral observables which we consider allows us to constrain at most one or
maybe two parameters (that would be ↵s,FSR and mb). In fact a singu-
lar value of order one means that from a measurement of the observables
with precision 1% we can extract one parameter (or combination of Monte
Carlo parameters) with the same accuracy, that is 1%. Similarly a singu-
lar value of order 10�3 implies that even in presence of a measurement of
the observables with 10�4 precision we would obtain a constrain on the
relevant (combination of) Monte Carlo parameters at a mere 10�1 level, as
suggested by eq. (8). Given the singular values obtained, we remark that,
even imagining measurements of the calibration observables with precision
better than 1%, is clear that an analysis of very inclusive quantities such
as the Mellin moments is not capable of yielding any useful constraint on
the Monte Carlo parameters.

A more graphical way to picture why the Mellin moments do not contain
enough information to constrain all the relevant Monte Carlo parameters
is to look at the angles between the directions pointed by the rows of
the matrix �(MO)

mt
. If two rows point in significantly different directions

it means that two observables are sensitive to different combinations of
the Monte Carlo parameters, hence their changes upon variations of the
parameters are not much correlated. However, it turns out that for Table 4
all the rows point in a very similar direction. In Figure 5 we show the values
of 1 � | cos ↵ij |, where ↵ij is the angle between the direction of the row i
and the row j. From the figure it is apparent that several Mellin moments
point essentially in the same direction (e.g., mBB/mjbjb̄ , pT,B/pT,jb , and
EB/Ejb are well visible in the center part of the plot); the two furthest
apart directions are separated by 1� | cos ↵| ' 0.25. Overall we can define
three main directions which might be (somewhat arbitrarily) labeled by
⇢(r), for the observables in the upper left corner of Figure 5, pT,B/pT,jb
for the observables in the middle part, and |�R(BB) � �R(jbjb̄)| for the

observables in the lower-right part.

0

0.04

0.09

0.13

0.18

0.22

0.26

Figure 5: Angular distance between the directions in parameter space pointed

by the rows of Table 4.

Adding several higher Mellin moments to the analysis, we find very lit-
tle change in the results of the analysis. We have tested values of k in
the definition of the k-th Mellin moment eq. (6) from 0.25 to 4 to explore
the sensitivity of Mellin moments to the Monte Carlo parameters. We
find that, although they have different magnitudes, all Mellin moments are
sensitive to the same combinations of Monte Carlo parameters as in the
first moment. We ascribe this similarity to the fact that we are consider-
ing FWHM ranges, which limits the possibility to be sensitive to different
physical regimes, hence different Monte Carlo parameters. In the follow-
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• Singular Value Decomposition to find 
combination of observable (Oi) that are 
sensitive to combinations of parameters (pi)

αs mb pTmin a b rB recoil

Sensitivity 1.7 0.26 0.48 0.0075 0.0055 0.0033 0.0013
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to the Monte Carlo parameters and mt, and therefore they have little use
for the calibration.

The variables �B show some of the largest sensitivity to the Monte Carlo
parameters. We remark that for the denominator of �B, the variants most
sensitive to Monte Carlo parameters are those mostly dependent on mt as
well. Usually, the increase of the dependence on the Monte Carlo parame-
ters is smaller than the one on mt. Nevertheless, care must be taken when
one uses the definitions of �B more sensitive to mt in the calibration and
in the mt determination.

The jet mass tends to have small dependence on the parameters, at most
comparable to that exhibited by other observables. Putting this together
with its large sensitivity to mt, it is clearly a non-optimal candidate for a
tuning or a measurement of mt with an in-situ Monte Carlo calibration.

4.3 Combined constraining power

In order to go beyond the qualitative analysis of the preceding paragraphs,
we have devised a procedure, based on the �(MO)

✓ values, to quantify the
constraints on the Monte Carlo parameters which can be obtained from the
combined use of several calibration observables. This procedure returns an
estimate of the relative error on the determination of the parameters from
the first Mellin moments, but can be straightforwardly applicable as well
to other input observable quantities such as the higher Mellin moments
or other properties of the spectrum of the calibration observables. The
procedure goes as follows. We denote our parameters generically as a
vector ✓, and collectively, we adopt the following notation:

✓ = {↵s,FSR, mb, pT,min, a, b, rB, recoil} .

We put the observables as well in a vector that we denote as O = {Oi} for
the Oi listed in the first column of Table 4. In this notation the sensitivity
of each observable to the several parameters can be expressed in matrix
notation as:

�MOi

MOi
=

⇣
�(MO)

✓

⌘

ij

�✓j
✓j

, (9)

where Table 4 gives the entries
⇣
�(MO)

✓

⌘

ij
. This matrix contains all the

necessary information to estimate how strong a constraint on the param-
eters ✓ can be obtained from measurements of the observables and their
Mellin moments. In order to derive the constraining power of our set of
calibration observables, we would like to invert the matrix �(MO)

mt
, as to

express the sensitivity of the parameters as functions of the observables,
which would take the relation of

�✓j
✓j

=
⇣
�̃(MO)

✓

⌘

ij

�MOi

MOi
, (10)

with �̃(MO)
✓ satisfying

�̃(MO)
✓ · �(MO)

mt
= 1 .

Being aware that �(MO)
mt

is, in general, a rectangular matrix, we may not
be able to invert it to find �̃(MO)

✓ . However, we can utilize the pseudo-
inverse [59, 60] procedure to define �̃(MO)

✓ : one defines linear combinations
of observables and linear combinations of parameters such that each of the
new observables depends only on one of the new parameters. To find these
linear combinations, one can use a singular-value decomposition of the
matrix �(MO)

mt
. The pseudo-inverse matrix is then the matrix obtained by

acting on a diagonal matrix with values reciprocal to the singular values
of �(MO)

mt
, with the inverse of the transformation that defines the new

observables and new parameters. Further details on this procedure are
given in Appendix A.

The strength of the constraints that can be obtained on the parameters
✓ is given by the general transformation of the covariance matrix. From
eq. (10) it follows that

cov d✓

✓

= �̃(MO)
✓ · cov dO

O

· �̃(MO)
✓

t
. (11)

Assuming for simplicity that the measurements of the Mellin moments are
all uncorrelated and that an overall precision of 1% in their measurement
is achievable, we find that the constraining power implied by Table 4 would
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Figure 8: Example spectra of pT,B , EB , EB +EB̄ , mtrue
B` , mBB``, and E`+ +E`�

for mt = 174GeV.

↵s,FSR mb pT,min a b rB recoil
0.045 0.14 0.35 0.5 0.48 0.21 0.73

0

BBBBBBBB@

1. �0.13 0.48 �0.37 �0.24 0.38 �0.85
�0.13 1. 0.01 0.62 0.81 �0.46 �0.06
0.48 0.01 1. �0.09 �0.13 0.53 �0.08

�0.37 0.62 �0.09 1. 0.8 �0.47 0.31
�0.24 0.81 �0.13 0.8 1. �0.23 0.15
0.38 �0.46 0.53 �0.47 �0.23 1. 0.

�0.85 �0.06 �0.08 0.31 0.15 0. 1.

1

CCCCCCCCA

Table 6: Top: expected relative uncertainties on the PYTHIA 8 parameters.

assuming input observables measured with 1% accuracy. Bottom: correlation

matrix for the constraint on these Monte Carlo parameters.

For mass-sensitive observables we would like to have a pattern of sensi-
tivity that is opposite to the one wished for calibrations observables, that
is to say large sensitivity to mt and small dependence on ✓. In fact, in or-
der to reach a given accuracy �m/m on mt, we need to have under control
each ✓ better than a relative precision

�✓

✓
=

�m

m

1

�(mt)
✓

.

Therefore, the observables with smaller �(mt)
✓ can be useful even when

shower and hadronization parameters ✓ are not known well. As a conse-
quence, for the observables to be used for the mt measurement we wish to
have small �(mt)

✓ .
Due to possible different sensitivity to mt which different ranges of the

distributions might exhibit, we will carry out two analyses. One is more
inclusive and is based on the dependence of the Mellin moment of each
observable on mt and the Monte Carlo parameters; the other one is based
on the shape analysis of certain spectral features. These shape analyses
are motivated by known properties of kinematic endpoints of distributions
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O Range �(MO)
mt

�(mt)
✓

↵s,FSR mb pT,min a b rB recoil
EB 28-110 0.92(5) -0.52(2) -0.21(3) 0.057(4) -0.02(2) 0.06(2) -0.10(5) -0.022(5)
pT,B 24-72 0.92(3) -0.54(2) -0.21(2) 0.056(4) -0.03(2) 0.07(1) -0.09(4) -0.023(2)

mB`,true 47-125 1.30(2) -0.241(8) -0.072(6) 0.022(2) -0.007(5) 0.023(6) -0.02(2) -0.008(2)
mB`+,min 30-115 1.16(2) -0.282(5) -0.078(7) 0.024(2) -0.011(7) 0.021(7) -0.04(2) -0.010(1)
EB + EB 83-244 0.92(4) -0.50(2) -0.21(2) 0.056(6) -0.02(2) 0.07(3) -0.08(6) -0.020(4)
mBB`` 172-329 0.96(2) -0.25(1) -0.10(1) 0.028(3) -0.01(1) 0.026(7) -0.03(3) -0.008(2)

m(mET)
T2,B`,true 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(mET)
T2,B`,min 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(`⌫)
T2 0.5-80 -0.118(7) -0.03(2) 0.00(2) 0.002(8) 0.00(2) -0.01(2) 0.00(7) 0.004(5)

m`` 37.5-145 0.40(5) -0.03(5) -0.01(4) 0.00(1) 0.01(5) 0.01(4) 0.0(1) 0.00(1)
E` + E` 75-230 0.54(5) -0.03(3) 0.00(3) 0.003(9) 0.01(3) -0.00(2) 0.06(9) 0.003(8)

E` 23-100 0.48(4) -0.02(5) 0.00(5) 0.004(9) 0.01(4) -0.01(4) -0.06(9) 0.003(8)

Table 7: Columns under �(mt)
✓ show the sensitivity to shower and hadronization PYTHIA parameters of the top quark mass extracted from the first Mellin moment

of mass-sensitive observables. The column �(MO)
mt reports the sensitivity of the first Mellin moment to the top quark mass. The range extremal values reported in the

second column are all in GeV. These ranges correspond to the FWHM for mt = 174GeV, for other masses we have used the corresponding FWHM.

O �(MO)
mt

�(mt)
✓

PSPLT QCDLAM CLPOW CLSMR(2) CLMAX RMASS(5) RMASS(13) VGCUT VQCUT
mB`,true 0.52 0.036(4) -0.008(2) -0.007(5) 0.002(3) -0.007(4) 0.058(1) 0.06(5) 0.003(1) -0.003(3)

pT,B 0.47 0.072(1) -0.03(9) -0.02(7) 0.0035(5) -0.03(5) 0.11(9) 0.12(5) 0.0066(2) -0.006(5)
EB 0.43 0.069(7) -0.026(7) -0.017(5) 0.0038(9) -0.01(2) 0.12(1) 0.12(2) 0.006(2) -0.007(5)
E` 0.13 0.0005(5) -0.04(3) 0.04(2) -0.0002(2) -0.004(4) 0.008(3) 0.008(2) -0.002(5) 0.008(2)

Table 8: As in Table 7, but in terms of the HERWIG 6 shower and hadronization parameters. Ranges are those reported in Table 7 for all values of mt.
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of mass-sensitive observables. The column �(MO)
mt reports the sensitivity of the first Mellin moment to the top quark mass. The range extremal values reported in the

second column are all in GeV. These ranges correspond to the FWHM for mt = 174GeV, for other masses we have used the corresponding FWHM.
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✓

PSPLT QCDLAM CLPOW CLSMR(2) CLMAX RMASS(5) RMASS(13) VGCUT VQCUT
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Table 8: As in Table 7, but in terms of the HERWIG 6 shower and hadronization parameters. Ranges are those reported in Table 7 for all values of mt.
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• αs  needed at 1% 

• mb needed at 3% 

• all the rest needed at 10% 

• All hadronic observables in the 
same ballpark (within factor 2) 

• mT2 similar to mBl 

• Fully Leptonic observables one 
order less sensitive (stat~0)

“ S I M P L E ”  O B S E R VA B L E S  ( M E L L I N  M O M E N T S )  R E Q U I R E  
G O O D  K N O W L E D G E  O F  M O N T E  C A R L O   PA R A M E T E R S
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End-point

• 1% of the cross-section to go the end-point 

• how much better does it get?
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O Range �(O)
mt

�(mt)
✓

↵s,FSR mb pT,min a b rB recoil
EB,peak 35-85 0.8(1) -0.74(9) -0.26(4) 0.05(1) -0.04(2) 0.08(3) -0.07(9) -0.031(7)
m̆B`,true 127-150 1.26(1) 0.017(6) 0.003(9) -0.006(2) -0.008(2) 0.008(7) -0.016(6) -0.00042(9)
m̆B`,min 127-150 1.28(1) -0.023(3) -0.022(2) 0.006(3) -0.008(3) 0.008(3) -0.02(1) -0.0001(6)

m̆(mET)
T2,B`,true 150-170 0.98(2) -0.01(2) -0.023(3) 0.007(1) -0.006(3) 0.010(4) -0.011(9) -0.0002(8)

m̆(mET)
T2,B`,min 150-170 0.97(2) -0.02(1) -0.021(5) 0.006(2) -0.006(3) 0.009(4) -0.01(1) -0.0001(8)

m̆(mET)
T2,B`,min,? 138-170 0.89(2) -0.071(5) -0.046(7) 0.012(2) -0.011(7) 0.010(8) -0.01(2) -0.002(1)

m̆(mET)
T2,B 142-170 0.95(3) -0.089(6) -0.064(6) 0.018(1) -0.017(4) 0.031(4) -0.04(2) -0.0028(8)

m̆(mET)
T2,B,? 126-170 0.94(4) -0.07(1) -0.04(1) 0.011(3) -0.009(9) 0.02(1) -0.03(4) -0.001(2)

Table 9: Sensitivity to shower and hadronization parameters of the top quark mass extracted from a shape analysis of special feature in the spectra of EB , mB`, mT2.

The range extremal values reported in the second column are all in GeV.

Overall, we find a conclusion similar to the Mellin analysis: ISR in tt̄ pro-
duction, pairing leptons and B-hadrons, as well as the treatment of light-
flavored hadrons in the b-jet, are all largely orthogonal from the viewpoint
of the sensitivity to the Monte Carlo hadronization parameters.

6 Conclusions

The accurate measurement of the top-quark mass is one of the major goals
for the physics program of the Large Hadron Collider. The level of precision
that is demanded for mt to be useful in the context of physics of the
Standard Model and in tests of new physics is around 500 MeV, well below
the percent level.

Carrying out a measurement at such a level of accuracy is challenging
and has generated a number of proposals. All strategies rely to some extent
on our ability to predict some observables by means of a QCD calculation
or a Monte Carlo simulation, e.g., a total or fiducial rate of top quark pro-
duction, or the shapes of some differential distributions: all such methods
exhibit an associated theoretical error. Presently, most precise determina-
tions of mt use quantities that are believed to be less affected by theoretical

errors, such as the peak of invariant mass obtained with kinematic (tem-
plate) methods, which essentially tries to capture the peak in b-jet+W
invariant mass in top-quark decay. In this case the most important sys-
tematic uncertainty is the jet energy scale, namely the correction necessary
to measure the true jet energy from the measured detector response. These
corrections have been the subject of intense studies and could be improved
in future, but probably only modestly. Therefore, it seems that it may
not be possible to improve significantly the measurement of the top-quark
mass from these “standard” methods.

Motivated by the above drawbacks, a number of “alternative” strategies
have been proposed and will acquire even more importance in the future. In
fact, many of the alternative techniques pursue different strategies than the
“standard” methods, and hence they will allow to cross-check the available
and existing results, eventually giving rise to a global determination of
mt, accounting for measurements performed by using inherently different
strategies. Of course, the most useful measurements in this combination
will be those that are not affected significantly by the jet energy correction,
which presently dominates the uncertainty on mt. Among the proposals,
there are measurements that utilize only leptons from semi-leptonic and di-
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O Range �(MO)
mt

�(mt)
✓

↵s,FSR mb pT,min a b rB recoil
EB 28-110 0.92(5) -0.52(2) -0.21(3) 0.057(4) -0.02(2) 0.06(2) -0.10(5) -0.022(5)
pT,B 24-72 0.92(3) -0.54(2) -0.21(2) 0.056(4) -0.03(2) 0.07(1) -0.09(4) -0.023(2)

mB`,true 47-125 1.30(2) -0.241(8) -0.072(6) 0.022(2) -0.007(5) 0.023(6) -0.02(2) -0.008(2)
mB`+,min 30-115 1.16(2) -0.282(5) -0.078(7) 0.024(2) -0.011(7) 0.021(7) -0.04(2) -0.010(1)
EB + EB 83-244 0.92(4) -0.50(2) -0.21(2) 0.056(6) -0.02(2) 0.07(3) -0.08(6) -0.020(4)
mBB`` 172-329 0.96(2) -0.25(1) -0.10(1) 0.028(3) -0.01(1) 0.026(7) -0.03(3) -0.008(2)

m(mET)
T2,B`,true 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(mET)
T2,B`,min 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(`⌫)
T2 0.5-80 -0.118(7) -0.03(2) 0.00(2) 0.002(8) 0.00(2) -0.01(2) 0.00(7) 0.004(5)

m`` 37.5-145 0.40(5) -0.03(5) -0.01(4) 0.00(1) 0.01(5) 0.01(4) 0.0(1) 0.00(1)
E` + E` 75-230 0.54(5) -0.03(3) 0.00(3) 0.003(9) 0.01(3) -0.00(2) 0.06(9) 0.003(8)

E` 23-100 0.48(4) -0.02(5) 0.00(5) 0.004(9) 0.01(4) -0.01(4) -0.06(9) 0.003(8)

Table 7: Columns under �(mt)
✓ show the sensitivity to shower and hadronization PYTHIA parameters of the top quark mass extracted from the first Mellin moment

of mass-sensitive observables. The column �(MO)
mt reports the sensitivity of the first Mellin moment to the top quark mass. The range extremal values reported in the

second column are all in GeV. These ranges correspond to the FWHM for mt = 174GeV, for other masses we have used the corresponding FWHM.

O �(MO)
mt

�(mt)
✓

PSPLT QCDLAM CLPOW CLSMR(2) CLMAX RMASS(5) RMASS(13) VGCUT VQCUT
mB`,true 0.52 0.036(4) -0.008(2) -0.007(5) 0.002(3) -0.007(4) 0.058(1) 0.06(5) 0.003(1) -0.003(3)

pT,B 0.47 0.072(1) -0.03(9) -0.02(7) 0.0035(5) -0.03(5) 0.11(9) 0.12(5) 0.0066(2) -0.006(5)
EB 0.43 0.069(7) -0.026(7) -0.017(5) 0.0038(9) -0.01(2) 0.12(1) 0.12(2) 0.006(2) -0.007(5)
E` 0.13 0.0005(5) -0.04(3) 0.04(2) -0.0002(2) -0.004(4) 0.008(3) 0.008(2) -0.002(5) 0.008(2)

Table 8: As in Table 7, but in terms of the HERWIG 6 shower and hadronization parameters. Ranges are those reported in Table 7 for all values of mt.
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• αs  needed at 1% 
• mb needed at 3% 
• all the rest needed at 10% 

• ΛQCD ⇒ αs  needed at 1% 

• mb,g needed at 1% 
• cluster mass spectrum (PSPLT, CLPOW, 

CLMAX) needed at 10% 
• all the rest needed at “100%” 

Herwig6
• ΛQCD ⇒ αs  needed at 3% 

• mb,g needed at 2% 

• cluster mass spectrum (PSPLT, CLPOW, 
CLMAX) needed at 20% 

• all the rest needed at “100%” 

• αs  needed at 10% 
• mb needed at 10% 
• rB needed at 10% 
• all the rest needed at “100%” 



sensitivity to Montecarlo parameters, these observables can be used to
check the accuracy of the tunes. Furthermore, as they do not depend on
mt, they can also be used, if necessary, to adjust the Montecarlo tunes for
the specific task of measuring mt. Efforts in a similar spirit have been
carried out by ATLAS in Ref. [33] and in the tuning work [21]. These
works study the observables

• pT,B/pT,jb : the ratio of the B hadrons transverse momentum over
that of the b-jet

• ρ(r) = 1
∆r

1
Ej

∑
track E(track)θ (|r −∆Rj,track| < δr): the radial jet

energy density, as defined and measured in [34]

We remark that these observables are sensitive to the importance of the
heavy quark hadron in the jet and to the energy distribution in the jet,
hence are suitable to probe the dynamics of the conversion of a single
parton into a hadron, but feel only indirectly the effects of other partons
in the event. However, for the precision we are aiming at, is important
to test as well the possible cross-talk between partons in the event whose
hadronization processes are necessarily interrelated due to the need to
form color singlet hadrons. To probe these global effects of the forma-
tion of hadrons in pp → tt̄ events we study variables

• χB = 2EB/XB whereXB = mbb,
√
smin, |pT,jb |+

∣∣pT,j̄b
∣∣, mCT , m

(bb)
CT .

These variables are sensitive (in different manners) to the existence of a
bb̄ system, hence probe hadronization in a more global way than the ob-
servables concerned with the single jet discussed in [33] and [21]. All the
several options forXB that we consider share the property to tend to

√
s

if this variable is used in e+e− or any other fixed center-of-mass energy
context. This property is useful as it allows a more direct comparison to
e+e− data.
Considering several options for XB is useful because these option are

sensitive to different aspects of the pp → bW+b̄W− + ... kinematics.
In particular these variables are sensitive to the relation between the b
quarks in the bb system and to its relation to the initial state, which, being
colored, can influence the hadronization of the b quarks. For example

Figure 2: Three kinematical configurations distinguished by the XB

choices. The first two can have same |pT,jb | +
∣∣pT,j̄b

∣∣but differ for mbb,
whereas the first and the third differs for

√
smin, despite having same

mbb and same |pT,jb |+
∣∣pT,j̄b

∣∣.

in Figure 2 we display two configurations (first and second event sketch)
that can have similar total hardness, e.g. measured by |pT,jb |+

∣∣pT,j̄b
∣∣, but

might have considerably different mbb. For small mbb the two b quarks
will tend to be more collinear, hence have a greater change to inter-
fere with each other hadronization. On the other hand the first and
third event sketch might have similar |pT,jb | +

∣∣pT,j̄b
∣∣and mbb, still the

event-wide aspects of hadronization might differ because of the different
center-of-mass energy of initial partons, which is going to be necessarily
larger in the third type of events. The notion of center-of-mass energy of
initial partons in presence of invisible particles can be captured by the
variable

√
smin discussed in [35], which would be a discriminant between

the third and the first type of events in the Figure.
Additionally the response of the observables χB to changes in the

hadronization model can also be studied in dijet events with two b-tags.
These heavy flavor production processes are similar in many respect to
tt̄ production once the jets are taken in the same phase-space regions
and can be used as a validation.
In addition to these variables, if one wants to probe the whole kine-

matic phase-space of the bb̄ system and of its hadrons one can think of
further observables. For a probe of emissions from the b quarks we can
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E A C H  B I N  I S  A N  
O B S E R VA B L E

ing section, seeking for an improvement of the prospected constraints, we
explore the constraints that can be obtained if one considers the full range
of the calibration observables.

4.4 Differential constraining power

More stringent constraints on the Monte Carlo parameters can be obtained
exploring more in detail the full shape of the distribution of the calibration
observables. A common practice in this case is to study several Mellin
moments of the full distribution as a mean to probe the full shape of
the observable at hand. However, in most cases one cannot extract the
highest Mellin moments from the data very accurately, since they would
be sensitive even to small errors in the distributions.7

As an alternative, and probably more transparent, manner to study
the shapes of the several observables, we use directly the bin counts of
a subset of the calibration observables in suitably chosen ranges.8 The
sensitivity of the bin counts to changes of the Monte Carlo parameters
will be examined comparing bin-by-bin the spectra obtained from different
Monte Carlo settings.

In order to keep the problem at a minimum of complexity, we start
by identifying the most interesting physical quantities and studying the
dependence of each bin count on the Monte Carlo parameters. Results
for a few representative observables are presented in Figure 6, where the
vertical dashed lines limit the FWHM ranges used in the previous section
to compute the first Mellin moments of the distributions. These lines also
serve as guidance to get a feeling of which parts of the distribution belong
to the tails and which to the bulk. Clearly in some tails there is a good
deal of sensitivity to the Monte Carlo parameters, but it is likely that data
will be scarce in those regions.

7
More generally, the use of the moments in the analyses is often motivated by theory

arguments, namely the fact that convolution integrals, such as those entering in the

DGLAP equations, are turned into ordinary products in N -space. In our study, however,

these properties are not compelling, so Mellin moments are really just a way to describe

the shape of the spectra of our observables.
8
This allows us to access different regimes of full phase space, in which observables

may have different sensitivities to the Monte Carlo parameters.
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Figure 6: Differential sensitivity to the Monte Carlo parameters of the distribu-

tions of pT,B/pT,jb , mBB̄/mjb j̄b , ⇢(r), and �R(BB)��R(jb̄jb). The two dashed

vertical lines denote the FWHM ranges.
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From these results, we learn that sensitivities to ↵S,FSR and mb exceed-
ing 2 can be achieved, e.g., in pT,B/pT,jb , whereas it is overall quite hard
to find regions of the spectra with a similar dependence on pT,min. The
dependence on a, b, rB and recoil is in general much milder.

Learning from the experience of the previous section, we can generalize
the analysis by considering each bin as an independent observable and
attempting to use its theoretical dependence on the Monte Carlo setting to
constrain these. Similarly to the previous section, we can compute a matrix
of sensitivity �

(bj,O)
✓ with (bj,O) being the j-th bin of the distribution of

the observable O.
The observables that we use in this analysis are ⇢(r), �B(Ejb + Ej̄b),

EB/E`, �R(BB̄) � �R(jbjb̄), pT,B/pT,jb , and mBB̄/mjbj̄b . They are the
observables that in the previous section have shown the greatest sensitivity
in absolute sense and the most distinct dependence on linearly independent
combinations of Monte Carlo parameters. In place of the �B(Ejb + Ej̄b)
variable we could have used other options for the denominator that ap-
pears in �B, but we find it convenient employing �B(Ejb + Ej̄b), because
it is bound to be in the range [0,2], facilitating the identification of an
optimal bin-size for the calibration. This fact is quite important, because
the study of distributions rather than integrated quantities inflates the ex-
pected statistical errors on the measurements. Using an observable that
is limited to a range by definition (such as �B(Ejb + Ej̄b), pT,B/pT,jb , and
mBB̄/mjbj̄b), we can more easily define bins with sufficiently large expected
number of events. In order not to deal with too small expected bin counts,
we have divided each spectrum in about 10 bins, the details of the binning
is reported in Table 5 for completeness.

We remark that by using a single observable and studying the whole
spectrum the best results are obtained from the distribution of pT,B/pT,jb .
In this case the sensitivity matrix has singular values 7.0, 1.8, 0.28, 0.11,
0.11, 0.037, 0.018 from which we see a substantial improvement with re-
spect to the case of Mellin moments in the FWHM range of the previous
section. The largest angular distance in this case is 1 � | cos ↵ij | ' 0.45,
which clearly supports the observed sensitivity to more independent combi-
nations of Monte Carlo parameters than in the inclusive analysis of Mellin
moment. In spite of this, there are still several small singular values, which

O Range Nbins

⇢(r) 0.-0.4 16
pT,B/pT,jb 0.-0.99 11

EB/E` 0.05-4.55 9
�B

�
Ejb + Ej̄b

�
0.-2. 10

mBB/mjbjb̄ 0.-0.998 11
|�R(BB) � �R(jbjb̄)| 0.-0.288 9

Table 5: Ranges and binning used for the calculation of the sensitivity of the

bin counts of the full spectrum to changes of the Monte Carlo parameters.

indicates that it is not possible to look only at this distribution to constrain
all the parameters we set out to constrain. For completeness we report the
sensitivity matrix for the pT,B/pT,jb distribution in Table 10 in Appendix A.

In order to obtain meaningful constraints on all Monte Carlo parameters
of interest, it seems necessary to gather more information using a larger set
of input observables. Performing such a global analysis on the six observ-
ables mentioned above, we find that the singular values of the sensitivity
matrix are 15.0, 4.2, 0.75, 0.42, 0.27, 0.16, 0.13. Given the lowest singu-
lar value of order 10�1, we expect that it is possible to put meaningful
bounds on all the parameters. For instance input observables measured at
10�2 precision should give O(10�1) even on the most loosely constrained
parameter.

We use eq. (11) to determine the covariance matrix expected for the
determination of the Monte Carlo parameters from the study of the full
spectrum of the six observables. If we assume that each bin of these distri-
butions is an independent observable, uncorrelated with all the rest, and
measured with 1% precision the expected relative uncertainty ranges from
70% for the recoil to about 4% for ↵s,FSR. Such uncertainties for all the
parameters as well as the correlation matrix are given in Table 6. The re-
ported uncertainties are for 1% precision on the input observables, treated
as independent and uncorrelated. Had we considered a different precision
for the input observables, for instance a 0.1% precision (reachable at the
HL-LHC if one considers purely statistical uncertainties), we would have
obtained linearly rescaled uncertainties (that is 10 times smaller than what
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are reported in Table 6), as eq. (11) dictates. These results clearly indicate
that a global analysis of several spectra of calibration observables has a
potential to constrain all the PYTHIA parameters explored here.

The improvement of the achievable constraint can be tracked to the
angular distance between the rows of the sensitivity matrix that is larger
than in the case of single observable analysis: for the six observables at
hand we get 1� | cos ↵ij | . 0.55. Still, most of the information is extracted
from bins in the distributions that depend on very similar combinations
of the Monte Carlo parameters. This can be seen in Figure 7, where
we display the direction of the gradient of the 66 bin counts used in our
global analysis in various subspaces of our 7-dimensional parameter space.
The shower parameters tend to appear in overall different combinations,
although pT,min has usually small impact on the calibration observables,
hence the gradient vectors in the top left panel have small components in
the pT,min direction. The hadronization parameters, presented in the top
right panel, tend to appear in combination b � a � rB except for a few
observables, which generates the high degree of correlation in the matrix
in Table 6. Finally in the bottom panel we find the dependence on the
recoil switch parameter which shows significant correlation with ↵s,FSR.

We stress the fact that we have not gone through an intense optimization
of the choice of the observables and ranges of the spectra, but nevertheless
we expect these results to be illustrative of the achievable constraints on
PYTHIA 8.

5 Results on observables sensitive to mt

We are now in position to report our results on observables sensitive to mt,
following a similar path to the preceding section on calibration observables.
We quantify the sensitivity of a mass-sensitive observable O to a given
Monte Carlo parameter ✓ or to mt, using a logarithmic derivative defined
in eq. (2). The numerical derivatives necessary to compute �(mt)

✓ are ob-
tained from straight-line fits and comparison with Monte Carlo predictions
varying the parameters in the same ranges as discussed for the purpose of
the calibration variables. Examples of spectra for different Monte Carlo
parameter settings are shown in Figure 9.

Figure 7: Directions in the {↵s,FSR, mb, pT,min} (top left), {a, b, rB} (top right)

and {↵s,FSR, a, recoil} (bottom) space pointed by the combination of parameters

upon which the considered 66 bins of the distributions depend.
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From these results, we learn that sensitivities to ↵S,FSR and mb exceed-
ing 2 can be achieved, e.g., in pT,B/pT,jb , whereas it is overall quite hard
to find regions of the spectra with a similar dependence on pT,min. The
dependence on a, b, rB and recoil is in general much milder.

Learning from the experience of the previous section, we can generalize
the analysis by considering each bin as an independent observable and
attempting to use its theoretical dependence on the Monte Carlo setting to
constrain these. Similarly to the previous section, we can compute a matrix
of sensitivity �

(bj,O)
✓ with (bj,O) being the j-th bin of the distribution of

the observable O.
The observables that we use in this analysis are ⇢(r), �B(Ejb + Ej̄b),

EB/E`, �R(BB̄) � �R(jbjb̄), pT,B/pT,jb , and mBB̄/mjbj̄b . They are the
observables that in the previous section have shown the greatest sensitivity
in absolute sense and the most distinct dependence on linearly independent
combinations of Monte Carlo parameters. In place of the �B(Ejb + Ej̄b)
variable we could have used other options for the denominator that ap-
pears in �B, but we find it convenient employing �B(Ejb + Ej̄b), because
it is bound to be in the range [0,2], facilitating the identification of an
optimal bin-size for the calibration. This fact is quite important, because
the study of distributions rather than integrated quantities inflates the ex-
pected statistical errors on the measurements. Using an observable that
is limited to a range by definition (such as �B(Ejb + Ej̄b), pT,B/pT,jb , and
mBB̄/mjbj̄b), we can more easily define bins with sufficiently large expected
number of events. In order not to deal with too small expected bin counts,
we have divided each spectrum in about 10 bins, the details of the binning
is reported in Table 5 for completeness.

We remark that by using a single observable and studying the whole
spectrum the best results are obtained from the distribution of pT,B/pT,jb .
In this case the sensitivity matrix has singular values 7.0, 1.8, 0.28, 0.11,
0.11, 0.037, 0.018 from which we see a substantial improvement with re-
spect to the case of Mellin moments in the FWHM range of the previous
section. The largest angular distance in this case is 1 � | cos ↵ij | ' 0.45,
which clearly supports the observed sensitivity to more independent combi-
nations of Monte Carlo parameters than in the inclusive analysis of Mellin
moment. In spite of this, there are still several small singular values, which

O Range Nbins

⇢(r) 0.-0.4 16
pT,B/pT,jb 0.-0.99 11

EB/E` 0.05-4.55 9
�B

�
Ejb + Ej̄b

�
0.-2. 10

mBB/mjbjb̄ 0.-0.998 11
|�R(BB) � �R(jbjb̄)| 0.-0.288 9

Table 5: Ranges and binning used for the calculation of the sensitivity of the

bin counts of the full spectrum to changes of the Monte Carlo parameters.

indicates that it is not possible to look only at this distribution to constrain
all the parameters we set out to constrain. For completeness we report the
sensitivity matrix for the pT,B/pT,jb distribution in Table 10 in Appendix A.

In order to obtain meaningful constraints on all Monte Carlo parameters
of interest, it seems necessary to gather more information using a larger set
of input observables. Performing such a global analysis on the six observ-
ables mentioned above, we find that the singular values of the sensitivity
matrix are 15.0, 4.2, 0.75, 0.42, 0.27, 0.16, 0.13. Given the lowest singu-
lar value of order 10�1, we expect that it is possible to put meaningful
bounds on all the parameters. For instance input observables measured at
10�2 precision should give O(10�1) even on the most loosely constrained
parameter.

We use eq. (11) to determine the covariance matrix expected for the
determination of the Monte Carlo parameters from the study of the full
spectrum of the six observables. If we assume that each bin of these distri-
butions is an independent observable, uncorrelated with all the rest, and
measured with 1% precision the expected relative uncertainty ranges from
70% for the recoil to about 4% for ↵s,FSR. Such uncertainties for all the
parameters as well as the correlation matrix are given in Table 6. The re-
ported uncertainties are for 1% precision on the input observables, treated
as independent and uncorrelated. Had we considered a different precision
for the input observables, for instance a 0.1% precision (reachable at the
HL-LHC if one considers purely statistical uncertainties), we would have
obtained linearly rescaled uncertainties (that is 10 times smaller than what
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Figure 8: Example spectra of pT,B , EB , EB +EB̄ , mtrue
B` , mBB``, and E`+ +E`�

for mt = 174GeV.

↵s,FSR mb pT,min a b rB recoil
0.045 0.14 0.35 0.5 0.48 0.21 0.73

0

BBBBBBBB@

1. �0.13 0.48 �0.37 �0.24 0.38 �0.85
�0.13 1. 0.01 0.62 0.81 �0.46 �0.06
0.48 0.01 1. �0.09 �0.13 0.53 �0.08

�0.37 0.62 �0.09 1. 0.8 �0.47 0.31
�0.24 0.81 �0.13 0.8 1. �0.23 0.15
0.38 �0.46 0.53 �0.47 �0.23 1. 0.

�0.85 �0.06 �0.08 0.31 0.15 0. 1.

1

CCCCCCCCA

Table 6: Top: expected relative uncertainties on the PYTHIA 8 parameters.

assuming input observables measured with 1% accuracy. Bottom: correlation

matrix for the constraint on these Monte Carlo parameters.

For mass-sensitive observables we would like to have a pattern of sensi-
tivity that is opposite to the one wished for calibrations observables, that
is to say large sensitivity to mt and small dependence on ✓. In fact, in or-
der to reach a given accuracy �m/m on mt, we need to have under control
each ✓ better than a relative precision

�✓

✓
=

�m

m

1

�(mt)
✓

.

Therefore, the observables with smaller �(mt)
✓ can be useful even when

shower and hadronization parameters ✓ are not known well. As a conse-
quence, for the observables to be used for the mt measurement we wish to
have small �(mt)

✓ .
Due to possible different sensitivity to mt which different ranges of the

distributions might exhibit, we will carry out two analyses. One is more
inclusive and is based on the dependence of the Mellin moment of each
observable on mt and the Monte Carlo parameters; the other one is based
on the shape analysis of certain spectral features. These shape analyses
are motivated by known properties of kinematic endpoints of distributions
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Figure 4: Dependence on mt of the average values h�B(EB + EB)i and

hmBB̄/mjb j̄bi. The error bars are due to the limited statistics of our calculation;

the straight lines through the points are the fits employed to compute �(MO)
mt .

actual values of the sensitivity, we see that they tend to be �(MO)
mt

⌧ 1 for
most observables, with few notable exceptions, the most apparent being
the jet mass, which has �(MO)

mt
' 0.23. This is the only observable not

constructed to be dimensionless, hence it is not surprising that it exhibits
the largest sensitivity to the dimensional mt. The smallest dependence on
mt is found for the purely angular distributions ��(BB̄) and ��(jbjb̄), as
well as their �R equivalents. In addition, we remark that the sample of
variables �B tends to have slightly larger sensitivity to mt. The choice of
different denominators in �B can lead to a milder dependence on mt in the
numerator, as can be seen by comparing the results for �B

�
|pT,jb | +

��pT,j̄b
���

with respect to �B
�
Ejb + Ej̄b

�
.

4.2 Constraining power of the calibration observables

In order to quantify the dependence of the first Mellin moments on the
Monte Carlo tuning, we evaluate the difference between the moments ob-
tained for two values of each parameter at fixed mt and compute the sensi-
tivity according to eq. (2) for the mt value at hand. Considering several mt

values between 163 GeV and 183 GeV, we calculate the average value and
standard deviation for the sensitivity �(MO)

✓ to each PYTHIA parameter
in Table 4. The obtained estimate for the sensitivity essentially represents
the distance between the lines shown in Figure 4 for different values of the
same Monte Carlo parameter.

From Table 4, we can derive what precision in the measurement of the

Mellin moments �MO/MO should be reached to notice a given variation
�✓/✓ of the Monte Carlo parameter. From the definition of the logarithmic
derivative eq. (2) that we have tabulated, it follows:

�MO

MO

= �(MO)
✓

�✓

✓
, (8)

hence, observables with large �(MO)
✓ , are the best diagnostics of the ac-

curacy of the tuning or, equivalently, the best observables for an in-situ
calibration in the tt̄ environment.

From a quick glance to the table, we find that a few interesting patterns
emerge: the radial energy distribution ⇢(r) is among the most sensitive
observables to both hadronization and shower parameters and tends to
have opposite-sign sensitivity with respect to the other quantities. This
tendency can be easily justified: for instance, when increasing ↵S,FSR, it
is natural to expect more radiation, even at larger angles, so that h⇢(r)i
grows, while pT,B or any possible denominator of �B decreases; a similar
but reversed argument holds for pT,min. In spite of this apparently different
dependence of ⇢(r), we warn the readers that the actual usefulness of the
combination of several observables to obtain constraints from data on the
parameters has to be evaluated globally, by looking at the dependence of all
observables on all parameters. We defer to Section 4.3 a full commentary
on the information that we can obtain on the Monte Carlo parameters
combining several calibration observables.

Angular variables like ��(BB̄) and �R, as well as their analogs at b-jet
level, tend to exhibit very small dependence on all parameters. However,
the difference between hadron- and jet-level observables exhibits significant
dependence on most parameters, as well as some similarity with the results
for ⇢(r).

The hadron-to-jet ratios pT,B/pT,jb , EB/Ejb , and mBB̄/mjbjb̄ exhibit
substantial sensitivity to the Monte Carlo parameters and are expected to
probe similar aspects of the PYTHIA description of the events. Due to the
little dependence of �� and �R on both mt and shower/hadronization
parameters, we can expect the sensitivity of the mass ratio to be closely
related to that of the transverse-momentum ratio.

The ratios that involve lepton energies usually show very little sensitivity
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O3 -0.05 -0.45 0.75 -0.04 -0.47 -0.07 -0.08
O4 0.13 0.46 -0.03 -0.75 -0.39 -0.15 -0.19
O5 0.07 0.05 0.29 -0.38 0.27 0.46 0.69
O6 -0.06 -0.07 -0.43 0.19 -0.73 0.32 0.36
O7 -0.01 -0.01 -0.04 0.03 -0.04 -0.81 0.58

O B S E R VA B L E S



C A L I B R AT I O N
p1 0.87 0.48 -0.11 0.04 -0.07 -0.01
p2 0.15 -0.37 0.05 0.15 -0.81 0.39
p3 -0.45 0.7 -0.1 0.2 -0.46 -0.19
p4 -0.12 0.37 0.39 -0.33 0.14 0.75
p5 0.09 -0.01 0.67 -0.48 -0.26 -0.49
p6 0.06 0.01 0.61 0.77 0.18 -0.01

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

0.18

0.35

0.52

0.69

0.86

PA R A M E T E R S



C A L I B R AT I O N

A S S U M I N G  T H AT  N O  O B S E R VA B L E  W I L L  B E  K N O W N  
B E T T E R  T H A N  1 %  ( J E T S  U S E D  T O  N O R M A L I S E )

0.0073 0.033 0.065 0.15 0.56 3.2

Full Range

-0.40

-0.23

0

0.20

0.50

0.80

1.00

R E S U LT S  &  C O R R E L AT I O N



C A L I B R AT I O N

A S S U M I N G  T H AT  N O  O B S E R VA B L E  W I L L  B E  K N O W N  
B E T T E R  T H A N  1 %  ( J E T S  U S E D  T O  N O R M A L I S E )

0.0073 0.033 0.065 0.15 0.56 3.2

Full Range

-0.40

-0.23

0

0.20

0.50

0.80

1.00

FWHM Range

-0.1

0

0.2

0.4

0.6

0.8

1.0

R E S U LT S  &  C O R R E L AT I O N



C A L I B R AT I O N

-0.80

-0.45

0

0.50

1.00

-0.35±0.001 -0.057±0.002 0.029±0.0004 -0.0066±0.002 0.014±0.001 -0.018±0.004
1.3±0.008 0.27±0.008 -0.12±0.003 0.032±0.009 -0.07±0.007 0.09±0.02
1.3±0.007 0.2±0.007 -0.13±0.002 0.025±0.009 -0.049±0.006 0.065±0.02
1.3±0.007 0.16±0.005 -0.14±0.001 0.016±0.005 -0.035±0.005 0.044±0.02
1.2±0.007 0.1±0.007 -0.13±0.002 0.014±0.003 -0.018±0.007 0.01±0.02

E N E R G Y  D I S T R I B U T I O N  I N  A  J E T  A N N U L U S  



1. -0.46 -0.45 -0.48 0.4 0.34 0.27 0.18 0.12 -0.12 -0.13 -0.13 -0.07

-0.46 1. 0.5 0.5 -0.43 -0.35 -0.25 -0.14 -0.07 0.09 0.09 0.18 0.08

-0.45 0.5 1. 0.49 -0.42 -0.34 -0.25 -0.14 -0.08 0.14 0.18 0.32 0.15

-0.48 0.5 0.49 1. -0.9 -0.63 -0.52 -0.3 -0.17 0.07 0.07 0.18 0.07
0.4 -0.43 -0.42 -0.9 1. 0.31 0.31 0.16 0.07 -0.06 -0.07 -0.15 -0.06
0.34 -0.35 -0.34 -0.63 0.31 1. 0.21 0.1 0.23 -0.04 -0.03 -0.12 -0.04
0.27 -0.25 -0.25 -0.52 0.31 0.21 1. 0.16 0.11 -0.03 -0.03 -0.1 -0.05
0.18 -0.14 -0.14 -0.3 0.16 0.1 0.16 1. 0.06 -0.02 -0.01 -0.05 -0.03
0.12 -0.07 -0.08 -0.17 0.07 0.23 0.11 0.06 1. -0.01 -0.01 -0.03 -0.01
-0.12 0.09 0.14 0.07 -0.06 -0.04 -0.03 -0.02 -0.01 1. 0.79 0.49 0.83
-0.13 0.09 0.18 0.07 -0.07 -0.03 -0.03 -0.01 -0.01 0.79 1. 0.54 0.89
-0.13 0.18 0.32 0.18 -0.15 -0.12 -0.1 -0.05 -0.03 0.49 0.54 1. 0.53

-0.07 0.08 0.15 0.07 -0.06 -0.04 -0.05 -0.03 -0.01 0.83 0.89 0.53 1.

����������

-0.80

-0.45

0

0.50

1.00



10 4 Top quark mass measurement

C
om

bi
na

tio
ns

 / 
3.

9 
G

eV

0

2000

4000

6000

8000

10000

12000

14000

16000

18000 Data
 = 166.5 GeVtm
 = 172.5 GeVtm
 = 178.5 GeVtm

 (8 TeV)-119.7 fbCMS

 [GeV]svlm
20 40 60 80 100 120 140 160 180 200

0.8

1

1.2

R
at

io
 w

rt.
17

2.
5 

G
eV

Figure 5: Lepton-SV invariant mass distribution for a combination of all five channels, for
a simulation of three different top quark mass values (166.5, 172.5, and 178.5 GeV), and the
observed data distribution. Note that all possible lepton-vertex combinations for each event
enter the distribution.

The shape of the msvl observable depends considerably on the number of tracks associated
with the secondary vertex, shifting to higher values as more tracks are included. The analysis
is therefore carried out in three exclusive track multiplicity categories of exactly three, four, or
five tracks. Vertices with only two tracks show an increased level of backgrounds and reduced
sensitivity to mt and are therefore excluded from the analysis. Furthermore, when evaluat-
ing systematic uncertainties, the results from the individual categories are assigned weights
corresponding to the observed event yields in each, to absorb any mismodeling of the ver-
tex multiplicity distribution in simulated events. Hence the analysis is carried out in fifteen
mutually exclusive categories—three track multiplicities and five lepton flavor channels—and
combined to yield the final result.

4.2 Signal and background modeling

The observed msvl distributions in each category are fitted with a combination of six individual
components:

– “correct” pairings for the tt signal where leptons and vertices are matched to the
same top quark decay;

– “wrong” pairings for the tt signal where leptons and vertices are matched to the
opposite top quark decay products;

– “unmatched” pairings for the tt signal where leptons are paired with vertices that
cannot be matched to a b quark hadronization, i.e. either from a hadronic W boson
decay or from initial- or final-state radiation;

– “correct” pairings for the single top quark signal;
– “unmatched” pairings for the single top quark signal, where there can be no “wrong”

pairs in the sense of the above;
– leptons and vertices from background processes.

Among those, the “correct” pairings both for tt and single top quarks, and the “wrong” pairings
in the tt signal carry information about the top quark mass and are parametrized as a function

6

TABLE I: Composition of the SLTµ-tagged W +n jets candi-
date sample [12]. The HT > 200 GeV requirement is released
for events with fewer than 3 jets.

Source W+1 jet W+2 jet W+ ≥ 3 jets
W+light flavor 622±31 226±12 52.3±2.6
W+heavy flavor 145±55 66.6±25.2 14.3±5.4
QCD multijet 91.9±16.5 44.9±10.4 6.9±1.5
WW + WZ + ZZ 3.8±0.4 7.0±0.7 1.9±0.3
Drell-Yan→ ττ 2.6±0.6 1.5±0.4 0.6±0.3
Drell-Yan→ µµ 6.0±1.2 4.1±0.9 0.8±0.5
Single top 4.4±0.4 9.0±0.7 2.7±0.2
Total background 876±54 359±24 79.5±5.3
tt̄ (σtt̄ = 9.1 pb) 3.5±0.2 31.8±1.0 168.5±5.3
Data 892 384 248

use the SLTµ candidate that has the best match between
the COT track and the track segment in the muon detec-
tors. No attempt is made to choose the correct pairing
from the decay chain of the two top-quarks. The elec-
tric charge of the SLTµ for instance is not an effective
flavor selector due to abundant sequential b → c → µ
decays. When the wrong pairing is chosen, there is still
sensitivity to the top quark mass due to the boost of the
SLTµ and the PL. The distribution of Mℓµ is given by the
contribution of tt̄ and background events. For the back-
ground, the Mℓµ distribution of QCD multijet events is
derived from the data themselves in the kinematic-region
of I > 0.15, /ET > 30 GeV, topologically close to the sig-
nal region, while for other background sources we use MC
simulation. We check the background model in W+1,2
jet SLTµ-tagged data events, a sample with a similar
composition as the background to tt̄ candidates. We find
the predicted and observed distributions of Mℓµ (Figure
1) to be in agreement with a p-value of 55%, as given by
the Kolmogorov-Smirnov test.

We construct a set of template histograms of the Mℓµ

distribution using the background model and a simula-
tion of tt̄ events. The tt̄ samples are generated with differ-
ent top quark mass values in the range 150–195 GeV/c2,
incrementing by steps of up to 0.5 GeV/c2, and the full
Mℓµ spectra are determined by adding the signal and ex-
pected background histograms in the ratio shown in Ta-
ble I. Figure 2 shows the mean value of the Mℓµ distribu-
tions versus the input top quark mass, indicating a linear
relationship between the two quantities. Also shown is
< Mℓµ >= 35.6 ± 1.1(stat.) GeV/c2, measured in the
data. We perform a binned-likelihood fit to the Mℓµ his-
togram of the data, in 20 bins between 4–100 GeV/c2,
with the binning and range chosen a priori appropriately
to the size of the data sample. The likelihood is defined
as:

− lnL(mt) = −
Nbins
∑

i=1

ndata
i ln

[

nTP
i (mt)

nTP
tot

]

, (1)

where ndata
i and nTP

i (mt) are the number of entries in
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FIG. 1: The predicted and observed Mℓµ distributions in the
sample of W+1,2 jet SLTµ-tagged events. The predicted dis-
tributions are stacked.

each i-bin of the data and template histograms respec-
tively, the total number of entries is nTP

tot = ndata
tot , and

nTP
i (mt)/nTP

tot ≡ Pi(mt) is the probability of the i-th bin,
normalized such that

∑

i Pi = 1. The background nor-
malization is fixed and its value is varied in the evaluation
of the systematic uncertainty. A parabolic function is fit
to the values of lnL(mt) derived from each mass template,
and the measured top quark mass is determined from the
minimum of the likelihood function, while the statistical
uncertainty is given by the range corresponding to an in-
crease in the −lnL of 0.5 units above the minimum. For
each mass point within the full mass range, we gener-
ate 5000 pseudoexperiments with the same sample size
as that of the data and verify that the fitting procedure
is unbiased and that the statistical uncertainty returned
by the fits represents the 68% confidence level. From 248
tt̄ candidate events, we measure:

mt = 180.5 ± 12.0(stat.) ± 3.6(syst.) GeV/c2. (2)

Figure 3 shows the Mℓµ distribution of the data, the back-
ground, and the templates corresponding to the best fit
and the statistical uncertainty.

The sources of systematic uncertainty that affect the
measured value of the top quark mass are summarized
in Table II. The limited size of the tt̄ samples simulated
with different values of mt, input to the fitting procedure,
yields an uncertainty of ±0.3 GeV/c2. Several compo-
nents enter the uncertainty on the modeling of the back-
ground. The uncertainty on the W+ heavy and light fla-
vor normalizations yields an uncertainty of ±0.5 GeV/c2.

�
(hm`µi)
mt ' 0.3



Figure 4: Representative results on the dependence of the first Mellin
moment of calibration observables on hadronization and showering
parameters: (top) dependence on αs(FSR), (bottom) dependence on
Lund-Bowler rB

definition of the log-derivative that we have tabulated it follows

δMO
MO

= ∆(MO)
θ

δθ

θ

hence observables with larger ∆ are the best diagnostics of the accuracy
of the tunes or, equivalently, the best observables to adjust the tune for
the tt̄ environment.
The radial energy distribution ρ(r) is a most sensitive variable to both

hadronization and shower parameters as it has often the largest ∆. Fur-
thermore we remark that ρ(r) tends to have opposite sign sensitivity com-
pared to that of the other observables, as clearly seen by the opposite
slopes of the lines in Figure 4. This fact is of great practical importance
as it means that it is not possible to exaggerate the change of any pa-
rameter without finding contradiction with either ρ(r) or any of the χB

and pT,B/pT,jb . For some parameters this tendency can be justified, for
instance when increasing αS,FSR is natural to expect more radiation at
larger angles and so the average of ρ(r) to grow, while pT,B decreases
and similarly any of the possible denominators of χB. A similar, but re-
versed, argument goes for pT,min. For hadronization parameters is harder
to have such simple intuition, therefore we have verified that the ten-
dency of ρ(r) to have opposite sensitivity than the rest of the observables
is not an accident of the ranges we explored. Coarse-grained results on
a large range of the hadronization parameters, shown in the bottom row
of Figure 4 for rB, confirm the tendency of ρ(r) to react to changes of
the parameters in an opposite way to “momentum observables” such as
χB and pT,B/pT,jb .
Concerning the tests that can be carried out using accurate measure-

ments of these observables we remark that the measurement of the first
Mellin moment of any observable is informative on αS,FSR in a one-to-
one ratio, i.e. a measurement at 1% would be sensitive to effects com-
mensurate with changes of 1% in αS,FSR. The situation is clearly differ-
ent for pT,min which influences ρ(r) far more than all other observables
and that too in a one-to-ten ratio, i.e. a measurement at 1% would be sen-
sitive to effects commensurate with changes of 10% in pT,min. Hadroniza-
tion parameters appear to be more elusive as they influence all observ-
ables in a ratio about 1-to-30, i.e. a measurement at 1% of the Mellin
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