Roberto Franceschini (Rome 3 U.) with G. Corcella (Frascati) and D. Kim (CERN)

Universität Wien, April 10th 2018 - Teilchenphysikseminar

FRAGMENTATION UNCERTAINTIES ON HADRONIC TOP QUARK MASS MEASUREMENTS AND IN-SITU CALIBRATION OF FRAGMENTATION MODELS

1712.05801

MOTIVATION TO STUDY TOP MASS

•Top is key to SM validity

•top-Higgs is the cornerstone of BSM!

MOTIVATION TO STUDY TOP MASS

* A new fundamental interaction!

•Fundamental (?) Yukawas are the discovery of 21st century

 "Mass is an interaction with the Higgs" is the result of LHC Higgs discovery and measurements

$M = P_0$

conservation of 4-momentum

Power-corrections:

hadronization

•interactions of the colliding protons

Interaction with the underlying color field

Possible size of corrections around Λ_{QCD}

ons olor

 $M = P_0$

conservation of 4-momentum

 $P(top) = \sum_{i} p_{i}$ i={leptons & hadrons}

Power-corrections:

hadronization

•interactions of the colliding protons

Interaction with the underlying color field

Possible size of corrections around Λ_{QCD}

ons olor

The truth is that the mass of particle exceeds this intuition. It is like the **measurement of a coupling** in the Lagrangian

 $= \sum_{i} D_{i}$ i={leptons & hadrons}

 $\Sigma(|\mathbf{p}|, \overline{\mathbf{p}}) \rightarrow (M, 0, 0, 0)$

Power-corrections:

hadronization

•interactions of the colliding protons

 Interaction with the underlying color field

Possible size of corrections around Λ_{QCD}

The truth is that the mass of particle exceeds this intuition. It is like the **measurement of a coupling** in the Lagrangian

Power-corrections:

hadronization

•interactions of the colliding protons

 Interaction with the underlying color field

Possible size of corrections around Λ_{QCD}

STATUS

MEASUREMENT AT $\leq 0.5\%! \Rightarrow PRECISION QCD$

EXPERIMENTAL PRECISION IS SYSTEMATICS LIMITED (JES, ..., HADRONIZATION)

Today's talk

HOW WELL DO WE KNOW THESE NON-PERTURBATIVE EFFECTS

THE STRENGTH OF THE FUTURE LHC TOP MASS MEASUREMENT WILL BUILD ON THE **DIVERSITY OF METHODS** \Rightarrow NOT VERY USEFUL TO TALK ABOUT "SINGLE BEST MEASUREMENT"

EXPERIMENTAL PRECISION IS SYSTEMATICS LIMITED (JES, ..., HADRONIZATION)

STATUS

MEASUREMENT AT $\leq 0.5\%! \Rightarrow PRECISION QCD$

Today's talk

WHAT IS THE CURRENT UNCERTAINTY FROM HADRONIZATION MODELING?

HOW PRECISELY WE NEED TO TUNE THE MODELS ON (TOP QUARK SPECIFIC) DATA?

CAN WE TUNE THE MODELS FROM DATA PRECISELY ENOUGH?

THE STRENGTH OF THE FUTURE LHC TOP MASS MEASUREMENT WILL BUILD ON THE DIVERSITY OF METHODS → NOT VERY USEFUL TO TALK ABOUT "SINGLE BEST MEASUREMENT"

BEYOND JETS

- Mass measurement methods using jets ⇒ Jet Energy Scale uncertainty
- Useful to look at mass measurement that do not have Jet Energy Scale uncertainty

PLENTY OF B-HADRON EVENTS AT LHC

$$N_{\rm ev} \sim 10^5 \frac{\mathcal{L}}{1/{\rm ab}} \frac{\epsilon_{\rm tagging}}{10^{-4}} \cdot \epsilon_{\rm cuts} \cdot BR(t\bar{t})$$

 $B \rightarrow tracks + neutral$

 $B \rightarrow tracks$ $B \rightarrow J/\psi + X$ CMS-PAS-TOP-15-01

Etagging

BEYOND JETS

- Mass measurement methods using jets ⇒ Jet Energy Scale uncertainty
- Useful to look at mass measurement that do not have Jet Energy Scale uncertainty

PLENTY OF B-HADRON EVENTS AT LHC

$$N_{\rm ev} \sim 10^5 \frac{\mathcal{L}}{1/{\rm ab}} \frac{\epsilon_{\rm tagging}}{10^{-4}} \cdot \epsilon_{\rm cuts} \cdot BR(t\bar{t})$$

$t \rightarrow \ell + X$ $\epsilon_{\text{tagging}} \sim O(1)$ $tt \rightarrow \ell^+\ell^- + X$

Etagging

 $B \rightarrow tracks + neutral$

L_{XV} CMS-PAS-TOP-12-030

 $B \rightarrow tracks$ $B \rightarrow J/\Psi + X$ CMS-PAS-TOP-15-014

O(1)

$pp \rightarrow t\overline{t} \otimes NLO$ fragmentation function

Maybe NNLO & fragmentation functions

Most likely N³LO \otimes fragmentation functions

$pp \rightarrow t\overline{t} \otimes NLO$ fragmentation function

NLO sensitive to the scale choice: ±1.8 GeV on mtop

Maybe NNLO & fragmentation functions

Most likely N³LO \otimes fragmentation functions

HADRON SPECTRUM FROM MONTE CARLO EVENT GENERATORS

$pp \rightarrow t\overline{t} @ NLO \otimes Parton Shower + Non-Perturabtive Models$

Today's talk

	Рутніа8 parameter	range	Monash d
$p_{T,\min}$	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
$lpha_{s,{ m FSR}}$	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
recoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
b quark mass	5:м0	3.8-5.8 GeV	4.8 Ge
Bowler's r_B	StringZ:rFactB	0.713-0.813	0.855
string model a	String Z: a Nonstandard B	0.54-0.82	0.68
string model b	StringZ: $BNONSTANDARDB$	0.78-1.18	0.98

рТтіп

	Рутніа8 parameter	range	Monash d
$p_{T,\min}$	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
$lpha_{s,\mathrm{FSR}}$	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
recoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
b quark mass	5:м0	3.8-5.8 GeV	4.8 Ge
Bowler's r_B	StringZ:rFactB	0.713-0.813	0.855
string model a	StringZ:aNonstandardB	0.54-0.82	0.68
string model b	StringZ:bNonstandardB	0.78-1.18	0.98

рТтіп

αs

p
a
b qu
Bov
string
strin

	Рутніа8 parameter	range	Monash d
T,min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
vler's r_B	StringZ:rFactB	0.713-0.813	0.855
$g \mod a$	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

рТтіп

αs

in

in

	Рутніа8 parameter	range	Monash d
T,min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
vler's r_B	StringZ:rFactB	0.713-0.813	0.855
$g \mod a$	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

	Рутніа8 parameter	range	Monash d
T,min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
vler's r_B	StringZ:rFactB	0.713-0.813	0.855
$g \mod a$	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

	Рутніа8 parameter	range	Monash d
T,min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
vler's r_B	StringZ:rFactB	0.713-0.813	0.855
$g \mod a$	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

HERWIG 7 HERWIG 6

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

VXCUT

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 1 2 .35 .18 0 .48 0.1 .75 .95

VXCUT

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

VXCUT

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

Observable that are sensitive to m_{top}

sens. to MC

Observable that are sensitive to m_{top}

sens. to MC

sens. to m_{top}

SENSITIVITY TO THEORY PARAMETERS

 $\Delta^{(mtop)} = 0.003$

m(BI), p_{Tmin}:

SENSITIVITY = RATIO(RELATIVE VARIATION OF THE OBSERVABLE) (RELATIVE VARIATION OF THE PARAMETER)

$\Delta^{(mt)}_{mBI} \cdot \Delta^{(mBI)}_{pTmin} < 0.003$

SENSITIVITY TO THEORY PARAMETERS

<u>RELATIVE RATIO:</u> NOT STRONGLY DEPENDENT ON THE RANGE OR CENTRAL VALUE OF THE PARAMETER

 $\Delta^{(mtop)} = 0.003$

m(BI), p_{Tmin}:

SENSITIVITY = RATIO(RELATIVE VARIATION OF THE OBSERVABLE) (RELATIVE VARIATION OF THE PARAMETER)

O(1) FOR MOST CASES

$\Delta^{(mt)}_{mBl} \cdot \Delta^{(mBl)}_{pTmin} < 0.003$

RESULTS Pythia

Homogeneous recipe for all observables

- Tails might bring in sensitivity to unknown unknowns
- Bulk of the events, large data sample

Homogeneous recipe for all observables

- Tails might bring in sensitivity to unknown unknowns
- Bulk of the events, large data sample

RESULTS

PYTHIA

 \mathcal{O} ho(r) $p_{T,B}/p_{T,j_b}$ E_B/E_{j_b} E_B/E_ℓ $E_B/(E_\ell + E_{\bar{\ell}})$ $m(j_{ar b})/{
m GeV}$ $\chi_B(\sqrt{s_{\min,bb}})$ $\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$ $\chi_B(m_{j_b j_{\bar{b}}})$ $\chi_B\left(|p_{T,j_b}| + \left|p_{T,\overline{j}_b}\right|\right)$ $m_{BB}/m_{j_b j_{ar b}}$ $\Delta \phi(j_b j_{\bar{b}})$ $\Delta R(j_b j_{\overline{b}})$ $\Delta \phi(BB)$ $\Delta R(BB)$ $\frac{|\Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}})|}{|\Delta R(BB) - \Delta R(j_b j_{\bar{b}})|}$

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{E_j} \sum_{\text{track}} E(\text{track}) \theta\left(|r - \Delta R_{j,\text{track}}| < \delta r\right):$$

$$\chi_B = 2E_B/X_B$$
 $X_B = m_{j_b j_{\bar{b}}}, \sqrt{s_{\min}}, |p_{T, j_b}| +$

$$W^+$$
 $W^ W^ \overline{j}_b$
 \sum_{j_b} J_j $M^ M^ J_j$ J_j J_j J_j $M^ J_j$ J_j $M^ J_j$ J_j $M^ J_j$ J_j $M^ J_j$ $M^ M^ J_j$ J_j $M^ M^ J_j$ $M^ J_j$ $M^ J_j$ $M^ J_j$ $M^ J_j$ $M^ J_j$ $M^ M^ J_j$ $M^ J_j$ $M^ M^ J_j$ $M^ M^ M^ J_j$ $M^ J_j$ $M^ M^ J_j$ $M^ M^ J_j$ $M^ J_j$ $M^ M^ M^-$

PYTHIA

 \mathcal{O} ho(r) , $p_{T,B}/p_{T,j_b}$ E_B/E_{j_b} E_B/E_ℓ $E_B/(E_\ell + E_{\bar{\ell}})$ $m(j_{ar b})/{
m GeV}$ $\chi_B(\sqrt{s_{\min,bb}})$ $\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$ $\chi_B(m_{j_b j_{ar b}})$ $\chi_B\left(|p_{T,j_b}| + \left|p_{T,\overline{j}_b}\right|\right)$ $m_{BB}/m_{j_b j_{ar b}}$ $\Delta \phi(j_b j_{\overline{b}})$ $\Delta R(j_b j_{\bar{b}})$ $\Delta \phi(BB)$ $\Delta R(BB)$ $\frac{|\Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}})|}{|\Delta R(BB) - \Delta R(j_b j_{\bar{b}})|}$

 $\rho(r) = \frac{1}{\Delta r} \frac{1}{E_j} \sum_{\text{track}} E(\text{track}) \theta(|r - \Delta R_{j,\text{track}}| < \delta r)$

PURE TRACKER

$$\chi_B = 2E_B/X_B$$
 $X_B = m_{j_b j_{\bar{b}}}, \sqrt{s_{\min}}, |p_{T, j_b}| +$

$$W^+$$
 $W^ W^ \bar{j}_b$
 \sum_{j_b} \sum_{j_b} $W^ \bar{j}_b$ j_g g

PYTHIA

0	Darage	$(\mathcal{M}_{\mathcal{O}})$				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t}	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
ho(r)	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(\dot{E}_{j_b} + E_{\overline{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_{\overline{b}}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left p_{T,\overline{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{ar b}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{ar b})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{\bar{b}})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

THIS MATRIX CAPTURES THE MONTE CARLO MODELING AS A LINEAR SYSTEM

PYTHIA

Each line is a vector of gradients of the observable w.r.t. a parameter Θ

	Danco	$(\mathcal{M}_{\mathcal{O}})$				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t}	$lpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
ho(r)	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(\dot{E}_{j_b} + E_{\bar{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_{\bar{b}}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left p_{T,\overline{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{\overline{b}}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{ar b})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{\overline{b}})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

THIS MATRIX CAPTURES THE MONTE CARLO MODELING AS A LINEAR SYSTEM

PYTHIA

0	Panga	A (MO)				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t} = 7	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
$\rho(r)$	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(E_{j_b} + E_{\bar{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_{\bar{b}}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left p_{T,\bar{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{\overline{b}}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{\bar{b}})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{\bar{b}})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$\left \Delta R(BB) - \Delta R(j_b j_{\bar{b}})\right $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

 θ_2

PYTHIA

0	Denne	A (Ma)				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t} - γ	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
$\rho(r)$	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(\dot{E}_{j_b} + E_{\bar{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_b})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left[p_{T,\overline{j}_b}\right]\right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{\bar{b}}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{\bar{b}})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{\bar{b}})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

PYTHIA

0	Denm	$(M_{\mathcal{O}})$				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t} - γ	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
$\rho(r)$	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(E_{j_b} + E_{\bar{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_{\bar{b}}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left p_{T,\bar{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{\bar{b}}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{ar b})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{\bar{b}})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

		ba
ho(r)	_	I
E_B/E_ℓ	_	
$E_B/(E_\ell + E_{\bar{\ell}})$	_	
$\chi_B(s_{min,bb})$	_	
$\chi_B(E_{bb})$	_	
$\chi_B(m_{bb})$	_	
$\chi_B(HT_{bb})$	_	
$p_{T,B}/p_{T,j_b}$	_	
E_B/E_{j_b}	_	
$m_{BB}/m_{ar{j}_b j_b}$	_	
m_{j_b}	_	
$ \Delta \phi_{\overline{j}_b j_b} $	_	
$\Delta R_{\overline{j}_b j_b}$	_	
$ \Delta \phi_{BB} $	_	
ΔR_{BB}	_	
$ \Delta \phi_{BB} - \Delta \phi_{\bar{j}_b, j_b} $	-	
$\Delta \kappa_{BB} - \Delta \kappa_{\overline{j}_b j_b}$		

 Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (p_i)

	α _s	m _b	pT _{min}	a	Ь	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

 Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (p_i)

	α _s	m _b	PT _{min}	a	b	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

 Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (pi)

	X s	m _b	pT _{min}	a	Ь	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

 Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (pi)

	α _s	m _b	₽T _{min}	a	b	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

• Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (p_i)

	X s	m _b	pT _{min}	a	Ь	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

 Singular Value Decomposition to find combination of observable (O_i) that are sensitive to combinations of parameters (p_i)

	α _s	m _b	pT _{min}	a	b	r _B	recoil
Sensitivity	1.7	0.26	0.48	0.0075	0.0055	0.0033	0.0013

$$\mathbf{cov}_{\frac{d\theta}{\theta}} = \tilde{\Delta}_{\theta}^{(\mathcal{M}_{\mathcal{O}})} \cdot \mathbf{cov}_{\frac{dO}{O}} \cdot \tilde{\Delta}_{\theta}^{(\mathcal{M}_{\mathcal{O}})^{t}}.$$

CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

ute

PYTHIA CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

0	Dongo	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$		$\Delta_{ heta}^{(m_t)}$							
0	Range		$lpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil		
E_B	28-110	0.92(5)	-0.52(2)	-0.21(3)	0.057(4)	-0.02(2)	0.06(2)	-0.10(5)	-0.022(5)		
$p_{T,B}$	24-72	0.92(3)	-0.54(2)	-0.21(2)	0.056(4)	-0.03(2)	0.07(1)	-0.09(4)	-0.023(2)		
$m_{B\ell,{ m true}}$	47-125	1.30(2)	-0.241(8)	-0.072(6)	0.022(2)	-0.007(5)	0.023(6)	-0.02(2)	-0.008(2)		
$m_{B\ell^+,{ m min}}$	30-115	1.16(2)	-0.282(5)	-0.078(7)	0.024(2)	-0.011(7)	0.021(7)	-0.04(2)	-0.010(1)		
$E_B + E_B$	83-244	0.92(4)	-0.50(2)	-0.21(2)	0.056(6)	-0.02(2)	0.07(3)	-0.08(6)	-0.020(4)		
$m_{BB\ell\ell}$	172-329	0.96(2)	-0.25(1)	-0.10(1)	0.028(3)	-0.01(1)	0.026(7)	-0.03(3)	-0.008(2)		
$m_{T2,B\ell, ext{true}}^{ ext{(mET)}}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)		
$m^{(m mET)}_{T2,B\ell, m min}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)		
$m_{T2}^{(\ell u)}$	0.5-80	-0.118(7)	-0.03(2)	0.00(2)	0.002(8)	0.00(2)	-0.01(2)	0.00(7)	0.004(5)		
$m_{\ell\ell}$	37.5-145	0.40(5)	-0.03(5)	-0.01(4)	0.00(1)	0.01(5)	0.01(4)	0.0(1)	0.00(1)		
$E_\ell + E_\ell$	75-230	0.54(5)	-0.03(3)	0.00(3)	0.003(9)	0.01(3)	-0.00(2)	0.06(9)	0.003(8)		
E_ℓ	23-100	0.48(4)	-0.02(5)	0.00(5)	0.004(9)	0.01(4)	-0.01(4)	-0.06(9)	0.003(8)		

PYTHIA CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

\bigcirc	Range	$\Lambda(\mathcal{M}_{\mathcal{O}})$				$\Delta_{ heta}^{(m_t)}$			
		Δm_t	$lpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
E_B	28-110	0.92(5)	-0.52(2)	-0.21(3)	0.057(4)	-0.02(2)	0.06(2)	-0.10(5)	-0.022(5)
$p_{T,B}$	24-72	0.92(3)	-0.54(2)	-0.21(2)	0.056(4)	-0.03(2)	0.07(1)	-0.09(4)	-0.023(2)
$m_{B\ell, \text{true}}$	47-125	1.30(2)	-0.241(8)	-0.072(6)	0.022(2)	-0.007(5)	0.023(6)	-0.02(2)	-0.008(2)
$m_{B\ell^+,\min}$	30-115	1.16(2)	-0.282(5)	-0.078(7)	0.024(2)	-0.011(7)	0.021(7)	-0.04(2)	-0.010(1)
$E_B + E_B$	83-244	0.92(4)	-0.50(2)	-0.21(2)	0.056(6)	-0.02(2)	0.07(3)	-0.08(6)	-0.020(4)
$m_{BB\ell\ell}$	172-329	0.96(2)	-0.25(1)	-0.10(1)	0.028(3)	-0.01(1)	0.026(7)	-0.03(3)	-0.008(2)
$m_{T2,B\ell,\text{true}}^{(\text{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)
$m_{T2,B\ell,\min}^{(ext{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)
$m_{T2}^{(\ell\nu)}$	0.5-80	-0.118(7)	-0.03(2)	0.00(2)	0.002(8)	0.00(2)	-0.01(2)	0.00(7)	0.004(5)
$m_{\ell\ell}$	37.5-145	0.40(5)	-0.03(5)	-0.01(4)	0.00(1)	0.01(5)	0.01(4)	0.0(1)	0.00(1)
$E_{\ell} + E_{\ell}$	75-230	0.54(5)	-0.03(3)	0.00(3)	0.003(9)	0.01(3)	-0.00(2)	0.06(9)	0.003(8)
E_{ℓ}	23-100	0.48(4)	$-0.0\overline{2(5)}$	0.00(5)	0.004(9)	0.01(4)	-0.01(4)	-0.06(9)	$0.00\overline{3(8)}$

"SIMPLE" OBSERVABLES (MELLIN MOMENTS) REQUIRE GOOD KNOWLEDGE OF MONTE CARLO PARAMETERS

- α_s needed at 1%
- m_b needed at 3%
- all the rest needed at 10%

- All hadronic observables in the same ballpark (within factor 2)
- m_{T2} similar to m_{BI}
- Fully Leptonic observables one order less sensitive (stat~0)

1% of the cross-section to go the end-point

how much better does it get?

CAN TOP MASS BE MEASURED PRECISELY ENOUGH ? SENSITIVIY ~ PERCENT OR BELOW

0		Rango	(\mathcal{O})		$\Delta_{ heta}^{(m_t)}$						
		Tunge	Δm_t	$lpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil	
$E_{B,pe}$	eak	35-85	0.8(1)	-0.74(9)	-0.26(4)	0.05(1)	-0.04(2)	9.08(3)	-0.07(9)	-0.031(7)	
$\breve{m}_{B\ell, t}$	rue	127-150	1.26(1)	0.017(6)	0.003(9)	-0.006(2)	-0.008(2)	0.008(7)	-0.016(6)	-0.00042(9)	
$\breve{m}_{B\ell, \mathfrak{n}}$	min	127-150	1.28(1)	-0.023(3)	-0.022(2)	0.006(3)	-0.008(3)	0.008(3)	-0.02(1)	-0.0001(6)	
$\breve{m}_{T2,B\ell}^{(ext{mET})}$	') l,true	150-170	0.98(2)	-0.01(2)	-0.023(3)	0.007(1)	-0.006(3)	0.010(4)	-0.011(9)	-0.0002(8)	
$\breve{m}_{T2,B\ell}^{(ext{mET})}$	ℓ,\min	150-170	0.97(2)	-0.02(1)	-0.021(5)	0.006(2)	-0.006(3)	0.009(4)	-0.01(1)	-0.0001(8)	
$\breve{m}_{T2,B\ell}^{(\mathrm{mET})}$	\min, \perp	138-170	0.89(2)	-0.071(5)	-0.046(7)	0.012(2)	-0.011(7)	0.010(8)	-0.01(2)	-0.002(1)	
$\breve{m}_{T2,1}^{(\mathrm{mF})}$	ET) B	142-170	0.95(3)	-0.089(6)	-0.064(6)	0.018(1)	-0.017(4)	0.031(4)	-0.04(2)	-0.0028(8)	
$\breve{m}_{T2,I}^{(\mathrm{mE})}$	ZT) B,⊥	126-170	0.94(4)	-0.07(1)	-0.04(1)	0.011(3)	-0.009(9)	0.02(1)	-0.03(4)	-0.001(2)	

"NOT SO SIMPLE" OBSERVABLES (END-POINTS) REQUIRE FAIR KNOWLEDGE OF MONTE CARLO PARAMETERS (MOSTLY SHOWERING)

- α_s needed at 10%
- m_b needed at 10%
- r_B needed at 10%
- all the rest needed at "100%"

HERWIG CAN TOP MASS BE MEASURED PRECISELY ENOUGH ?

	0	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$	$\Delta_{ heta}^{(m_t)}$									
			PSPLT	QCDLAM	CLPOW	$\operatorname{CLSMR}(2)$	CLMAX	RMASS(5)	RMASS(13)	VGCUT	VQCUT	
	$m_{B\ell,{ m true}}$	0.52	0.036(4)	-0.008(2)	-0.007(5)	0.002(3)	-0.007(4)	0.058(1)	0.06(5)	0.003(1)	-0.003(3)	
	$p_{T,B}$	0.47	0.072(1)	-0.03(9)	-0.02(7)	0.0035(5)	-0.03(5)	0.11(9)	0.12(5)	0.0066(2)	-0.006(5)	
	E_B	0.43	0.069(7)	-0.026(7)	-0.017(5)	0.0038(9)	-0.01(2)	0.12(1)	0.12(2)	0.006(2)	-0.007(5)	
	E_ℓ	0.13	0.0005(5)	-0.04(3)	0.04(2)	-0.0002(2)	-0.004(4)	0.008(3)	0.008(2)	-0.002(5)	0.008(2)	

"NOT SO SIMPLE" OBSERVABLES (END-POINTS) REQUIRE FAIR KNOWLEDGE OF MONTE CARLO PARAMETERS (MOSTLY SHOWERING)

- $\Lambda_{\text{QCD}} \Rightarrow \alpha_{\text{s}}$ needed at 1%
- m_{b,g} needed at 1%
- cluster mass spectrum (PSPLT, CLPOW, CLMAX) needed at 10%
- all the rest needed at "100%"

- $\Lambda_{\text{QCD}} \Rightarrow \alpha_{\text{s}}$ needed at 3%
- m_{b,g} needed at 2%
- cluster mass spectrum (PSPLT, CLPOW, CLMAX) needed at 20%
- all the rest needed at "100%"

MONTE CARLO CALIBRATION TARGETS

Pythia8

- α_s needed at 1%
- m_b needed at 3%
- all the rest needed at 10%

Herwig6

- $\Lambda_{\text{QCD}} \Rightarrow \alpha_{\text{s}}$ needed at 1%
- m_{b,g} needed at 1%
- cluster mass spectrum (PSPLT, CLPOW, CLMAX) needed at 10%
- all the rest needed at "100%"

Pythia8

- α_s needed at 10%
- m_b needed at 10%
- r_B needed at 10%
- all the rest needed at "100%"

Herwig6

- $\Lambda_{\text{QCD}} \Rightarrow \alpha_{\text{s}}$ needed at 3%
- m_{b,g} needed at 2%
- cluster mass spectrum (PSPLT, CLPOW, CLMAX) needed at 20%
- all the rest needed at "100%"

IN-SITU MONTE CARLO CALIBRATION

IN-SITU MONTE CARLO CALIBRATION

IT IS NOT A TUNING: PERCENT DIFFERENCES IN THE MC PARAMETERS ARE BEYOND THE ACCURACY OF THE MC, IT CANNOT BE UNIVERSAL

IN-SITU MONTE CARLO CALIBRATION double-jet observables AR_{BB} , $\chi_{B} = \frac{\chi E_{B}}{E_{j} + E_{j}}$ some involve jet-energy might be a limitation to the calibration TTB P: Jb explore tracker-only M: 16 observables as well 12

single-jet observables

EACH BIN IS AN OBSERVABLE

Full shape analysis: Instead of Mellin moments, use all bins

 b_{Lund}
 a_{Lund}
 r_B
 recoil

EACH BIN IS AN OBSERVABLE

\mathcal{O}	Range	N_{bins}
$\rho(r)$	00.4	16
$p_{T,B}/p_{T,j_b}$	00.99	11
E_B/E_ℓ	0.05 - 4.55	9
$\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$	02.	10
$m_{BB}/m_{j_b j_{\overline{b}}}$	00.998	11
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	00.288	9

Full shape analysis: In principle each bin is sensitive to a different combination of parameters

EACH BIN IS AN OBSERVABLE

\mathcal{O}	Range	N_{bins}
$\rho(r)$	00.4	16
$p_{T,B}/p_{T,j_b}$	00.99	11
E_B/E_ℓ	0.05 - 4.55	9
$\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$	02.	10
$m_{BB}/m_{j_b j_{\overline{b}}}$	00.998	11
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	00.288	9

Full shape analysis: In principle each bin is sensitive to a different combination of parameters

IMPLIES RELATIVE ERRORS:

	$O \sim E$	CD m	ь <i>р</i> т		h	r_{D}	recoil
	$\frac{\alpha_{s,F}}{-\alpha_{s,F}}$	$\frac{SR}{10}$	$\frac{b}{r}$ P1,m			' <u>B</u>	
	0.04	15 0.1	.4 0.3	5 0.5	0.48	0.21	0.73
(1.	-0.13	0.48	-0.37	-0.24	0.38	-0.
	-0.13	1.	0.01	0.62	0.81	-0.46	-0.
	0.48	0.01	1.	-0.09	-0.13	0.53	-0.
	-0.37	0.62	-0.09	1.	0.8	-0.47	0.3
	-0.24	0.81	-0.13	0.8	1.	-0.23	0.1
	0.38	-0.46	0.53	-0.47	-0.23	1.	0.
	-0.85	-0.06	-0.08	0.31	0.15	0.	1.

PROBED NON-PERTURBATIVE ASPECT OF MONTE CARLO: HADRONIZATION MODEL

PROBED m_{top}-SENSITIVE OBSERVABLES THAT DO NOT SUFFER JET UNCERTAINTIES

Hadron-level observables can lead to useful top mass measurements

UNCERTAINTY FROM HADRONIZATION MODELING CAN BE AS LARGE AS FEW % OF MODEL PARAMETER UNCERTAINTY (BOTH HW PSPLT AND PY r_B , b)

END-POINT OBSERVABLES CAN REDUCE DEPENDENCE OF HADRONIZATION (OTHER THEORY ISSUES STEP IN)

IN SITU CALIBRATION: MEASURING m_{top} & RELEVANT MC PARAMETERS IN THE SAME DATA CAN FIX MC BLURRINESS

pp→ bb CAN ALSO BE USED TO CROSS-CHECK AND TO TEST UNIVERSALITY

SIMILAR STUDY CAN BE REPEATED FOR COLOR RECONNECTION

SUMMARY

THANK YOU!

DEPENDENCE ON TOP MASS IN CALIBRATION

observables CALIBRATION

	$\chi_B(s_{min,bb})$	$\chi_B(E_{bb})$	$\chi_B(HT_{bb})$	$\chi_B(m_{bb})$	m_{b-jet}	$p_{T,B}/p_{T,b-jet}$	m_{BB} /
$\overline{O_1}$	-0.64	-0.51	-0.31	-0.46	0.12	-0.03	-0.0
02	0.75	-0.56	-0.27	-0.22	0.06	-0.03	- 0 . 0
03	-0.05	-0.45	0.75	-0.04	-0.47	-0.07	-0.0
04	0.13	0.46	-0.03	-0.75	-0.39	-0.15	-0.1
05	0.07	0.05	0.29	-0.38	0.27	0.46	0.69
06	-0.06	-0.07	-0.43	0.19	-0.73	0.32	0.36
07	-0.01	-0.01	-0.04	0.03	-0.04	-0.81	0.58

- 0.33

0.49

0.17

PARAMETERS

CALIBRATION

		$lpha_{s,FSR}$	m_b	$p_{T,min}$	a_{Lund}	b_{Lund}	r_B
0.86	p ₁	0.87	0.48	-0.11	0.04	-0.07	-0.01
	p ₂	0.15	-0.37	0.05	0.15	-0.81	0.39
	p ₃	-0.45	0.7	-0.1	0.2	-0.46	-0.19
	p ₄	-0.12	0.37	0.39	-0.33	0.14	0.75
	p ₅	0.09	-0.01	0.67	-0.48	-0.26	-0.49
0.69	p ₆	0.06	0.01	0.61	0.77	0.18	-0.01

0.52

0.35

0.18

RESULTS & CORRELATION CALIBRATION

ASSUMING THAT NO OBSERVABLE WILL BE KNOWN BETTER THAN 1% (JETS USED TO NORMALISE)

	$lpha_{s,FSR}$	b_{Lund}	m_b	r_B	$p_{T,min}$	a_{Lund}
$\frac{\delta\theta}{\theta}$	0.0073	0.033	0.065	0.15	0.56	3.2

RESULTS & CORRELATION CALIBRATION

ASSUMING THAT NO OBSERVABLE WILL BE KNOWN BETTER THAN 1% (JETS USED TO NORMALISE)

	$lpha_{s,FSR}$	b_{Lund}	m_b	r_B	$p_{T,min}$	a_{Lund}
$\frac{\delta\theta}{\theta}$	0.0073	0.033	0.065	0.15	0.56	3.2

ENERGY DISTRIBUTION IN A JET ANNULUS CALIBRATION

	$lpha_{s,FSR}$	m_b	$p_{T,min}$
$ ho_{(0.,0.1)}$	-0.35 ± 0.001	-0.057 ± 0.002	0.029±0.0004
$ ho_{(0.1,0.2)}$	1.3±0.008	0.27 ± 0.008	-0.12 ± 0.003
$ ho_{(0.2,0.3)}$	1.3±0.007	0.2±0.007	-0.13 ± 0.002
$ ho_{(0.3,0.4)}$	1.3±0.007	0.16 ± 0.005	-0.14 ± 0.001
$ ho_{(0.4,0.5)}$	1.2±0.007	0.1±0.007	-0.13 ± 0.002

a_{Lund}	b_{Lund}	r_B
-0.0066 ± 0.002	0.014 ± 0.001	-0.018 ± 0.004
0.032±0.009	-0.07 ± 0.007	0.09±0.02
0.025±0.009	-0.049 ± 0.006	0.065 ± 0.02
0.016 ± 0.005	-0.035 ± 0.005	0.044 ± 0.02
0.014±0.003	-0.018 ± 0.007	0.01±0.02

1.00

- 0.50

- -0.45

-0.80

$\chi_{B}(s_{min}^{(bb)})$	m_{j}	$\frac{p_{T,B}}{p_{T,j}}$	$\frac{m_{BB}}{m_{jj}}$	$ ho_{(0,0.1)}$	$ ho_{(0.1,0.2)}$	$ ho_{(0.2,0.3)}$	$ ho_{(0.3,0.4)}$	$ ho_{(0.4,0.5)}$	$ ho_{(0.5,0.6)}$	$\chi_B(m_{bb})$	$\chi_B(H_{T,bb})$	$\chi_B(E_{bb})$	$\chi_B(s_{min}^{(bb)}$
m_{j}	1.	-0.46	-0.45	-0.48	0.4	0.34	0.27	0.18	0.12	-0.12	-0.13	-0.13	-0.07
$\frac{p_{T,B}}{p_{T,j}}$	-0.46	1.	0.5	0.5	-0.43	-0.35	-0.25	-0.14	-0.07	0.09	0.09	0.18	0.08
$\frac{m_{BB}}{m_{jj}}$	-0.45	0.5	1.	0.49	-0.42	-0.34	-0.25	-0.14	-0.08	0.14	0.18	0.32	0.15
$ ho_{(0,0.1)}$	-0.48	0.5	0.49	1.	-0.9	-0.63	-0.52	-0.3	-0.17	0.07	0.07	0.18	0.07
$ ho_{(0.1,0.2)}$	0.4	-0.43	-0.42	-0.9	1.	0.31	0.31	0.16	0.07	-0.06	-0.07	-0.15	-0.06
$ ho_{(0.2,0.3)}$	0.34	-0.35	-0.34	-0.63	0.31	1.	0.21	0.1	0.23	-0.04	-0.03	-0.12	-0.04
$ ho_{(0.3,0.4)}$	0.27	-0.25	-0.25	-0.52	0.31	0.21	1.	0.16	0.11	-0.03	-0.03	-0.1	-0.05
$ ho_{(0.4,0.5)}$	0.18	-0.14	-0.14	-0.3	0.16	0.1	0.16	1.	0.06	-0.02	-0.01	-0.05	-0.03
$ ho_{(0.5,0.6)}$	0.12	-0.07	-0.08	-0.17	0.07	0.23	0.11	0.06	1.	-0.01	-0.01	-0.03	-0.01
$\chi_B(m_{bb})$	-0.12	0.09	0.14	0.07	-0.06	-0.04	-0.03	-0.02	-0.01	1.	0.79	0.49	0.83
$\chi_B(H_{T,bb})$	-0.13	0.09	0.18	0.07	-0.07	-0.03	-0.03	-0.01	-0.01	0.79	1.	0.54	0.89
$\chi_B(E_{bb})$	-0.13	0.18	0.32	0.18	-0.15	-0.12	-0.1	-0.05	-0.03	0.49	0.54	1.	0.53
$\chi_B(s_{min}^{(bb)})$	-0.07	0.08	0.15	0.07	-0.06	-0.04	-0.05	-0.03	-0.01	0.83	0.89	0.53	1.

$$\Delta_{m_t}^{(\langle m_{\ell\mu}\rangle)} \simeq 0.3$$

