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Earlier Results at NNLO
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Figure 3: Higgs plus jet production cross-sections in depen-
dence of the cut on the jet transverse momentum. The mini-
mal cut we consider is p

?

> 30 GeV. See text for details.

and NNLO as a function of the unphysical scale µ over
the range µ 2 [p

?,cut : 2mH ]. We estimate the residual
uncertainty due to PDF to be at the O(5%) level. The
situation is similar for the 13 TeV LHC. More precisely,
we find �pp!H+j = 10.2+4.0

�2.6 pb, 14.7
+3.0
�2.5 pb, 17.5

+1.1
�1.4 pb

at leading, next-to-leading and next-to-next-to-leading
order, corresponding to a NLO (NNLO) increase with re-
spect to LO of 44% (72%) for µ = mH and of 25% (31%)
for µ = mH/2.

It is interesting to understand to what extent pertur-
bative QCD corrections depend on the kinematics of the
process and/or on the details of the jet algorithm. One
way to study this is to explore how the NNLO QCD cor-
rections change as the lower cut on the jet transverse mo-
mentum is varied. We show corresponding results for the
8 TeV LHC in Fig. 3 where the cumulative distribution
for �(H+j, p

?,j � p
?,cut) is displayed. The inset in Fig. 3

shows ratios of NNLO(NLO) to NLO(LO) H + j cross-
sections, respectively, computed for µF = µR = mH as
a function of the jet p

?

-cut. It follows from Fig. 3 that
QCD radiative corrections depend on the kinematics. In-
deed, the NNLO to NLO cross-sections ratio changes
from 1.25 at p

?

= 30 GeV to ⇠ 1 at p
?

⇠ 150 GeV.
In Fig. 4 we show the Higgs boson transverse momen-

tum distribution in the reaction pp ! H + j, for three
consecutive orders of perturbation theory. We require
that there is a jet in the final state with a transverse mo-
mentum higher than p

?,j > 30 GeV. Note that the two
bins closest to the boundary p

?,H = 30 GeV have been
combined to avoid the well-known Sudakov-shoulder ef-
fect [43]. Away from that region, the NNLO QCD radia-
tive corrections increase the NLO cross-section by about
20%, slowly decreasing as p

?,H increases.
In conclusion, we have presented a calculation of the

NNLO QCD corrections to the production of the Higgs
boson in association with a jet at the LHC. This is the
first complete computation of NNLO QCD corrections to
a Higgs production process with a jet in the final state. It
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Figure 4: Higgs boson transverse momentum distribution in
pp ! H+j at 8 TeV LHC. The jet is defined with the anti-k

?

algorithm with �R = 0.5 and the cut on the jet transverse
momentum of 30 GeV. Further details are explained in the
text.

shows that techniques for performing NNLO QCD com-
putations, that were in the development phase for several
years, can indeed be used to provide precise predictions
for complex process at hadron colliders. The total cross
section for H+jet production receives moderate NNLO
QCD corrections. For jets defined with the anti-k

?

algo-
rithm with p

?,j > 30 GeV, we find NNLO QCD correc-
tions of the order of 20% for µ = mH . These moderate
corrections are the result of the smaller corrections for
the qg channel w.r.t the gg one, and a suppression of the
gg channel due to qq̄ final states not considered in previ-
ous analyses [9, 10]. Beyond the total cross section, our
computation will have important implications for many
processes that are used to study properties of the Higgs
boson, including W+W� and �� final states, primarily
through improved modelling of the Higgs transverse mo-
mentum and rapidity distributions. In particular, since
the complete N3LO computation of the Higgs boson pro-
duction cross section is available, a consistent computa-
tion of the H +0 jets, H +1 jet, H +2 jet and H +3 jet
exclusive processes becomes possible for the first time.
Furthermore, since the Higgs boson is a spin-zero parti-
cle, our computation can be easily extended to include
Higgs boson decays, to enable theoretical predictions for
fiducial cross sections and kinematic distributions for the
particles that are observed in detectors. Once this is
done, our calculation will provide a powerful tool that
will help to understand detailed properties of the Higgs
boson at the LHC.

We thank T. Becher, J. Campbell, T. Gehrmann and
M. Jaquier for helpful communications. We are grate-
ful to S. Badger for making his results for tree-level
amplitudes available to us. F. C. would like to thank
the Institute for Theoretical Particle Physics of KIT and
the Physics and Astronomy Department of Northwestern
University for hospitality at various stages of this project.
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computation will have important implications for many
processes that are used to study properties of the Higgs
boson, including W+W� and �� final states, primarily
through improved modelling of the Higgs transverse mo-
mentum and rapidity distributions. In particular, since
the complete N3LO computation of the Higgs boson pro-
duction cross section is available, a consistent computa-
tion of the H +0 jets, H +1 jet, H +2 jet and H +3 jet
exclusive processes becomes possible for the first time.
Furthermore, since the Higgs boson is a spin-zero parti-
cle, our computation can be easily extended to include
Higgs boson decays, to enable theoretical predictions for
fiducial cross sections and kinematic distributions for the
particles that are observed in detectors. Once this is
done, our calculation will provide a powerful tool that
will help to understand detailed properties of the Higgs
boson at the LHC.

We thank T. Becher, J. Campbell, T. Gehrmann and
M. Jaquier for helpful communications. We are grate-
ful to S. Badger for making his results for tree-level
amplitudes available to us. F. C. would like to thank
the Institute for Theoretical Particle Physics of KIT and
the Physics and Astronomy Department of Northwestern
University for hospitality at various stages of this project.

Boughezal, Caola, Melnikov, 
Petriello, Schulze (2015)

pjet
T � pcut

T

pcut
T [GeV] pH

T [GeV]

pjet
T � 30 GeV

4

Figure 3: The transverse momentum of the leading jet at LO,
NLO, and NNLO in the strong coupling constant. The lower
inset shows the ratios of NLO over LO cross sections, and
NNLO over NLO cross sections. Both shaded regions in the
upper panel and the lower inset indicate the scale-variation
errors.

Figure 4: The transverse momentum of the Higgs boson at
LO, NLO, and NNLO in the strong coupling constant. The
lower inset shows the ratios of NLO over LO cross sections,
and NNLO over NLO cross sections. Both shaded regions
in the upper panel and the lower inset indicate the scale-
variation errors.

CONCLUSIONS

We have presented in this manuscript a complete cal-
culation of Higgs production in association with a jet
through NNLO in perturbative QCD. Our computation
uses the recently proposed method of jettiness subtrac-
tion, a general technique for obtaining higher-order cor-
rections to processes containing final-state jets. We con-
firm and extend a recent calculation of the dominant

gg and qg partonic channels through NNLO [11], and
present additional phenomenological results for 8 TeV
LHC collisions. We also present several distributions for
the Higgs and the leading jet that can be measured with
LHC data. Our results indicate that the perturbative se-
ries is under good control after the inclusion of the NNLO
corrections. We look forward to the comparison of our
theoretical prediction with the upcoming data from Run
II of the LHC.

ACKNOWLEDGEMENTS

R. B. is supported by the DOE contract DE-AC02-
06CH11357. C. F. is supported by the DOE grant DE-
FG02-91ER40684. W. G. is supported by the DOE con-
tract DE-AC02-07CH11359. X. L. is supported by the
DOE. F. P. is supported by the DOE grants DE-FG02-
91ER40684 and DE-AC02-06CH11357. This research
used resources of the National Energy Research Scien-
tific Computing Center, a DOE O�ce of Science User
Facility supported by the O�ce of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

⇤ Electronic address:rboughezal@anl.gov
† Electronic address:christfried.focke@northwestern.edu
‡ Electronic address:giele@fnal.gov
§ Electronic address:xhliu@umd.edu
¶ Electronic address:f-petriello@northwestern.edu

[1] For recent studies of the Higgs couplings to various
states, see ATLAS-CONF-2015-007; V. Khachatryan et
al. [CMS Collaboration], arXiv:1412.8662 [hep-ex].

[2] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88,
201801 (2002) [hep-ph/0201206].

[3] C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220
(2002) [hep-ph/0207004].

[4] V. Ravindran, J. Smith and W. L. van Neerven, Nucl.
Phys. B 665, 325 (2003) [hep-ph/0302135].

[5] S. Catani, D. de Florian, M. Grazzini and P. Nason,
JHEP 0307, 028 (2003) [hep-ph/0306211].

[6] S. Moch and A. Vogt, Phys. Lett. B 631, 48 (2005) [hep-
ph/0508265].

[7] V. Ahrens, T. Becher, M. Neubert and L. L. Yang, Eur.
Phys. J. C 62, 333 (2009) [arXiv:0809.4283 [hep-ph]].

[8] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and
B. Mistlberger, arXiv:1503.06056 [hep-ph].

[9] M. Bonvini, R. D. Ball, S. Forte, S. Marzani and G. Ri-
dolfi, J. Phys. G 41, 095002 (2014) [arXiv:1404.3204
[hep-ph]].

[10] R. Boughezal, X. Liu, F. Petriello, F. J. Tackmann and
J. R. Walsh, Phys. Rev. D 89, no. 7, 074044 (2014)
[arXiv:1312.4535 [hep-ph]].

[11] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and
M. Schulze, JHEP 1306, 072 (2013) [arXiv:1302.6216
[hep-ph]].

Boughezal, Caola, Melnikov, 
Petriello, Schulze (2015)

Sector Decomp.

N-Jettiness Subtractions

pH
T [GeV]

pjet
T � 30 GeV Boughezal, Focke, Giele, 

Liu, Petriello (2015)



Earlier Results at NNLO

Chen, Cruz-Martinez, Gehrmann, Glover,  Jaquier (2016)
Antenna Subtractions (NNLOJET)
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Figure 4. Transverse momentum and rapidity distributions of the leading jet produced in associ-
ation with a Higgs boson compared to ATLAS data [2]. Upper panels are absolute cross sections,
lower panels normalized to �H .

total fiducial cross section, which is inclusive in the number of jets. Besides the absolute

distributions, we therefore also considered distributions normalized to the total fiducial

cross section. In these, uncertainties related to the overall luminosity and the reconstruc-

tion e�ciency largely cancel out, such that normalized distributions are often measured

more reliably. We observe the theory uncertainty on the distributions to increase after

normalization, which is a direct consequence of considering independent scale variations

on numerator and denominator. For this reason, they appear to be less well suited for

precision phenomenology than the absolute measurements.

– 12 –
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Earlier Result at N3LL+NNLO
Bizon, Monni, Re, Rottoli, Torrielli (2017)   [using MC integrations with ARES type method]

Note: Resummation uncertainties use variation 
       by factor of 3/2 here (not a factor of 2)
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Figure 2. Comparison between two different prescriptions for the resummation-scale-variation range, as
described in the text. The comparison is shown both at the resummation level (left) and with a matching
to NLO (right).

of the N3LL correction on the central value of the distribution is about 10 � 15% for pt < 40GeV
and it is partly driven by the O(↵2

s) coefficient functions and virtual corrections to the form factor
that are not included in the NNLL result. The inclusion of the N3LL corrections also leads to a
reduction in the scale uncertainty of the resummed prediction compared to the NNLL result.12
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Figure 3. Left: comparison between the resummed distributions at N3LL and NNLL; the lower panel
shows the ratio of the two distributions. Right: comparison between the matched N3LL+NLO and the
NNLL+NLO predictions for the inclusive Higgs spectrum; the lower panel shows the ratio of each distribu-
tion to its central value.

The right plot of Figure 3 shows the matching of the NNLL and N3LL predictions to NLO. We
observe that at the matched level, the N3LL corrections amount to ⇠ 10% around the peak of the
spectrum, and they get slightly larger for smaller pt values (. 10GeV). A substantial reduction of
the total scale uncertainty is observed for pt . 10GeV.

12An identical reduction in size is observed when varying Q by a factor of two around its central value.
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We notice that, at the matched level, the impact of the N3LL corrections is reduced with
respect to the sole resummation shown in the left plot of Figure 3. This is to a good extent
due to the matching scheme that we chose here. Indeed, in a multiplicative scheme we include the
O(↵2

s) constant terms already at NNLL, although they are formally of higher-order accuracy. While
these terms enter at N3LL, they are numerically sizeable and therefore their inclusion reduces the
difference between the N3LL+NLO and the NNLL+NLO predictions.

To conclude this section, in Figure 4 we report the N3LL+NNLO prediction for the normalised
distribution. The latter is compared both to NNLL+NNLO and to the pure NNLO result. When
matched to NNLO, the N3LL corrections give rise to a few-percent shift of the central value with
respect to the NNLL+NNLO prediction around the peak of the distributions, while they have
a somewhat larger effect for pt . 10GeV. We recall that some of the N3LL effects are already
included in the NNLL+NNLO prediction by means of the multiplicative matching scheme that
we adopt here. As a consequence, this reduces the difference between the N3LL+NNLO and the
NNLL+NNLO curves. We also observe that the matched N3LL and NNLL predictions are only
moderately different in their theoretical-uncertainty bands. While this is of course expected in the
hard region of the spectrum, we point out that, in the region pt . 30GeV, the latter feature is due
(and increasingly so at smaller pt) to numerical instabilities of the fixed-order runs with one of the
scales (µR or µF ) set to mH/2. As we already observed at NLO, it is indeed necessary to have
stable fixed-order predictions for pt < 10GeV in order to benefit from the uncertainty reduction
due to the higher-order resummation. We leave this for future work.
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Figure 4. Comparison among the matched normalised distributions at N3LL+NNLO, NNLL+NNLO, and
NNLO. The uncertainties are obtained as described in the text.

5 Conclusions

In this article we presented a formulation of the momentum-space resummation for global, recursive
infrared and collinear safe observables that vanish far from the Sudakov limit because of kinematic
cancellations implicit in the observable’s defintion. In particular, we studied the class of inclusive
observables that do not depend on the rapidity of the QCD radiation. Members of this class are,
among others, the transverse momentum of a heavy colour singlet and the �⇤ observable in Drell-
Yan pair production. We obtained an all-order formula that is valid for all observables belonging
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we adopt here. As a consequence, this reduces the difference between the N3LL+NNLO and the
NNLL+NNLO curves. We also observe that the matched N3LL and NNLL predictions are only
moderately different in their theoretical-uncertainty bands. While this is of course expected in the
hard region of the spectrum, we point out that, in the region pt . 30GeV, the latter feature is due
(and increasingly so at smaller pt) to numerical instabilities of the fixed-order runs with one of the
scales (µR or µF ) set to mH/2. As we already observed at NLO, it is indeed necessary to have
stable fixed-order predictions for pt < 10GeV in order to benefit from the uncertainty reduction
due to the higher-order resummation. We leave this for future work.
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Figure 4. Comparison among the matched normalised distributions at N3LL+NNLO, NNLL+NNLO, and
NNLO. The uncertainties are obtained as described in the text.

5 Conclusions

In this article we presented a formulation of the momentum-space resummation for global, recursive
infrared and collinear safe observables that vanish far from the Sudakov limit because of kinematic
cancellations implicit in the observable’s defintion. In particular, we studied the class of inclusive
observables that do not depend on the rapidity of the QCD radiation. Members of this class are,
among others, the transverse momentum of a heavy colour singlet and the �⇤ observable in Drell-
Yan pair production. We obtained an all-order formula that is valid for all observables belonging

– 39 –

with NNLO from sector decomp. 

pH
T [GeV]



5

Our Results

Chen, Gehrmann, Glover, Huss, 
Li, Neill, Schulze, IS, Zhu  

(arXiv:1805.00736)



3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

10 10 10

-6
-4
-2
0
2
4

100 101 102

N
on
-S
in
gu
la
r[
pb
]

-100

-50

0

50

100

g g→ H + ≥ 0 jet
p T
dσ

f,s
/d
p T

[p
b]

60

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

10 10 10

-3

-2

-1

0

1

100 101 102

N
on
-S
in
gu
la
r[
pb
]

-40

-20

0

20

40

60

q g→ H + ≥ 0 jet

p T
dσ

f,s
/d
p T

[p
b]

6

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

pT > 0.7 GeV
PDF4LHC15
µR=µF=1/2⋅mH

√s = 13 TeV
mH=125 GeV

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

pT > 0.7 GeV
PDF4LHC15
µR=µF=1/2⋅mH

√s = 13 TeV
mH=125 GeV

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

LO FO
LO SCET

NLO only FO
NLO only SCET

NNLO only FO
NNLO only SCET

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

NNLO Fixed Order
vs

Singular SCET

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162

mH = 125 GeV and mt = 173.2 GeV. The central163

values for the factorization and renormalization scales164

are choosen as µF = µR = mH/2, with the theory165

error from fixed order calculations estimated from the166

envelope of a three-point variation between mH/4 and167

mH .168

Figure 1 compares the fixed-order contributions at LO,169

NLO and NNLO for the transverse momentum spec-170

trum where the curve labeled as the SCET prediction171

is pT d�s/dpT at the corresponding order. For better vis-172

ibility, the distributions are multiplied by pT , and each173

higher order contribution is displayed separately, instead174

of being added to the previous orders. The bottom pan-175

els show the di↵erence of the two curves, i.e. the non-176

10
pT[GeV]

FIG. 1. Comparison of the transverse momentum spec-
trum between fixed-order perturbation theory (FO) and sin-
gular terms from the expansion of the resummed prediction
(SCET), using the sum of all partonic channels (pp) or with
individual partonic channels (gg, qg, qq). In individual chan-
nels, q denotes the sum of quark and anti-quark of all flavors.

singular parts pT d�
n/dpT ⇠ O(p2T ), to further eluci-177

date the low-pT behaviour between the two predictions.178

The top frame shows that the small pT behaviour of179

the fixed-order spectrum is in excellent agreement with180

the predicted singular terms in Eq. (10). This agree-181

ment is further substantiated in the lower three frames,182

where individual parton-level initial states are compared183

3

described in [19], where the transverse momentum distri-131

bution was computed to NNLO for large pT . Extending132

the lower bound on pT towards smaller values becomes133

increasingly challenging due to the large dynamical range134

probed in the phase-space integration and the associ-135

ated numerical instabilities. We adapted the NNLOJET136

code to cope with this task and further split the inte-137

gration region into several intervals in pT and applied138

dedicated reweighting factors in each region. With these139

optimizations, fixed-order predictions are obtained down140

to pT = 0.7 GeV, both for a linear binning of 1 GeV141

width and a logarithmic spacing of ten bins per e-fold.142

At small transverse momentum pT with respect to the143

Higgs mass mH , the cross-section can be split into a sin-144

gular (s) and non-singular (n) piece:145

d�f

dp2T
=

d�s

dp2T
+

d�n

dp2T
(9)

with146

d�s

dp2T
=

�0

p2T

1X

i=1

⇣↵s

⇡

⌘i 2i�1X

j=0

ci,j ln
j p2T
m2

H

, (10)

d�n

dp2T
= O �

(pT /mH)0
�
. (11)

The coe�cients ci,j are obtained analytically (up to the147

integrals over the PDFs) by setting the evolution factors148

Uh and Us to unity in Eq. (3), and evaluating the hard149

function, soft function, and beam function at common150

scales µi = µF = µR and ⌫s = ⌫B . To compare these151

singular terms with the full fixed order prediction, we152

integrate Eq. (10) over the same binnings that were used153

in the numerical evaluation in Eq. (8). Obtaining terms154

up to the single logarithms in Eq. (10) requires using:155

NLL at LO, NNLL at NLO and N3LL at NNLO.156

For the numerical results, we use the157

PDF4LHC15NNLO mc PDFs [62] from the LHAPDF158

library [63] with its central value of ↵s(mZ) = 0.118.159

The center of mass energy of pp collisions is set to160

13 TeV. The mass of the Higgs boson and top quark161

(dependence in the Wilson coe�cient) are set to be162
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and antiquarks of all light flavours). We point out that185

the (numerically subdominant) qq channel turns out to186

be the numerically most challenging, since contributions187

from valence-valence scattering favor events with higher188

parton-parton center-of-mass energy than in any of the189

other channels. The excellent agreement between fixed-190

order perturbation theory and SCET-predictions for the191

singular terms serves as a very strong mutual cross check192

of both approaches. It demonstrates that our calculation193

of the non-singular terms is reliable over a broad range in194

pT , thereby enabling a consistent matching of the NNLO195

and N3LL predictions.196197

Matching and results.— For a reliable description of
the transverse-momentum spectrum, the resummation of
large logarithms in d�s/dp2T has to be turned o↵ at large
pT . This can be seen clearly from Fig. 2, which depicts
the full fixed-order spectrum, the singular distribution
only, and the non-singular distribution, all through to
NNLO. At pT ⌧ 50 GeV, the singular distribution dom-
inates the fixed-order cross section, and the resummation
of higher order logarithms is necessary. Around 50 GeV,
the singular and non-singular distribution become com-
parable, and resummation has to be turned o↵. There
are several di↵erent prescriptions on how to turn o↵ the
resummation [11, 15, 22, 64–68]. In this letter, we fol-
low Ref. [15] by introducing b and pT dependent profile
functions, defining

⇢(b, pT ) = ⇢l

h
1� tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i

+ ⇢r

h
1 + tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i
, (12)

where ⇢(b, pT ) is used for µs = µs(b, pT ) = µB , ⌫s =198

⌫s(b, pT ), and µh = µh(pT ), which appear in Eq. (3).199

⇢l is the initial scale for each profile, taken to be the200

canonical scales in Eq. (7) so that at small pT the large201

FIG. 3. The Higgs-boson transverse momentum distribution
matched between FO and SCET. Dashed lines indicate cen-
tral scales of mH/2 and matching profile centered at 30 GeV.
The theoretical uncertainties are estimated by taking the en-
velope of all scale and profile variations (see text). Ratio
plots in the lower panel presents the scale and profile varia-
tion with respect to the central result for NLO+NNLL (green
dash line).

logarithms are resummed. ⇢r is the final scale for each202

profile, which is chosen to be µh = µB = µs = µF = µR,203

while for ⌫s it is mH . The parameters s and t govern204

the rate of transition between the fixed order result and205

the resummation, and also the precise transverse momen-206

tum t where this transition occurs. In our calculation, we207

choose s = 1, and t = 20, 25, 30, 35, 40 GeV to estimate208

the uncertainties from di↵erent profiles. The uncertain-209

ties for the final resummed + fixed-order prediction are210

estimated by factor of 2 variations of i) ⇢r for µh about211

mH and 2µF = 2µR about mH (varied simultaneously),212

and ii) the two ⇢ls for µB = µs and ⌫s about b0/b (var-213

ied independently). We always fix ⌫B = mH . We take214

the envelope of the resulting 55 curves as the uncertainty215

band at each order. Further uncertainties in our cal-216

culation include the missing four-loop cusp anomalous217

dimension and the treatment of non-perturbative correc-218

tions at large b. They are estimated to be negligible219

compared with the aforementioned scale uncertainties.220

Additional independent uncertainties related to the par-221

ton distributions and value of ↵s(mZ) should be included222

for a detailed phenomenological study.223

The final matched transverse momentum spectrum is224

shown in Fig. 3. We plot the distributions at LO+NLL,225

NLO+NNLL, and NNLO+N3LL. We also plot the un-226

matched NNLO distribution. At small transverse mo-227

mentum, the fixed order distribution displays unphysical228

behavior, due to the presence of large logarithms. We see229

that the matched distribution smoothly merges into the230

fixed order cross-section around 40 GeV, and that the231
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NNLO. Here d�n/dpT ⇠ O(pT ).
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choose s = 1, and t = 20, 25, 30, 35, 40 GeV to estimate208

the uncertainties from di↵erent profiles. The uncertain-209

ties for the final resummed + fixed-order prediction are210

estimated by factor of 2 variations of i) ⇢r for µh about211

mH and 2µF = 2µR about mH (varied simultaneously),212

and ii) the two ⇢ls for µB = µs and ⌫s about b0/b (var-213

ied independently). We always fix ⌫B = mH . We take214

the envelope of the resulting 55 curves as the uncertainty215

band at each order. Further uncertainties in our cal-216

culation include the missing four-loop cusp anomalous217

dimension and the treatment of non-perturbative correc-218

tions at large b. They are estimated to be negligible219

compared with the aforementioned scale uncertainties.220

Additional independent uncertainties related to the par-221

ton distributions and value of ↵s(mZ) should be included222

for a detailed phenomenological study.223

The final matched transverse momentum spectrum is224

shown in Fig. 3. We plot the distributions at LO+NLL,225

NLO+NNLL, and NNLO+N3LL. We also plot the un-226

matched NNLO distribution. At small transverse mo-227

mentum, the fixed order distribution displays unphysical228

behavior, due to the presence of large logarithms. We see229

that the matched distribution smoothly merges into the230

fixed order cross-section around 40 GeV, and that the231

Chen, Gehrmann, Glover, Huss,
Li, Neill, Schulze, IS, Zhu (2018) 



10

The End



11

Backup



Soft Function Relations

b+ = b� = ib0⌧ b0 = 2e��E

identical to 

Two-loop result 
Y. Li, Mantry, Petriello (2011) 

Rapidity regulated TMD S

S(b�, µ, �)
Threshold Soft Function 

� =
1
�
� 0

Fully Differential S

b� � 0
singular
=regulator

Sthr(�, µ)

smooth

O

|~b?|

ib0
⌫

t

z

S(�b�, �, µ) =
1
C

�

Xs

tr�0|T{S†
n̄(0)Sn(0)} exp

�
� P0b0� � i�b� · �P�

�
|Xs��Xs|T̄{S†

n(0)Sn̄(0)}|0�

SF.D.(b+b�,�b�, µ)

ren



Same for Beam Function
Rapidity regulated TMD B

� =
1
�
� 0

Fully Differential B

singular
=regulator

b⊥

ib0
ν

t

z

q

q
x+

Bq/N (x,Q,�b�, µ, �)

& ren
0-bin

Bq/N (z,Q,�b, µ, �) =
�

dx+eizp�x+/2
�
p
���(�̄nWn)

�
x+ +

ib0

�
,
ib0

�
,�b�

� n̄/

2
· · · (W †

n�n)(0)
���p

�


