α_s from non-strange hadronic au decays

SANTI PERIS (UAB + IFAE-BIST)

Vienna, March 6, 2018

$$\delta \alpha_s(M_Z) \simeq \left(\frac{\alpha_s(M_Z)}{\alpha_s(m_\tau)}\right)^2 \quad \delta \alpha(m_\tau)$$

Papers

- O. Cata, M. Golterman and S. Peris, JHEP 0508, 076 (2005)

- O. Cata, M. Golterman and S. Peris, Phys. Rev. D77, 093006 (2008)

-O. Cata, M. Golterman and S. Peris, Phys. Rev. D79, 053002 (2009).

- D. Boito, O. Cata, M. Golterman, M. Jamin, K. Maltman, J. Osborne and S. Peris, Phys. Rev. **D84**, 113006 (2011)

- D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne and S. Peris, Phys. Rev. **D85**, 093015 (2012)

- D. Boito, M. Golterman, K. Maltman, J. Osborne and S. Peris, Phys. Rev. **D91**, no. 3, 034003 (2015)

- S. Peris, D. Boito, M. Golterman and K. Maltman, Mod. Phys. Lett. **A31**, no. 30, 1630031 (2016)

- D. Boito, M. Golterman, K. Maltman and S. Peris, Phys. Rev. D95, no. 3, 034024 (2017)

- D. Boito, I. Caprini, M. Golterman, K. Maltman and S. Peris, arXiv:1711.10316 [hep-ph], to appear in Phys. Rev. **D**.

QCD in τ decay

$$w_T(s;s_0) = \left(1 + 2\frac{s}{s_0}\right) \left(1 - \frac{s}{s_0}\right)^2$$

doubly pinched

$$w_L(s;s_0) = 2\left(\frac{s}{s_0}\right) \left(1 - \frac{s}{s_0}\right)^2$$

doubly pinched

$$s_0 = m_ au^2$$
 $ho_{V,A} = rac{1}{\pi} \mathrm{Im} \Pi_{V,A}$

$$\frac{\Gamma(\tau \to \nu_{\tau} \mathbf{H}_{ud}(\gamma))}{\Gamma[\tau \to \nu_{\tau} e\bar{\nu}_{e}(\gamma)]} = 12\pi^{2} |V_{ud}|^{2} S_{EW} \int_{0}^{s_{0}} \frac{ds}{s_{0}} \left[w_{T}(s;s_{0})\rho_{V+A}^{(1+0)}(s) - w_{L}(s;s_{0})\rho_{A}^{(0)}(s) \right]$$

Since 2014: New correlation matrices.

Boito et al. '11 Davier et al. '14

-Create pseudo-data:

t < 2014 Aleph correlations underestimated.

Theoretical Foundations (I)

 $\bigstar \Pi_{DV} \to 0 \Longleftrightarrow \Pi_{OPE} \to \Pi.$

(Cata-Golterman-S.P. '05)

However,

• $\Pi_{\rm OPE}$ expected asymptotic : $\Pi_{DV}(z) \to 0, \ z \to \infty.$

• OPE no good on the Minkowski axis (spect. fnct. shows oscillations)

 \implies use polynomial $w_n(s_0) = 0$ (\equiv "pinching")

Main Theoretical Message:

(Maltman-Yavin '08, Boito et al. '11)

No free lunch: with pinching one has a **price to pay**:

It is not possible to simultaneously suppress DVs and condensates.

★ "Seesaw" mechanism at work:

Theoretical Foundations (II)

• Need a better control of systematic error

 \Rightarrow need **quantitative** knowledge of DVs.

• $\Pi_{DV}(s) \to 0$, as $s \to \infty$. Then:

Theoretical Foundations (III)

Cata, Golterman, S.P. '05, '08

★ A phenomenological educated guess: (See Regge/Asymptotic Theory theoretical discussion later on...)

-For *s* large enough:

independently for V and A (i.e. 8 DV parameters in total).

• Assuming no DVs \equiv assuming $e^{-\delta} = 0$ (unlike data, which is not flat).

Pert. Theory: CIPT vs. FOPT Caprini-Fischer '09; Menke '09; Descotes-Malaescu '09; Cvetic '10,...

★Partial integration:
$$\oint dz \, w_n(z) \Pi(z) = \oint dz \, \widetilde{w}_n(z) \left(-z \frac{d}{dz} \Pi(z) \right)$$

★ $D(z) = \frac{1}{4\pi^2} \sum_{n,k} c_{n,k} \frac{\alpha_s(\mu)^n \log^k \left(-z/\mu^2 \right)}{\log^k \left(-z/\mu^2 \right)}$ Adler's $D(z)$

★ Since $z = s_0 e^{i\phi}$, two (extreme) choices:

• <u>CIPT</u>: $\mu^2 = -z$. Good <u>*if*</u> Adler function series stops at finite order. LeDiberder-Pich '92, Pivovarov '92

• <u>FOPT</u>: $\mu^2 = s_0$. Good <u>if</u> Adler function series grows factorially (renormalons). Beneke-Jamin '08

For many years thought to be the dominant source of error...

A Change of Strategy (I)

Old Strategy: (LeDiberder-Pich '92)

Use 5 pinched weights

 $w_{kl}(y) = (1-y)^2 (1+2y)(1-y)^k y^l \quad , \quad y = s/s_0, \quad s_0 = m_\tau^2 (\underline{\text{only}})$ with $(k,l) = \{(0,0), (1,0), (1,1), (1,2), (1,3)\}.$

- Fit to extract 4 param. : α_s and $C_{D=4,6,8}$.
- Assume (unknown) OPE condensates $C_{D=10,12,14,16} = 0$. (~ OPE convergent)
- Assume (unknown) Duality Violations =0.
- May use V and A, but assume V + A more reliable.

(Davier et al. '14)

$$\begin{array}{ll} \langle \frac{\alpha_s}{\pi} GG \rangle &=& (-0.5 \pm 0.3) \times 10^{-2} \ \mathrm{GeV}^4 \ , \qquad \chi^2 = 0.43, \ p = 51\% \qquad V \ , \\ && (-3.4 \pm 0.4) \times 10^{-2} \ \mathrm{GeV}^4 \ , \qquad \chi^2 = 3.4, \ p = 7\% \qquad A \ , \\ && (-2.0 \pm 0.3) \times 10^{-2} \ \mathrm{GeV}^4 \ , \qquad \chi^2 = 1.1, \ p = 29\% \qquad V + A \ . \end{array}$$

Check Weinberg sum rules.

A Change of Strategy (II)

New Strategy (Boito et al. '11 and '12):

- Do not use w(y) with a term linear in y. (Beneke et al. '13)
- Do not assume any condensate is zero. (Let the data speak.)
- Do not assume that Duality Violations are zero. (Let the data speak.) For $s \ge s_{min}$ (Regge/asymp. series assumption; see later on):

$$\rho_{DV}^{V,A}(s) = e^{-\delta_{V,A} - \gamma_{V,A}s} \sin\left(\alpha_{V,A} + \beta_{V,A}s\right)$$

c.f. old strategy model assumption: $e^{-\delta_{V,A}} = 0$.

• Fit to $\alpha_s, C_{D=6,8}$ and DV parameters with 3 weights:

$$w_0 = 1, w_2 = 1 - y^2$$
 and $w_3 = (1 - y)^2 (1 + 2y)$

Use all data for $s_0 \ge s_{min}$, (s_{min} to be determined by the fit as well).

- Use V and A. Check spectral functions.
- Check Weinberg sum rules.

We did lots of other fits as well...

Fits :

- V channel, $w_0 = 1$.
- V and A channels, $w_0 = 1$.
- V channel, $w_0 = 1$ and $w_2 = 1 y^2$.
- V and A channels, $w_0 = 1$ and $w_2 = 1 y^2$.
- V channel, $w_0 = 1, w_2 = 1 y^2$ and $w_3 = (1 y)^2(1 + 2y)$.
- V and A channels, $w_0 = 1, w_2 = 1 y^2$ and $w_3 = (1 y)^2 (1 + 2y)$.

Consistent results in all cases.

Example: Fit to $w_0 = 1$, V channel (I).

 $s_{min} = 1.55 \text{ GeV}^2$, $\chi^2/dof = 24.5/16$ (p = 8%) (This is FOPT, CIPT similar)

Example: Fit to $w_0 = 1$, V channel (II).

Tests: w₁₁, w₁₂, w₁₃

Looking only at $s = m_{\tau}^2$ potentially misleading. (Maltman-Yavin '08).

(Davier et al. '14)

Tests: w₁₁, w₁₂, w₁₃

D > 8 condensates vital !

Classic Tests

Results

Aleph:

(FOPT) $\alpha_s(m_\tau) = 0.296 \pm 0.010 \longrightarrow \alpha_s(m_Z) = 0.1155 \pm 0.0014$

(CIPT) $\alpha_s(m_\tau) = 0.310 \pm 0.014 \longrightarrow \alpha_s(m_Z) = 0.1174 \pm 0.0019$

• N.B. "Old Strategy" produces a shift, i.e.

 $\alpha_s(m_{ au}) \sim +0.03$ higher, (and \sim half errors) (Davier et al. '14)

• Using **Aleph + Opal** data, we get:

 $\alpha_s(m_Z) = 0.1165 \pm 0.0012 \text{ (FOPT)}$ $\alpha_s(m_Z) = 0.1185 \pm 0.0015 \text{ (CIPT)}$

(Current PDG 2017 world average: $\alpha_s(m_Z) = 0.1181 \pm 0.0011$)

α_s Overview

Pich and Rodriguez-Sanchez '16

• New reanalysis with the Old Strategy \Rightarrow same conclusions (not a surprise).

(and same s_0 dependence problems)

All criticisms have been addressed in Boito et al. Phys. Rev. D95 (2017) 034024.

Question of Principle:

If modeling DVs is useful for determining condensates in V - A

(as, e.g., in Glez-Alonso, Pich, Rguez-Sanchez '15,'16)

why wouldn't it be useful for α_s in V + A as well ?

Towards a Theory of DVs ? (I)

Boito, Caprini, Golterman, Maltman, SP '17

-A theory of DVs requires NP input.

-Let's start with (exact !) Disp. Rel. of Adler's function ($q^2 < 0$, Euclidean):

$$\mathcal{A}(q^2) = -q^2 \int_0^\infty d\sigma \, \mathrm{e}^{\sigma q^2} \, \sigma \mathcal{B}(\sigma) \quad , \quad \mathcal{B}(\sigma) = \int_0^\infty dt \, \rho(t) \, \mathrm{e}^{-\sigma t} \, \mathrm{d} t \, \rho(t) \, \mathrm{e}^{-\sigma t} \, \mathrm{e}^{-\sigma t}$$

 $\sigma q^2 = (\sigma > 0, q^2 < 0) = (\sigma < 0, q^2 > 0), \text{ i.e. rotate } \sigma \Leftrightarrow q^2 \text{ analytic continuation.}$

Towards a Theory of DVs ? (II)

Towards a Theory of DVs ? (III)

• Asymptotic Regge-like spectrum ($\Lambda_{QCD} = 1$, Regge slope) for $N_c = \infty$ in chiral limit: -Masses

$$M^{2}(n) = n + b \log n + c + \mathcal{O}\left(\frac{1}{(\log n)^{\nu_{1}}}, \frac{1}{n^{\lambda_{1}}(\log n)^{\nu_{2}}}\right) \quad , \quad n \gg 1 \; .$$

-Decay constants

$$F(n) = 1 + \mathcal{O}\left(\frac{1}{(\log n)^{\nu_3}}, \frac{1}{n^{\lambda_2}(\log n)^{\nu_4}}\right) \quad , \quad n \gg 1 \; .$$

• When $N_c = 3$ (d = 2 QCD, strings, phenomenology):

Blok et al. '98; Shifman et al. '08; Masjuan et al. '12 $\varphi_{N_c} = -\frac{\Gamma}{M} \sim -\frac{a}{N_c} + \dots$

we have a branch point in σ plane at

$$\sigma_0 = 2\pi e^{i\Phi_0} + \dots , \quad \Phi_0 = \frac{a}{N_c} + \frac{\pi}{2} + \dots$$

producing (Re $q^2 > 0$, Im $q^2 > 0$) $\Pi_{DV}(q^2) \sim e^{-2\pi q^2 \frac{a}{N_c}} e^{i2\pi \left(q^2 - c - b\log q^2\right)} \left(1 + \mathcal{O}\left(\frac{1}{N_c}; \frac{1}{q^2}; \frac{1}{\log q_{\alpha_s}^2}\right)\right)$ Boito et al. '17
Boito et al. '17

Towards a Theory of DVs ? (IV)

Agreement DVs in tau decay \Leftrightarrow Regge spectrum.

Fits of meson spectrum to radial trajectories:

Anisovich et al. '00; Klempt et al. '12; Masjuan et al. '12;

$$\Lambda^2 = 1.35(4) \text{ GeV}^2 \quad , \quad \frac{\Gamma}{M} = 0.12(8) \simeq \frac{a}{N_c}$$

leading to

$$\beta_V = \frac{2\pi}{\Lambda^2} = 4.7(2) \text{ GeV}^2 \quad , \quad \gamma_V = \frac{2\pi}{\Lambda^2} \frac{a}{N_c} = 0.6(4) \text{GeV}^{-2}$$

to be compared with results from fits to τ decay:

$$\beta_V = 4.2(5) \text{ GeV}^2$$
 , $\gamma_V = 0.7(3) \text{ GeV}^{-2}$

coincidence ?,... Notice the 2π .

Conclusions and Outlook

• DVs are clearly visible in the data.

(DVs are not a question of principle, they exist in practice.)

• Pinching does not allow a simultaneous reduction of DVs **and** higher-dim condensates

(unlike what has been assumed so far in the "Old Strategy" Method).

This introduced an unquantified systematic error.

Conclusions and Outlook (II)

• The new strategy using DV's passes all known tests, experimental and theoretical, performing better than the "Old Strategy".

• New theoretical framework to analyze DVs, based on analytical properties in the Borel-Laplace variable σ .

So far, analytic result for Π_{DV} based on asymptotic Regge espectrum. We think that this result is general, though (at least in the chiral limit).

Generalization to heavy quarks ?

•Better data (Babar and Belle ?) would help significantly.

We are currently working on the analysis using e^+e^- data...

THANK YOU !

BACK-UP SLIDES

Spectral Functions (I)

Sometimes V + A is presented as "evidence" that DVs $\simeq 0$ at large s:

However...

Spectral Functions (II)

A closer look reveals a (partial) fortuitous cancellation for $2 \text{ GeV}^2 \lesssim s \lesssim 2.8 \text{ GeV}^2$

The V + A oscillation at $s = 3 \text{ GeV}^2$ is **larger** than at 2.5 GeV².

Comments on V + A

• DV oscillations are still present in V + A (although of a smaller size than in V and A).

• Since we have a good representation of V and A, we also have it of their sum V + A.

•Fit results show that DV's exponent in A is \ll than in V, so the reduction for $s \sim 2 - 3 \ GeV^2$ is accidental. At still larger s, the DVs in V will dominate.

•The expectation of strong cancellation of D = 6 terms in OPE in V + A is based on the vacuum saturation ansatz. However, the data shows that this ansatz is a very poor approximation.

Asymptotic vs. Convergent

Poincaré (circa 1893): discussion Geometers vs. Astronomers ⇔ Convergent vs. Divergent

$OPE + DV (N_c = \infty)$

-Asymptotic Regge behavior:

$$M^{2}(n) = n + b \log n + c + \mathcal{O}\left(\frac{1}{(\log n)^{\nu_{1}}}, \frac{1}{n^{\lambda_{1}}(\log n)^{\nu_{2}}}\right)$$
$$F(n) = 1 + \mathcal{O}\left(\frac{1}{(\log n)^{\nu_{3}}}, \frac{1}{n^{\lambda_{2}}(\log n)^{\nu_{4}}}\right)$$

produces a Dirichlet series

$$\sigma \mathcal{B}(\sigma) = \sum_{n}^{\infty} F(n) e^{-\sigma M^{2}(n)} = \underbrace{1 + \mathcal{O}\left(\log^{k_{1}} \sigma\right)}_{Pert. \ Theory} + \underbrace{\mathcal{O}\left(\sigma^{k_{2}}\log^{k_{3}} \sigma\right)}_{Power \ Corrections} + \underbrace{\mathcal{O}\left(\frac{1}{(\sigma - \hat{\sigma})^{1 + \gamma}}\right)}_{Duality \ Violations}$$

and leads to

$$\mathcal{A}(q^2) = \underbrace{1 + \mathcal{O}\left(\frac{1}{\log^{p_1}(-q^2)}\right)}_{Pert. \ Theory} + \underbrace{\mathcal{O}\left(\frac{\log^{p_2}(-q^2)}{(q^2)^{p_3}}\right)}_{Power \ Corrections} + \underbrace{\mathcal{O}\left(e^{\hat{\sigma}q^2}(-q^2)^{\gamma}\right)}_{Duality \ Violations}$$