# Long-lived particles in Par Matter searches at the LH



LUPM, Montpellier\*



Based on: arXiv:1804.02357, 1803.10379, 1606.03099, 1611.09908 and 1404.5061 With: B. Allanach, M. Badziak, M. Bauer, A. Butter, G. Cottin, A. Bharucha, F. Brümmer, J. Ellis, J. Gonzalez-Fraile, C. Hugonie, F. Luo, J. Marrouche, T. Plehn, R. Ziegler

20 June 2018; HEPHY, Vienna







# Manifold evidence for Dark Matter



$$\Omega_m h^2 = 0.1415 \pm 0.0019$$
  

$$\Omega_b h^2 = 0.02226 \pm 0.00023$$
  

$$\Omega_c h^2 = 0.1186 \pm 0.0020$$

A Dark Matter particle should be: massive, neutral, non-relativistic at present time

# **Complementarity of searches**



# Anatomy of a typical detector @ LHC



# What does a collision event look like?

- Detectable objects are photons, electrons, muons, hadrons (which form jets), and invisible neutrinos (in the form of missing momentum or MET)
- Most new particles will decay into SM particles
- We use kinematic distributions of detectable objects to define signal (i.e. new physics) and background (i.e. SM physics)





# **Prediction & Inference**

(i.e. If the LHC sees something, how well can we pinpoint the underlying theory?)

#### To be able to use LHC data for model building & testing:

- 1. Experimentalists should provide their results in a "model-independent" way (e.g. 95% observed ULs instead of exclusion curves in model parameters)
- 2. There should be a standard way of re-using experimental searches. This is called **"Recasting"**.

# **Data from experiments**



- A. Experiments provide "high-level" information,
   e.g. number of observed events with X jets + Y electrons/muons + large MET;
   signal strength in a particular channel, etc.
- B. Kinematic requirements (a.k.a cuts) are placed to discriminate new physics "signal" from Standard Model "background". Experiments provide cut flows, efficiency maps for benchmark models.
- C. Complex statistical machinery used likelihoods, MVA, Neural Nets etc. to get best **upper limits**, **signal strengths**, or **cross section measurements**.



Recast accurately reproduces kinematic effects.

+

# Simulating signal and background



- Hard Process: production & decay
- Parton showers: radiation from quarks and
- Hadronisation: formation of hadrons (baryons and mesons)
- Multi-parton interactions: more than one interacting parton from the same proton

High-scale New Physics shows up mainly in the hard process

$$\hat{\sigma} = \int d\mathcal{PS} |\mathcal{M}|^2$$

9

# **Coverage of prompt signatures**

#### Selected CMS SUSY Results\* - SMS Interpretation

ICHEP '16 - Moriond '17





# Models predicting long lived particles

Dark Matter

SUSY (i.e. Winos, Higgsinos) Coannihilation with scalars Dark Photon Higgs Portal Freeze-in

Naturalness

Hidden valleys GMSB SUSY RPV SUSY

Neutrino Masses Flavour Anomalies Sterile Neutrinos L-R models (Z' & W's)

• • •

# Charged track searches



# **Disappearing track searches**



arXiv:1712.02118

# **Displaced Vertices**



arXiv:1710.04901

# **Traditional searches fail for LLPs**



#### "Unexpected" cuts may restrict what we choose to see

ATLAS-CONF-2018-003

| LOOKING at the simplest jets + MLT search | Looking | at the | simp | lest | jets | + | MET | search |
|-------------------------------------------|---------|--------|------|------|------|---|-----|--------|
|-------------------------------------------|---------|--------|------|------|------|---|-----|--------|

| Selection GeV                                                                                                                                | RPC  | $\tau = 100 \text{ ns}$ | $\tau = 10 \text{ ns}$ | $\tau = 1 \text{ ns}$ | $\tau = 0.1 \text{ ns}$ | $\tau = 0.01 \text{ ns}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|------------------------|-----------------------|-------------------------|--------------------------|
| DxAOD skimming                                                                                                                               | 94.0 | 82.0                    | 86.0                   | 75.0                  | 77.0                    | 78.0                     |
| $\mathrm{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$ cleaning                                                                                       | 98.9 | 93.9                    | 76.7                   | 96.0                  | 100.0                   | 100.0                    |
| Cosmic muon cut                                                                                                                              | 98.9 | 98.7                    | 97.0                   | 93.1                  | 77.9                    | 78.2                     |
| Lepton veto                                                                                                                                  | 58.7 | 53.9                    | 54.7                   | 47.8                  | 43.3                    | 39.3                     |
| $N_{\rm jets} \ge 4$                                                                                                                         | 98.1 | 97.6                    | 97.1                   | 100.0                 | 100.0                   | 100.0                    |
| $\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,track}} > 30 \mathrm{~GeV}$                                                                           | 71.7 | 75.0                    | 85.3                   | 90.6                  | 88.5                    | 87.5                     |
| $N_{b-\text{jet}} \ge 1$                                                                                                                     | 92.1 | 90.0                    | 93.1                   | 89.7                  | 100.0                   | 100.0                    |
| $E_{\rm T}^{\rm miss} > 250 { m ~GeV}$                                                                                                       | 60.0 | 59.3                    | 44.4                   | 15.4                  | 12.6                    | 10.5                     |
| $\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,\mathrm{track}}} ight)\right  < 1/3\pi$ | 95.2 | 93.8                    | 91.7                   | 72.5                  | 72.4                    | 63.6                     |
| $\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} ight)\right  > 0.4$                                      | 95.0 | 93.3                    | 85.5                   | 65.5                  | 71.4                    | 71.4                     |
| $m_{\text{jet},R=1.2}^0 > 120 \text{ GeV}$                                                                                                   | 73.7 | 78.6                    | 75.5                   | 78.9                  | 86.7                    | 90.0                     |

Already approx. 50% loss before MET cuts

# Important to map all possible signatures to avoid the same mistakes!

# Moral of the story so far...

- Sophisticated machinery needed to "see" new physics and to understand what we see.
- Many searches for promptly decaying particles, not so many for long-lived ones
- •There might be unexpected, unnecessary assumptions because all our benchmarks look the same; important to have as much variety as possible to make sure we're not missing anything.

# Writing down a model for DM

Is it a Scalar? Vector? Dirac or Majorana Fermion?

Does it couple directly to some SM particle (Z, h) ? If there is a mediator, how does the mediator couple to SM? to Dark Matter?

Effective Field Theory

PRO: Simple, Easy to relate observables

CON: bad highenergy behaviour

#### **Simplified models**

Trying to get the best of both worlds

IDEA: write down the simplest field content (often a DM field + one mediator)

#### **Complete Models**

eg. SUSY, Universal Extra Dim, Little Higgs,...

PRO: Theoretically well motivated, fully calculable, extra particles

CON: Model Prejudices, complicated to understand

# List of EFT Operators

|                           | Name          | Operator                                                             | Coefficient        |
|---------------------------|---------------|----------------------------------------------------------------------|--------------------|
| S-channel Scalar mediator | D1            | $ar\chi\chiar q q$                                                   | $m_q/M_*^3$        |
|                           | D2            | $\bar{\chi}\gamma^5\chi\bar{q}q$                                     | $im_q/M_*^3$       |
|                           | D3            | $\bar{\chi}\chi\bar{q}\gamma^5 q$                                    | $im_q/M_*^3$       |
|                           | D4            | $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$                             | $m_q/M_*^3$        |
| S-channel Vector mediator | D5            | $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$                     | $1/M_{*}^{2}$      |
|                           | D6            | $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$           | $1/M_{*}^{2}$      |
|                           | $\mathrm{D7}$ | $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$           | $1/M_{*}^{2}$      |
|                           | D8            | $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$ | $1/M_{*}^{2}$      |
|                           | D9            | $\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$               | $1/M_{*}^{2}$      |
| Scalar portal             | D10           | $\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$  | $i/M_*^2$          |
|                           | D11           | $\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$                                | $\alpha_s/4M_*^3$  |
|                           | D12           | $\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$                        | $i\alpha_s/4M_*^3$ |
|                           | D13           | $\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$                        | $i\alpha_s/4M_*^3$ |
|                           | D14           | $\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$                | $\alpha_s/4M_*^3$  |

| Name | Operator                                                         | Coefficient        |
|------|------------------------------------------------------------------|--------------------|
| C1   | $\chi^\dagger\chiar q q$                                         | $m_q/M_*^2$        |
| C2   | $\chi^{\dagger}\chi \bar{q}\gamma^5 q$                           | $im_q/M_*^2$       |
| C3   | $\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}q$           | $1/M_{*}^{2}$      |
| C4   | $\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$ | $1/M_{*}^{2}$      |
| C5   | $\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$                        | $\alpha_s/4M_*^2$  |
| C6   | $\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$                | $i\alpha_s/4M_*^2$ |
| R1   | $\chi^2 ar q q$                                                  | $m_q/2M_*^2$       |
| R2   | $\chi^2 ar q \gamma^5 q$                                         | $im_q/2M_*^2$      |
| R3   | $\chi^2 G_{\mu\nu} G^{\mu\nu}$                                   | $\alpha_s/8M_*^2$  |
| R4   | $\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$                           | $i\alpha_s/8M_*^2$ |

Goodman et al. (2010)

# **Translation of Limits on EFT operators**

- Can be interpreted both in terms of mediator mass and in terms of DD cross section
- Relatively insensitive to underlying Lorentz structure (i.e. "axial-vector" or "pseudo-scalar" operators does not suffer from suppression)
- Strong limits in low mass region (where DD loses sensitivity)

Truly complementary to DD searches!



# Interpreting results in EFT



Demanding self-consistency (i.e. truncation) results in very diluted limits!

00

### How to write a Simplified Model?



## Simplified models with Fermionic DM

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - m_{S}^{2} S^{2} + \sum g_{s\chi\bar{\chi}} \bar{\chi}\chi S + \sum g_{sq\bar{q}} \bar{q}q S + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$
$$\mathcal{L}_{P} = \frac{1}{2} \partial_{\mu} P \partial^{\mu} P - m_{P}^{2} P^{2} + \sum g_{s\chi\bar{\chi}} \bar{\chi}\gamma^{5}\chi P + \sum g_{sq\bar{q}} \bar{q}\gamma^{5}q P + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$
$$\mathcal{L}_{T} = \frac{1}{2} D_{\mu} T D^{\mu} T - m_{T}^{2} T^{2} + \sum g_{T\chi\bar{\chi}}(\bar{\chi}qT^{*} + \text{c.c.}) + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$

$$\mathcal{L}_{Z'} = \sum g_{Z'\chi\bar{\chi}}\bar{\chi}\gamma^{\mu}\chi Z'^{\mu} + \sum g_{Z'q\bar{q}} \bar{q}\gamma^{\mu}q Z'^{\mu} + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi + \text{gaugeterms}$$

$$\mathcal{L}_{A'} = \sum_{\substack{q \in \chi_{\bar{\chi}} \\ \bar{\chi} \\ \bar{\chi$$

# **EFT to simplified models**



# **Comparison of EFT with UV completion**



- No obvious resonance in t-channel; but bad behaviour nonetheless due to slow decoupling of mediator
- Direct mediator search (a.k.a. squark search) has much higher reach.
- All viable t-channel mediated DM parameter space ruled out (for coupling to light quarks).

# Looking for the mediator

#### ATLAS Exotics Searches\* - 95% CL Upper Exclusion Limits

Status: July 2017

 $\int \mathcal{L} \, dt = (3.2 - 37.0) \, \text{fb}^{-1}$  $\sqrt{s} = 8, 13 \text{ TeV}$ Deference

**ATLAS** Preliminary

| Reference           |
|---------------------|
|                     |
| TLAS-CONF-2017-027  |
| TLAS-CONF-2017-050  |
| 1603.08791          |
| TLAS-CONF-2016-014  |
| 1706.04786          |
| CERN-EP-2017-147    |
| TLAS-CONF-2017-055  |
| 1410.4103           |
| 1408.0886           |
| TLAS<br>CER<br>TLAS |



# Moral of the story (part 2)...

- Dark Matter EFT simple, but not very useful at the LHC
- Simplified models do better, but are strongly constrained by direct mediator searches; don't say much about dark matter because of ambiguity in coupling/ mass. (Maybe if we see a new resonance and can probe its line shape, i.e. calculate invisible width, we may do better but that is a long way away.)

## What else can we do?

# Classifying UV-complete DM models

| New<br>Symmetries<br>New Fields | 0                                          | <b>1</b><br>Mostly Z <sub>2</sub> or U(1)                                                      |
|---------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|
| 1                               | "Minimal DM"                               | Pure "Higgsino" or "Wino"<br>Scalar singlet DM<br>Inert doublet DM                             |
| 2                               | t-channel charged<br>scalar + fermionic DM | Singlet-Doublet (N,N+1 plet) DM<br>Higgs Portal DM<br>s-channel scalar mediator<br>Dark Photon |
| 3                               | ??                                         | Z' mediator (with new scalar)<br>L-R models<br>Hidden Valley models                            |

# **Minimal ideas for Dark Matter**

Dark Matter makes up ~20% of our universe; an EW scale particle (a.k.a. WIMP) seems to be a good fit

$$\begin{split} \Omega h^2 &\sim 0.1 \Rightarrow \langle \sigma v \rangle \sim 1 \text{ pb} \cdot c \\ &\Rightarrow m_{\chi} \sim O(10^2 - 10^3) \text{ GeV}; g \sim g_{\text{EW}} \end{split}$$



#### 100 TeV collider?

# Next-to-minimal DM

#### What about next-to-minimal scenarios?

- One SU(2) x U(1) singlet  $\chi$  + one SU(2) N-plet  $\psi$
- $\bullet \ \mathbb{Z}_2$  stabilises the lightest state

$$\mathcal{L}_{\rm DM} = i \psi^{\dagger} \overline{\sigma}^{\mu} D_{\mu} \psi + i \chi^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \chi - \left(\frac{1}{2} M \psi \psi + \frac{1}{2} m \chi \chi + \text{h.c.}\right) + \mathcal{L}_{\rm quartic} + \mathcal{L}_{\rm mix}$$
$$\mathcal{L}_{\rm quartic} = \frac{1}{2} \frac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + \frac{1}{2} \frac{\kappa'}{\Lambda} \phi^{\dagger} \phi \psi^{A} \psi^{A} \qquad \text{Strong limits from DD}$$

$$\mathcal{L}_{\text{mix}} = \frac{\lambda}{\Lambda} \phi^{\dagger} \tau^{a} \phi \ \psi^{a} \chi + \text{h.c.} \quad \longrightarrow \quad \theta \approx \frac{\sqrt{2}\lambda v^{2}}{\Lambda(M-m)}$$

| N=3 |  |
|-----|--|
|-----|--|

$$\mathcal{L}_{\text{mix}} = \frac{\lambda}{\Lambda^3} C_{A\,ik}^{j\ell} \phi^{\dagger i} \phi_j \phi^{\dagger k} \phi_\ell \psi^A \chi + \text{h.c.} \longrightarrow \qquad \theta \approx \sqrt{\frac{2}{3}} \frac{\lambda v^4}{\Lambda^3 (M-m)} \,.$$

# **Collider searches: Quintuplet model**







# **Direct Detection constraints**



- Look at parameters that gives right relic density
- Low mixing angle gives low DD cross section; however, not a problem at the LHC because production is primarily Drell-Yan!

Brümmer et al; arXiv:1703.00370 Brümmer, Bharucha, Desai; arXiv:1804.02357

# **Prompt search limits: SUSY searches**



35

# **Other limits: charged track searches**



Rule out long-lived region i.e. when mass difference is smaller than pion mass

# The CMS displaced lepton search

Validation



### Combination of displaced lepton and charged tracks



Brümmer, Bharucha, Desai; arXiv:1804.02357

# Limits on mixing angle



Provides a complementary lower limit on mixing

# Stau Co-annihilation

# **CMSSM** after Run I



Questions to ask:

- Does it give the correct Higgs mass?
- 2. Does it give the right relic density?
- Does it satisfy constraints from the LHC?

Questions to ask:

- 1. Does it give the correct Higgs mass?
- 2. Does it give the right relic density?
- 3. Does it satisfy constraints from the LHC?



All of them in the stau co-annihilation strip!

## Stau Co-annihilation strip after Run I



# Lifetime of the stau



Long-lived; charged tracks

# Not enough missing energy!

| Doquiromont                                                                                   | Signal Region |      |  |
|-----------------------------------------------------------------------------------------------|---------------|------|--|
| Requirement                                                                                   | 2jW           | 3j   |  |
| $E_{\rm T}^{\rm miss}[{\rm GeV}] >$                                                           | 16            | 0    |  |
| $p_{\rm T}(j_1) \; [{\rm GeV}] >$                                                             | 13            | 0    |  |
| $p_{\rm T}(j_2) \; [{\rm GeV}] >$                                                             | 60            | )    |  |
| $p_{\rm T}(j_3) \; [{\rm GeV}] >$                                                             |               | 60   |  |
| $p_{\rm T}(j_4) \; [{\rm GeV}] >$                                                             |               |      |  |
| $\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$ | 0.4           |      |  |
| $\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$     |               |      |  |
| W candidates                                                                                  | $2(W \to j)$  | _    |  |
| $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}  [{\rm GeV}^{1/2}] >$                                  | -             |      |  |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$                                               | 0.25          | 0.3  |  |
| $m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$                                                    | 1800          | 2200 |  |



# Long-lived charged tracks



- Charged particle searches are specialised to take time of flight into account
- Fraction of staus that are stable on the detector scale decreases with increasing mass difference
- Run I limit on fully stable staus is ~550 GeV; since not all our staus exit the detector, we get a limit ~300 GeV.

## ATLAS: disappearing track search



TABLE III. Numbers of observed and expected background events as well as the probability that a background-only experiment is more signal-like than observed ( $p_0$ ) and the model-independent upper limit on the visible cross-section ( $\sigma_{vis}^{95\%}$ ) at 95% CL.

|                                         | $p_{\rm T}^{\rm track} > 75 ~{ m GeV}$ | $p_{\rm T}^{\rm track} > 100 ~{ m GeV}$ | $p_{\rm T}^{\rm track} > 150 ~{ m GeV}$ | $p_{\rm T}^{\rm track} > 200 ~{ m GeV}$ |
|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Observed events                         | 59                                     | 36                                      | 19                                      | 13                                      |
| Expected events                         | $48.5 \pm 12.3$                        | $37.1 \pm 9.4$                          | $24.6\pm6.3$                            | $18.0\pm4.6$                            |
| $p_0$ value                             | 0.17                                   | 0.41                                    | 0.46                                    | 0.44                                    |
| Observed $\sigma_{\rm vis}^{95\%}$ [fb] | 1.76                                   | 1.02                                    | 0.62                                    | 0.44                                    |
| Expected $\sigma_{\rm vis}^{95\%}$ [fb] | $1.42_{-0.39}^{+0.50}$                 | $1.05\substack{+0.37\\-0.28}$           | $0.67\substack{+0.27 \\ -0.19}$         | $0.56\substack{+0.23\\-0.16}$           |

പ

# combining multiple searches



## CMSSM Stau co-annihilation is (probably) dead



Coannihilation region not fully probed at 8 TeV; **we await 13 TeV data results in this Winter** to discover (or exclude!) the final part of the co-annihilation strip

# Filling the gaps in DM searches

DM + s-channel mediator Dilepton, dijet, mono-jet, displaced vertices "squark" & "slepton" searches, DM + t-channel mediator (disappearing) charged tracks, displaced leptons jets+MET, di-lepton+MET searches, SU(2) n-plets mono-jet, mono-photon, (disappearing) charged tracks, displaced leptons Di-gamma, **ALPs** non-pointing photons Sterile Neutrinos, leptons+MET, Z/higgs+MET **Heavy Neutral leptons** displaced vertices, displaced leptons

## Some LLP limits

#### ATLAS Long-lived Particle Searches\* - 95% CL Exclusion

**ATLAS** Preliminary

Status: July 2015



\*Only a selection of the available lifetime limits on new states is shown.

### **ARE WE MISSING SOMETHING?**

# Summary

- Long-lived particles predicted by many theories as a natural consequence
- LLP searches often have nearly zero background and can provide a clean signature
- If a model predicts LLPs, these searches are **more sensitive** than traditional searches
- **Co-annihilation partners** in DM models are often long-lived and can provide the first indications of signal
- Important to look at LLPs to cover full range of DM theory possibilities.