ADITYA PATHAK (UNIVERSITY OF VIENNA)

IN COLLABORATION WITH ANDRÉ HOANG (UNIV. OF VIENNA), SONNY MANTRY (UNIV. OF NORTH GEORGIA), IAIN STEWART (MIT)

EXTRACTING SHORT DISTANCE TOP MASS WITH LIGHT GROOMING

BASED ON 1708.02586

UNIVERSITY OF VIENNA, NOV 17

1. MOTIVATION, GOAL, CHALLENGES

- 2. MODERN TECHNIQUES IN PERTURBATIVE QCD
- 3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

1. MOTIVATION, GOAL, CHALLENGES

2. MODERN TECHNIQUES IN PERTURBATIVE QCD

3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

TOP MASS MEASUREMENT

Why should we care about a precision m_t?

- Stability of SM Vacuum
- **Precision Electroweak Measurements**
- **BSM Searches**

Butazzo, Degrassi, Giardino, Giudice, Sala

Andreassen, Frost, Schwartz

 γ

130

132

Two categories for top mass extraction:

Top Mass from total cross section (Inclusive):

CMS (2016) :	m _t = 173.8 ± 1.8 GeV
	JHEP08 (2016) 029
ATLAS (2017) :	$m_t = 173.2 \pm 1.6 \text{ GeV}$
	ATLAS-CONF-2017-044

Kinematic Top Mass Extractions (Exclusive):

Two categories for top mass extraction:

Top Mass from total cross section (Inclusive):

 $\begin{array}{lll} \text{CMS} \mbox{(2016):} & m_t = 173.8 \pm 1.8 \ \text{GeV} & \\ & & \\ & & \\ & & \\ \text{JHEP08} \mbox{(2016)} \ 029 & \\ & \\ \text{ATLAS} \mbox{(2017):} & m_t = 173.2 \pm 1.6 \ \text{GeV} & \\ & &$

- You essentially count the number of events with top quarks in a given channel
- Compare with theory cross section that depends on the top mass.
- Uncertainties from PDF, Luminosity, QCD scales, modeling and other experimental systematics

Two categories for top mass extraction:

Kinematic Top Mass Extractions:

CMS @ 8 TeV (2016) :

m_t = 172.35 ± 0.16 (stat + JES) ± 0.48 (sys) GeV

Phys. Rev. D 93 (2016)

ATLAS @ 8 TeV (2017): $m_t = 172.08 \pm 0.41$ (stat) ± 0.81 (sys) GeV

ATLAS-CONF-2017-071

- Make use of kinematic information of final state particles.
- Compare data against Monte Carlo simulations.
- No direct comparison of theory and data.

Two categories for top mass extraction:

Very precise!

Kinematic Top Mass Extractions:

CMS @ 8 TeV (2016) :

m_t = 172.35 ± 0.16 (stat + JES) ± 0.48 (sys) GeV

Phys. Rev. D 93 (2016)

all-jets channel at 8 TeV

ATLAS @ 8 TeV (2017): $m_t = 172.08 \pm 0.41$ (stat) ± 0.81 (sys) GeV

ATLAS-CONF-2017-071

- Make use of kinematic information of final state particles.
- Compare data against Monte Carlo simulations.
- No direct comparison of theory and data.

Two categories for top mass extraction:

Kinematic Top Mass Extractions: Very precise! CMS @ 8 TeV (2016): $m_t = 172.35 \pm 0.16 \text{ (stat + JES) \pm 0.48 (sys) GeV}$ $m_t = 172.44 \pm 0.49$ Phys. Rev. D 93 (2016) ATLAS @ 8 TeV (2017): $m_t = 172.08t_{\overline{t}} \pm 0.4172t_{\overline{t}} + 0.617(5ys)$ GeV ATLAS @ 8 TeV (2017): $m_t = 172.08t_{\overline{t}} \pm 0.4172t_{\overline{t}} + 0.617(5ys)$ GeV ATLAS-CONF-2017-071 $m_t = 172.08t_{\overline{t}} \pm 0.4172t_{\overline{t}} + 0.617(5ys)$ GeV

Top Mass from total cross section (Inclusive):

In this talk we discuss another source of uncertainty.

What mass is it?

How precisely do we know the mass definition?

$$\delta m_t \sim 1 \,\mathrm{GeV}$$

Ethalizeausecofisquafratiantenreerrections Efitige franzisci and theory get

$$m^{\text{bare}} \to m^{\text{bare}} \to \Sigma(m^{\text{bare}})$$
$$m^{\text{bare}} \to m^{\text{bare}} + \Sigma(m^{\text{bare}})$$
$$(m) \stackrel{\Sigma}{:} \Sigma(m) = \frac{3}{4} C_F \frac{\alpha_s}{\pi} m \left(\frac{1}{\epsilon} + \text{finite}\right) + \mathcal{O}(\alpha_s^2)$$

$$m^{\text{bare}} = m^{\text{ren}} + \delta_m$$

$$m^{\text{bare}} = m^{\text{ren}} + \delta_m$$

mensional regularization

onal regularization

ular choices for schemes: Pole mass and $\overline{\mathrm{MS}}$ mass

oices for schemes: Pole mass and $\overline{\text{MS}}$ mas le Mass - Remove the full one loop correction ears in the propagator at tree level S - Remove the full one loop correction S mass - Remove the $1/\epsilon$ term the propagator at tree level

- Remove the $1/\epsilon$ term

ure is unconcerned with the choice of scheme, for comparing finite order perturbative

Charge of electron is a scale dependent quantity because of quantum effects.

Ethelizeausecofisquartuantenreerrections Hispreifischanzaulization schend Theory get

$$m^{\text{bare}} \to m^{\text{bare}} \to \Sigma(m^{\text{bare}})$$

$$m^{\text{bare}} \to m^{\text{bare}} + \Sigma(m^{\text{bare}})$$

$$(m)^{\sum} \Sigma(m) = \frac{3}{4}C_F \frac{\alpha_s}{\pi} m\left(\frac{1}{\epsilon} + \text{finite}\right) + \mathcal{O}(\alpha_s^2)$$

$$m^{\text{bare}} = m^{\text{ren}} + \delta_m$$

 $m^{\text{bare}} = m^{\text{ren}} + \delta_m$

mensional regularization

onal regularization

ular choices for schemes: Pole mass and $\overline{\mathrm{MS}}$ mass

oices for schemes: Pole mass and $\overline{\text{MS}}$ mass le Mass - Remove the full one loop correction ears in the propagator at tree level S - Remove the full one loop correction S mass - Remove the $1/\epsilon$ term the propagator at tree level

- Remove the $1/\epsilon$ term

ure is unconcerned with the choice of scheme, for comparing finite order perturbative

Charge of electron is a scale dependent quantity because of quantum effects.

Ethalizeausecofisquafrauantemreerrections Efitige franklization of the Theory get

 $m^{\text{bare}} \to m^{\text{bare}} + \Sigma(m^{\text{bare}})$ $m^{\text{bare}} \to m^{\text{bare}} + \Sigma(m^{\text{bare}})$

 $m_n^{\text{bare}} \xrightarrow{m_n^{\text{bare}}} \xrightarrow{m_n^{$ mensional regulation mass: A scale c onal regularization 71 \pm + finite) \pm \mathcal{L} choicest for schemes oices for scheme $m^{\text{bare}} = m^{\text{ren}} + \delta_m \overline{MS}$ may le Max $m^{\text{bare}} = m^{\text{ren}} + \delta_m$ adjumentional regularization ve the full one loop Signal regularization boaler choices for schennes. Pole mass tand MSM choices for schemes. Pole mass and MS mun ure Massco Reenved with the coolie of scheme, program in the propagates at the leventur bative

dependent quantity because of quantum effects.

MOTIVATION, GOAL, CHALLENGES

GOAL OF THIS WORK

$$m_t^{\text{pole}} \overline{m}_t^{\mathbf{p}} \overline{m}_t^{\mathbf{m}}, \underline{m}_t^{\text{MSR}}, \underline{m}_t^{\text{MSR}}, \underline{m}_t^{\mathbf{MSR}}, \dots$$

Theory (QFT)

Bridge the gap between theory, MC and experiments using analytical calculations

Monte Carlo

 $m_{t,\tau}^{\mathrm{MC}}$ C

Experiment

MOTIVATION, GOAL, CHALLENGES

KINEMATIC EXTRACTIONS

Find events with top quarks

measured top mass

F. Krauss. (Sherpa Collaboration), "Sketch of a tth event". Available at https://www.opensciencegrid.org/wp-content/uploads/2014/05/event.jpg

In order to measure top mass accurately we must know how the peak shifts. -> Theoretical challenge!

KINEMATIC EXTRACTIONS Boosted top jets with R = 1

Partonic Pythia without hadronization and UE (MPI modeled)

KINEMATIC EXTRACTIONS Boosted top jets with R = 1

Fastjet: Cacciari, Salam, Soyez, 2011

KINEMATIC EXTRACTIONS Boosted top jets with R = 1

Fastjet: Cacciari, Salam, Soyez, 2011

1. MOTIVATION, GOAL, CHALLENGES

- 2. MODERN TECHNIQUES IN PERTURBATIVE QCD
- 3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

1. MOTIVATION, GOAL, CHALLENGES

2. MODERN TECHNIQUES IN PERTURBATIVE QCD

3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

WHAT CAN WE CALCULATE ANALYTICALLY?

Components of MCs based on factorization:

- hard scattering
- perturbative shower
- non-perturbative hadronization
- underlying event model

Allows arbitrary measurements on the final state particles, but limited in accuracy ~ NLO + NLL

WHAT CAN WE CALCULATE ANALYTICALLY?

Components of MCs based on factorization:

- hard scattering
- perturbative shower
- non-perturbative hadronization
- underlying event model

Allows arbitrary measurements on the final state particles, but limited in accuracy ~ NLO + NLL

Devise analytically calculable exclusive observables that

- are sensitive to the top mass,
- describe these components with systematically improvable accuracy,
- robust against contamination and account for NP corrections.

Top quark production involves several "energy scales" which make the direct calculation in theory hard.

Top quark production involves several "energy scales" which make the direct calculation in theory hard.

 $Q \gg m_t \gg \Gamma_t > \Lambda_{\rm QCD}$

Top quark production involves several "energy scales" which make the direct calculation in theory hard.

 $Q \gg m_t \gg \Gamma_t > \Lambda_{\rm QCD}$ >500 GeV 173.1 GeV 1.4 GeV 0.5 GeV

energy at which top quark is produced

energy at which quarks combine to form hadrons.

HOW DO WE CALCULATE THIS IN THEORY TO ACCOUNT FOR QUANTUM CORRECTIONS?

USING EFFECTIVE THEORIES

. .

.

https://www.flickr.com/photos/1uk3/3913309568

• •

.

.

https://www.musely.com/tips/how-To-Grow-13-Inches-Of-Hair-In-A-Week/10645683

USING EFFECTIVE THEORIES

Same fluid equations describe flow of both water and olive oil!

https://www.flickr.com/photos/1uk3/3913309568

 $\rho[\frac{\partial V}{\partial t} + (V.\nabla)V] = -\nabla P + \rho g + \mu \nabla^2 V$

Pressure term: Fluid flows in the direction of largest change in pressure

change of velocity with time Convective term

Body force term: external forces that act on the fluid (such as gravity, electromagnetic, etc.) viscosity controlled velocity diffusion term

https://www.musely.com/tips/how-To-Grow-13-Inches-Of-Hair-In-A-Week/10645683

USING EFFECTIVE THEORIES

Water = H_2O

http://www.waterwise.co.za/export/sites/water-wise/images/water/water-molecules.jpg
Very different in their molecular composition!

Water = H_2O —

http://www.waterwise.co.za/export/sites/water-wise/images/water/water-molecules.jpg

Olive Oil!

https://www.dreamstime.com/royalty-freestock-photography-olive-oil-chemicalcomposition-image25717637

$$\rho[\frac{\partial V}{\partial t} + (V.\nabla)V] = -\nabla P + \rho g + \mu \nabla^2 V$$

Hydrodynamics is an 'Effective Theory' that does not care, and know, about physics at short distances.

$$\rho[\frac{\partial V}{\partial t} + (V.\nabla)V] = -\nabla P + \rho g + \mu \nabla^2 V$$

Hydrodynamics is an 'Effective Theory' that does not care, and know, about physics at short distances.

'Full theory' knows about physics at all distances:

Molecular Orbital Theory for H₂O: Very Complex! Not suitable for macroscopic physics.

$$\rho[\frac{\partial V}{\partial t} + (V.\nabla)V] = -\nabla P + \rho g + \mu \nabla^2 V$$

Hydrodynamics is an 'Effective Theory' that does not care, and know, about physics at short distances.

'Full theory' knows about physics at all distances:

Molecular Orbital Theory for H₂O: Very Complex! Not suitable for macroscopic physics.

This exact philosophy can be applied to QFT calculations for strong force.

https://www.thestudentroom.co.uk/showthread.php?t=1903024

EFFECTIVE FIELD THEORIES

EFFECTIVE FIELD THEORIES

Sterman-Weinberg criteria for infrared-collinear safety (1977)

Cross section for e^+e^- to hadrons contained in back to back cones with energy E(1- ϵ) and angle δ :

 $\sigma(E, \theta, \Omega, \epsilon, \delta) = (d\sigma/d\Omega)_0 \Omega \left[1 - (g_E^2/3\pi^2)(3\ln\delta + 4\ln\delta\ln 2\epsilon + \pi^2/3 - \frac{5}{2})\right]$ Sensitive to collinear and soft emissions

- Excludes observables sensitive to arbitrary collinear/soft emissions, e.g. particle multiplicity in a jet.
- Sufficient to ensure calculability, (but not necessary: e.g. Sudakov Safe observables)

Consider back to back jets in e⁺e⁻ collisions:

$$n^{\mu} = (1, \hat{n}), \qquad \bar{n}^{\mu} = (1, -\hat{n})$$

Light cone coordinates:

$$p^{\mu} = p^{-} \frac{n^{\mu}}{2} + p^{+} \frac{\bar{n}^{\mu}}{2} + p_{\perp}, \qquad p^{\mu} \equiv (p^{+}, p^{-}, p_{\perp}) \qquad p^{2} = p^{+} p^{-} - p_{\perp}^{2}$$

Distinguish particles based on their momentum:

 $\begin{array}{ll} n\text{-collinear} \sim Q\left(\lambda^{2},1,\lambda\right), \\ \bar{n}\text{-collinear} \sim Q\left(1,\lambda^{2},\lambda\right), \\ \text{ultrasoft} \sim Q(\lambda^{2},\lambda^{2},\lambda^{2}). \end{array} \qquad \lambda = \frac{M_{\text{jet}}}{Q} \ll 1 \end{array}$

$$M_{\rm jet}^2 = p^+ p^- + \mathcal{O}(p_{\perp}^2) = p^+ Q + \mathcal{O}(p_{\perp}^2)$$

 $p^2 = p^+ p^- - p_\perp^2$

With carefully aligned axis jet mass is simply given by the + component

Λ / \cdot	SCET Modes	Scaling	Fields
$\lambda = \frac{11_{\text{jet}}}{O} \ll 1$	<i>n</i> -collinear	$Q(\lambda^2, 1, \lambda)$	(ξ_n, A_n^μ)
	\bar{n} -collinear	$Q\left(1,\lambda^{2},\lambda ight)$	$(\xi_{ar{n}}, A^{\mu}_{ar{n}})$
	ultrasoft	$Q(\lambda^2, \lambda^2, \lambda^2)$	$(\psi_{us}, A^{\mu}_{us})$

- Quarks and gluons now distinguished based on their momenta.
- > Three characteristic scales: $Q \gg Q\lambda \gg Q\lambda^2$
- Ultrasoft modes couple to both collinear modes through + component

EFFECTIVE FIELD THEORIES

HEAVY QUARK EFFECTIVE THEORY

$$\mathcal{L}_{\mathrm{HQET}} = \bar{h}_{v_{+}} \left(iv_{+} \cdot D_{+} - \delta m + \frac{\imath}{2} \Gamma_{t} \right) h_{v_{+}}$$

$\hat{s}_{t,\bar{t}} \equiv \frac{M_{t,\bar{t}}^2 - m^2}{m} \ll m$	bHQET Modes	Scaling	Fields
	<i>n</i> -ucollinear	$\left(\frac{m\hat{s}_t}{Q}, \frac{Q\hat{s}_t}{m}, \hat{s}_t\right)$	(h_{v_+}, A^{μ}_+)
$v_{+}^{\mu} = \left(\frac{m}{Q}, \frac{Q}{m}, 0_{\perp}\right)$	\bar{n} -ucollinear	$\left(\frac{Q\hat{s}_t}{m}, \frac{m\hat{s}_t}{Q}, \hat{S}_t\right)$	(h_{v}, A^{μ})
	ultrasoft	$\left(\frac{m\hat{s}_t}{Q}, \frac{m\hat{s}_t}{Q}, \frac{m\hat{s}_t}{Q}\right)$	$(\psi_{us}, A^{\mu}_{us})$

Top quark now labeled with velocity

- Expansion in Γ_t/m
- Same ultrasoft modes as before but at lower virtuality
- Residual term for mass scheme δm

HEAVY QUARK EFFECTIVE THEORY

$$\mathcal{L}_{\text{HQET}} = \bar{h}_{v_+} \left(iv_+ \cdot D_+ - \delta m + \frac{i}{2} \Gamma_t \right) h_{v_+}$$

$\hat{s}_{t,\bar{t}} \equiv \frac{M_{t,\bar{t}}^2 - m^2}{m} \ll m$	bHQET Modes	Scaling	Fields	
	<i>n</i> -ucollinear	$\left(\frac{m\hat{s}_t}{Q}, \frac{Q\hat{s}_t}{m}, \hat{s}_t\right)$	(h_{v_+}, A^{μ}_+)	
$v_{+}^{\mu} = \left(\frac{m}{Q}, \frac{Q}{m}, 0_{\perp}\right)$	\bar{n} -ucollinear	$\left \left(\frac{Q\hat{s}_t}{m}, \frac{m\hat{s}_t}{Q}, \hat{s}_t \right) \right.$	$(h_{v_{-}}, A^{\mu}_{-})$	
	ultrasoft	$\left(\frac{m\hat{s}_t}{Q}, \frac{m\hat{s}_t}{Q}, \frac{m\hat{s}_t}{Q}\right)$	$(\psi_{us}, A^{\mu}_{us})$	

- Top quark now labeled with velocity
- Expansion in Γ_t/m
- Same ultrasoft modes as before but at lower virtuality
- Residual term for mass scheme δm

Peak Region:

 $M_{t,\bar{t}}^2 - m^2 \sim m\Gamma \ll m^2$

Boosted top jets at ee collider (2008)

Factorization Theorem derived using Soft Collinear Effective Theory (SCET) and Heavy Quark Effective Theory (HQET):

$$\begin{pmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}M_{t}^{2}\mathrm{d}M_{\bar{t}}^{2}} \end{pmatrix}_{\mathrm{hemi}} = \sigma_{0} \ H_{Q}(Q,\mu_{m}) \ H_{m}\left(m_{J},\frac{Q}{m_{J}},\mu_{m},\mu\right) \\ \times \int \mathrm{d}l^{+}\mathrm{d}l^{-} J_{B}\left(\hat{s}_{t}-\frac{Ql^{+}}{m_{J}},\Gamma_{t},\delta m,\mu\right) J_{B}\left(\hat{s}_{\bar{t}}-\frac{Ql^{-}}{m_{J}},\Gamma_{t},\delta m,\mu\right) \\ \text{(boosted HQET)} \qquad \text{Control Over} \qquad \times S_{\mathrm{hemi}}(l^{+}-k,l^{-}-k',\mu) \ F(k,k') \\ \text{Jet Functions} \qquad \text{Mass Scheme} \qquad \text{Soft Function} \qquad \text{Hadronization}$$

Fleming, Hoang, Mantry, Stewart 2007, 2008

Improved understanding of hadronization corrections

Stewart, Tackmann, Waalewijn 2010

 q_b

- XC

 ak_T

Event shapes for hadron colliders: N-jettiness (2010)

$$\mathcal{T}_2 = \min_{n_t, n_{\bar{t}}} \sum_i \min\{\rho_{\text{jet}}(p_i, n_t), \rho_{\text{jet}}(p_i, n_{\bar{t}}), \rho_{\text{beam}}(p_i)\}$$

$$= \mathcal{T}_2^{t} + \mathcal{T}_2^{\overline{t}} + \mathcal{T}_2^{\text{beam}},$$

XCone is a particularly nice choice for jet and beam measures

Stewart, Tackmann, Thaler, Vermilion, Wilkason, 2015

Hoang, Mantry, AP, Stewart (soon)

Top jets at the LHC using 2-jettiness 0.35 NLL perturbative $p_T \ge 750 \,\text{GeV}, R = 1$ **Dominant dependence** $0.3 \vdash m_t^{\text{pole}} = 173. \text{ GeV}$ --- $\Omega_1 = 0.4 \text{ GeV}, x_2 = 0.1$ $\begin{bmatrix} 1/\sigma \\ 0.25 \end{bmatrix} (1/\sigma) \frac{1}{\sigma} \frac{1}{\sigma}$ $\Omega_1 = 1.0 \,\text{GeV}, x_2 = 0.1$ on the first moment: $\Omega_1 = 1.6 \,\text{GeV}, x_2 = 0.1$ $\Omega_1 = \int dk \, k F(k)$ 0.05 $\rightarrow t\bar{t}$ Ungroomed Fact.Thm. $F(\ell) = \theta(\ell) \frac{\mathcal{N}(a,\Lambda)}{\Lambda} \left(\frac{\ell}{\Lambda}\right)^{a-1} \exp\left(\frac{-2\ell}{\Lambda}\right)$ 172 178 ĭ70 174 176 180 M_I [GeV] 0.25 $pp \rightarrow t\bar{t}$ Ungroomed Fact.Thm $p_T \ge 750 \,\text{GeV}, R = 1$ $(1/\sigma)d\sigma/dM_{J}$ [GeV⁻¹] 0.15 Less sensitive to x₂ 0.2 (higher moments) $x_2 = \frac{\Omega_2^c}{\Omega_1^2} = \frac{\Omega_2 - \Omega_1^2}{\Omega_1^2}$ $x_2^{(1)} = 0.1$ $x_2^{(1)} = 0.2$ $m_t^{\text{pole}} = 173. \text{ GeV}, \ \Omega_1^{(1)} = 2.0 \text{ GeV}$ 172 174 178 180 ĭ70 176 M_{J} [GeV]

MODERN TECHNIQUES IN PERTURBATIVE QCD

TOP JET MASS WITH SOFT DROP

Factorization for Groomed Top Jets

Novel jet substructure techniques: Jet Grooming

Butterworth, Davison, Rubin, Salam, 2008 Ellis, Vermillion, Walsh, 2009, 2010

Krohn, Thaler, Wang, 2010

Jet grooming selectively remo contamination from the UE and

-0.5

0.5

Δη

91.5

Krohn, Thaler, Wang, 2010

₹1.

21.5

WHAT CAN WE CALCULATE ANALYTICALLY?

₹1.5

Novel jet substructure techniques: Jet Grooming

Krohn, Thaler, Wang, 2010

JET GROOMING

WHAT CAN WE CALCULATE ANALYTICALLY?

Dasgupta, Fregoso, Marzani, Salam 2013

JET GROOMING

WHAT CAN WE CALCULATE ANALYTICALLY?

Probe the analytical properties by considering radiation off an energetic parton

Dasgupta, Fregoso, Marzani, Salam 2013

JET GROOMING

 $\rho \equiv \frac{m^2}{p_t^2 R^2}$

WHAT CAN WE CALCULATE ANALYTICALLY?

Compare different groomers:

Starting to understand

C Grooms soft radiation from the jet

two grooming parameters

Groomed Jet

C

Groomed

Cluster particles in a jet defined by some algorithm

particles

Cluster particles in a jet defined by some algorithm

Cluster particles in a jet defined by some algorithm

Cluster particles in a jet defined by some algorithm

MODERN TECHNIQUES IN PERTURBATIVE QCD

MODERN TECHNIQUES IN PERTURBATIVE QCD

MODERN TECHNIQUES IN PERTURBATIVE QCD

GROOMED JET M^cc

GROOMED TOP JET MASS

Hoang, Mantry, AP, Stewart 2017

Top quarks at the LHC with jet grooming (2017)

Factorization Theorem for Soft Drop Groomed Top Jets:

$$\frac{d\sigma}{dM_J} = N \int J_B \otimes S_C \otimes F_C$$
(more precise vers

(more precise version up next)

The factorized cross section uses universal ingredients:

J_B: Fleming, Hoang, Mantry, Stewart 2007

1. MOTIVATION, GOAL, CHALLENGES

- 2. MODERN TECHNIQUES IN PERTURBATIVE QCD
- 3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

1. MOTIVATION, GOAL, CHALLENGES

2. MODERN TECHNIQUES IN PERTURBATIVE QCD

3. USING THE THEORY TOOLS, TESTING ROBUSTNESS

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\begin{split} \frac{d\sigma(\Phi_J)}{dM_J} &= N(\Phi_J, z_{\rm cut}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, \, m/Q) \int d\ell \, J_B\Big(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\Big) \\ & \times \int dk \, S_C\Big[\Big(\ell - \frac{mk}{Q}h\Big(\Phi_d, \frac{m}{Q}\Big)\Big)(2^\beta Q z_{\rm cut})^{\frac{1}{1+\beta}}, \beta, \mu\Big] \, F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \text{("decay" factorization)} \quad D_t(\hat{s}', \Phi_d, \, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, \, m/Q) \end{split}$$

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_C\left[\left(\ell - \frac{mk}{Q}h\left(\Phi_d, \frac{m}{Q}\right)\right)(2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \text{Parameters in the factorization formula:} \qquad D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q)$$

- m_t and Ω₁ : parameters to be fitted (Γ_t is fixed to SM value)
- δm : choice of renormalization scheme
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_C\left[\left(\ell - \frac{mk}{Q}h\left(\Phi_d, \frac{m}{Q}\right)\right)(2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \text{Parameters in the factorization formula:} \qquad D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q)$$

- m_t and Ω_1 : parameters to be fitted (Γ_t is fixed to SM value)
- δm : choice of renormalization scheme
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B \Big(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu \Big) \\ \times \int dk \, S_C \Big[\Big(\ell - \frac{mk}{Q} h \Big(\Phi_d, \frac{m}{Q} \Big) \Big) (2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu \Big] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ Parameters in the factorization formula: \qquad D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q)$$

- **m**_t and Ω_1 : parameters to be fitted (Γ_t is fixed to SM value)
- **δm : choice of renormalization scheme**
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_C\left[\left(\ell - \frac{mk}{Q}h\left(\Phi_d, \frac{m}{Q}\right)\right)(2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \text{Parameters in the factorization formula:} \qquad D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q)$$

- m_t and Ω₁ : parameters to be fitted (Γ_t is fixed to SM value)
- δm : choice of renormalization scheme
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, \mathbf{z}_{cut}, \boldsymbol{\beta}, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, \, m/Q) \int d\ell \, J_B\Big(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\Big) \\ \times \int dk \, S_C\Big[\Big(\ell - \frac{mk}{Q}h\big(\Phi_d, \frac{m}{Q}\big)\Big)(2^{\boldsymbol{\beta}}Q\boldsymbol{z}_{cut})^{\frac{1}{1+\boldsymbol{\beta}}}, \boldsymbol{\beta}, \mu\Big] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \mathbf{Parameters in the factorization formula:} \quad D_t(\hat{s}', \Phi_d, \, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, \, m/Q)$$

- m_t and Ω₁ : parameters to be fitted (Γ_t is fixed to SM value)
- δm : choice of renormalization scheme
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_C\left[\left(\ell - \frac{mk}{Q}h\left(\Phi_d, \frac{m}{Q}\right)\right)(2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1) \quad Q = 2 \, p_T \cosh(\eta_J) \\ \text{Parameters in the factorization formula:} \qquad D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q)$$

- m_t and Ω₁ : parameters to be fitted (Γ_t is fixed to SM value)
- δm : choice of renormalization scheme
- Soft drop parameters z_{cut} and β: adjust the strength of the groomer
- Renormalization scale µ: use for estimating perturbative uncertainties

Groomed top jet mass cross section: Hoang, Mantry, AP, Stewart 2017

$$\frac{d\sigma(\Phi_{J})}{dM_{J}} = N(\Phi_{J}, z_{cut}, \beta, \mu) \int d\hat{s}' \, d\Phi_{d} \, D_{t}(\hat{s}', \Phi_{d}, m/Q) \int d\ell \, J_{B} \left(\frac{M_{J}^{2} - m_{t}^{2} - Q\ell}{m_{t}} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_{C} \left[\left(\ell - \frac{mk}{Q} h\left(\Phi_{d}, \frac{m}{Q}\right)\right) (2^{\beta}Qz_{cut})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_{C}(k, 1) \quad Q = 2 \, p_{T} \cosh(\eta_{J}) \\ Parameters in the factorization formula: D_{t}(\hat{s}', \Phi_{d}, m/Q) = \frac{\Gamma_{t}}{\pi(\hat{s}'^{2} + \Gamma_{t}^{2})} \, d_{t}(\Phi_{d}, m/Q) \\ & \text{Kiner time black in the factorization formula: In the EFTs involved imposes strong constraints on the ranges of these parameters. Interval determine the term of term$$

Renormalization scale µ: use for estimating perturbative uncertainties

CONSTRAINTS FROM POWER COUNTING

Constraints on the kinematic region and soft drop parameters:

"light grooming" here

- Light grooming region: z_{cut} ~ 1%
- Minimum p_T allowed by constraints: p_T ~ 500 GeV

CONSTRAINTS FROM POWER COUNTING

CONSTRAINTS FROM POWER COUNTING

Most Contamination is removed with light grooming.

Predict: transition at z_{cut} \sim 1\% \checkmark

Predict independent of cutoff on radiation outside the jet ("jet veto"):

Significant improvement with soft drop:

Without soft drop:

Soft Drop Prediction: $Q = 2 p_T \cosh(\eta_J)$ e⁺e⁻ and pp collisions should be close for similar kinematics

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

TESTING ROBUSTNESS OF THE THEORY

Independent NLL theory fits to Had-only and Had+MPI Pythia

- Expect a dominant change in Ω₁: Nonperturbative corrections can model UE.
- Expect m_t to remain the same: Nonperturbative corrections well understood and do NOT mix with the perturbative components.

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

TESTING ROBUSTNESS OF THE THEORY

Independent NLL theory fits to Had-only and Had+MPI Pythia

- Expect a dominant change in Ω₁: Nonperturbative corrections can model UE.
- Expect m_t to remain the same: Nonperturbative corrections well understood and do NOT mix with the perturbative components.
- ▶ Get m_t within 0.3 GeV ✓
- Bands correspond to perturbative uncertainty

Independent NLL theory fits to Had-only and Had+MPI Pythia

Summarizing the fit results:

Not shown: results for "high p_T " fact. theorem.

No UE:	Had, decay, MSR :	$m_t^{\text{MSR}} = 172.8 \text{GeV},$	$\Omega_1^{(1)} = 2.0 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
	Had, decay, pole:	$m_t^{\text{pole}} = 172.4 \text{GeV},$	$\Omega_1^{(1)} = 1.8 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
With IIE.	Had+MPI, decay, MSR:	$m_t^{\text{MSR}} = 173.1 \text{GeV},$	$\Omega_1^{(2)\rm MPI} = 3.4{\rm GeV},$	$x_2^{(2)\rm MPI} = 0.3$
	Had+MPI, decay, pole:	$m_t^{\text{pole}} = 172.7 \text{GeV},$	$\Omega_1^{(2)\mathrm{MPI}} = 3.2 \mathrm{GeV},$	$x_2^{(2)MPI} = 0.3$

Summarizing the fit results:

Not shown: results for "high p_T " fact. theorem.

No UE:	Had, decay, MSR :	$m_t^{\mathrm{MSR}} = 172.8 \mathrm{GeV},$	$\Omega_1^{(1)} = 2.0 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
	Had, decay, pole:	$m_t^{\text{pole}} = 172.4 \text{GeV},$	$\Omega_1^{(1)} = 1.8 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
With UE:	Had+MPI, decay, MSR:	$m_t^{\text{MSR}} = 173.1 \text{GeV},$	$\Omega_1^{(2)\rm MPI} = 3.4{\rm GeV},$	$x_2^{(2)MPI} = 0.3$
	Had+MPI, decay, pole:	$m_t^{\text{pole}} = 172.7 \text{GeV},$	$\Omega_1^{(2)\rm MPI} = 3.2{\rm GeV},$	$x_2^{(2)MPI} = 0.3$

 (Preliminary) Fits to Pythia with mt^{MC} = 173.1 GeV yield mt^{MSR}~ 173 GeV for R = 1 GeV: Compatible with ee calibration by Butenschön et. al, 2016.

Butenschoen, Dehnadi, Hoang, Mateu, Preisser, Stewart 2016

Summarizing the fit results:

Not shown: results for "high p_T " fact. theorem.

No UE:	Had, decay, MSR :	$m_t^{\mathrm{MSR}} = 172.8 \mathrm{GeV},$	$\Omega_1^{(1)} = 2.0 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
	Had, decay, pole:	$m_t^{\text{pole}} = 172.4 \text{GeV},$	$\Omega_1^{(1)} = 1.8 \mathrm{GeV},$	$x_2^{(1)} = 0.1$
With UE:	Had+MPI, decay, MSR:	$m_t^{\text{MSR}} = 173.1 \text{GeV},$	$\Omega_1^{(2)\rm MPI} = 3.4{\rm GeV},$	$x_2^{(2)MPI} = 0.3$
	Had+MPI, decay, pole:	$m_t^{\text{pole}} = 172.7 \text{GeV},$	$\Omega_1^{(2)\rm MPI} = 3.2{\rm GeV},$	$x_2^{(2)MPI} = 0.3$

 (Preliminary) Fits to Pythia with mt^{MC} = 173.1 GeV yield mt^{MSR}~ 173 GeV for R = 1 GeV: Compatible with ee calibration by Butenschön et. al, 2016.

Butenschoen, Dehnadi, Hoang, Mateu, Preisser, Stewart 2016

Pole mass fits yield values 0.4-0.6 GeV smaller than mt^{MC}: Can be explained by evolution of MSR mass at NLL

$$m_t^{\text{pole}} \simeq m_t^{\text{MSR}} (R = 5 \,\text{GeV})$$

$$m_t^{\rm MSR}(1\,{\rm GeV}) - m_t^{\rm MSR}(5\,{\rm GeV}) = 0.53\,{\rm GeV}$$

THEORY FOOLS MC 172, 44 AGE, 49

OUTLOOK

 $\stackrel{\text{pole}}{=} \overline{m}_t^{\text{p}} \overline{m}_t^{\text{t}}, \stackrel{\text{MSR}}{\overline{m}_t^{\text{t}}}, \stackrel{\text{MSR}}{\overline{m}_t^{\text{t}}}, \dots$

Theory (QFT)

Monte Carlo

 m_t^{MC} c

Experiment

Bridging the gaps between Theory, Data and MC hadrons hadrons

 $\Lambda^{\rm shower}_{\Lambda^{\rm shower}} \stackrel{1}{=} \stackrel{\rm GeV}{\mathop{\rm IGeV}}$

be compatible.

THEOR FOOLS MC TITE 172, 44 AUDELINES, USAGE, 49

OUTLOOK

 $\stackrel{\text{pole}}{=} \overline{m}_t^{\text{p}} \overline{\overline{m}}_t^{t}, \stackrel{m_t^{\text{MSR}}}{\overline{m}_t^{t}}, m_t^{\text{MSR}}, .$

Theory (QFT)

 $\frac{\text{Monte}}{\text{Carlo}}$ m_t^{MC}

Experiment

Bridging the gaps between

Theory, Data and MC

Monte Carlo Hadrons Calibration - not limited by statistics.

A more thorough calibration studies with multiple p_T bins, other values of z_{cut} and β .

Observed agreement between e⁺e⁻ calibration and our preliminary studies suggest that one may be able to use MCs to extrapolate outside the range of factorization theorem.

CONCLUSION

- Factorization Theorems for Soft Drop jet mass enable direct QCD calculation of hadronic cross section
- Light Grooming with Soft Drop
 - Dramatically reduces Underlying Event (factor ~5)
 - Retains events without need for strong selection cuts
 - Enables both semi-leptonic and hadronic channels to be used
 - Gives result that is insensitive to jet radius and jet veto
- Theory depends on m_t and Ω₁, and agrees well with Pythia.
 - Pythia UE shifts Ω_1 with small effect on m_t

Looks very promising

CONCLUSION

- Factorization Theorems for Soft Drop jet mass enable direct QCD calculation of hadronic cross section
- Light Grooming with Soft Drop
 - Dramatically reduces Underlying Event (factor ~5)
 - Retains events without need for strong selection cuts
 - Enables both semi-leptonic and hadronic channels to be used
 - Gives result that is insensitive to jet radius and jet veto
- Theory depends on m_t and Ω₁, and agrees well with Pythia.
 - Pythia UE shifts Ω_1 with small effect on m_t

Looks very promising

BACKUP SLIDES

Radiation off the top quark (either collinear or soft):

$$k_j^{\mu} = \left(k^+, k^-, k_{\perp}\right) = \left(E(1 - \cos\theta), E(1 + \cos\theta), k_{\perp}\right)$$

Radiation off the top quark (either collinear or soft):

$$k_j^{\mu} = \left(k^+, k^-, k_{\perp}\right) = \left(E(1 - \cos\theta), E(1 + \cos\theta), k_{\perp}\right)$$

Peak Region: $M_{t,\bar{t}}^2 - m^2 \sim m\Gamma \ll m^2$

$$z\left[(1-\cos\theta)+rac{m^2}{Q^2}(1+\cos\theta)
ight]\simrac{2m\Gamma_t}{Q^2}$$

Radiation off the top quark (either collinear or soft):

$$k_j^{\mu} = \left(k^+, k^-, k_{\perp}\right) = \left(E(1 - \cos\theta), E(1 + \cos\theta), k_{\perp}\right)$$

Peak Region: $M_{t,\bar{t}}^2 - m^2 \sim m\Gamma \ll m^2$

$$z\left[(1-\cos\theta)+rac{m^2}{Q^2}(1+\cos\theta)
ight]\simrac{2m\Gamma_t}{Q^2}$$

$$ut\left(rac{\Delta soft}{R_0} extsf{ft} extsf{Drop:} \ z>z_{ extsf{cut}} \ heta^eta$$

Radiation off the top quark (either collinear or soft):

$$k_j^{\mu} = \left(k^+, k^-, k_{\perp}\right) = \left(E(1 - \cos\theta), E(1 + \cos\theta), k_{\perp}\right)$$

Peak Region: $M_{t,\overline{t}}^2 - m^2 \sim m\Gamma \ll m^2$

$$z\left[(1-\cos\theta)+rac{m^2}{Q^2}(1+\cos\theta)
ight]\simrac{2m\Gamma_t}{Q^2}$$

$$t_{\mathrm{tt}}(rac{\Delta \mathbf{Soft}}{R_0} \mathbf{ft} \, \mathbf{Drop:} \, \, z > \mathbf{z_{\mathrm{cut}}} \, heta^{oldsymbol{eta}}$$

How to decide whether to keep the gluon or groom it away?

Radiation off the top quark (either collinear or soft):

$$k_j^{\mu} = \left(k^+, k^-, k_{\perp}\right) = \left(E(1 - \cos\theta), E(1 + \cos\theta), k_{\perp}\right)$$

Peak Region: $M_{t,\overline{t}}^2 - m^2 \sim m\Gamma \ll m^2$

$$z\left[(1-\cos\theta)+rac{m^2}{Q^2}(1+\cos\theta)
ight]\simrac{2m\Gamma_t}{Q^2}$$

$$t_{\mathrm{tt}}(\Delta Soft \mathsf{Drop:} \ z > z_{\mathrm{cut}} \ heta^{eta}$$

How to decide whether to keep the gluon or groom it away?

Answer: Decide based on what EFT modes are important.

Radiation off the top quark (either collinear or soft):

$$k_{j}^{\mu} = (k^{+}, k^{-}, k_{\perp}) = (E(1 - \cos \theta), E(1 + \cos \theta), k_{\perp})$$
Peak Region: $M_{t,\bar{t}}^{2} - m^{2} \sim m\Gamma \ll m^{2}$

$$z \left[(1 - \cos \theta) + \frac{m^{2}}{Q^{2}} (1 + \cos \theta) \right] \sim \frac{2m\Gamma_{t}}{Q^{2}}$$

$$\underbrace{\sum_{R_{0}} \text{(} Drop: \ z > z_{cut} \ \theta^{\beta}$$
Keep Ultra-collinear modes
Groom away Soft modes
$$\underbrace{\sum_{R_{0}} \text{(} SCET \ [\lambda \sim m/Q \ll 1] \ n-collinear \ (\xi_{n}, A_{n}^{\mu}) \ p_{n}^{\mu} \sim Q(\lambda^{2}, 1, \lambda) \ n-collinear \ (\xi_{n}, A_{n}^{\mu}) \ p_{n}^{\mu} \sim Q(\lambda, \lambda, \lambda) \ mass-modes \ (q_{m}, A_{m}^{\mu}) \ p_{m}^{\mu} \sim Q(\lambda^{2}, \lambda^{2}, \lambda^{2}) \ same soft \ (q_{e}, A_{e}^{\mu}) \ p_{a}^{\mu} \sim (\Delta, \Delta, \Delta)$$

- Collinear Soft Mode: widest angle soft mode allowed
- Non Perturbative Mode: determines scale of NP corrections

WHEN DOES SOFT DROP STOP?

WHAT IS THE SIZE OF NONPERTURBATIVE CORRECTIONS?

Affects location of the Λ mode.

GROOMED JET RADIUS DISTRIBUTION

Groomed Jet Radius shows similar transition at z_{cut} ~ 1%

The peak of R_g distribution decreases as a function of p_{T:}

Soft Drop can be satisfied by top decay products, and give rise to this behavior.

TWO CASES FOR NONPERTURBATIVE CONVOLUTION

FACTORIZATION WITH DECAY PRODUCTS EFFECTS

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' \, d\Phi_d \, D_t(\hat{s}', \Phi_d, m/Q) \int d\ell \, J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right) \\ \times \int dk \, S_C\left[\left(\ell - \frac{mk}{Q}h\left(\Phi_d, \frac{m}{Q}\right)\right)(2^\beta Q z_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1) \qquad h \simeq \frac{\theta_d}{2} \frac{Q}{m} \\ D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} \, d_t(\Phi_d, m/Q) \qquad Q = 2 \, p_T \cosh(\eta_J) \\ \underbrace{t \longrightarrow t}_{q} \longrightarrow \underbrace{t \longrightarrow t}_{q'} \longrightarrow \underbrace{t \longrightarrow t}_{q'$$

Factorization now depends on angluar distribution of decay products

Model function now beta dependent

$$F_C(k)^{\text{decay}} = F_C^{\text{high } p_T}(k, \ \beta = 1)$$

121

FACTORIZATION WITH DECAY PRODUCTS EFFECTS

RESULTS FOR SMALLER PT

Use values obtained from fits to higher p_T bins

MPI-off:

Factorization and Pythia are no longer in agreement. Larger expansion parameters

122

LARGE ZCUT VALUES: BREAK DOWN OF LIGHT GROOMING FACT.

EFFECT OF CUTS ON DECAY PRODUCT SEPARATION

We observed disagreement on the left of the peak

Possibly due to decay products at wider angles

Improvement on the left of the peak with a stronger cut

