Non-Abelian Discrete Groups and

Neutrino Flavor Symmetry

Morimitsu Tanimoto

Niigata University

November. 14, 2017
University of Vienna, Faculty of Physics
Vienna, Austria

Content

1 Introduction
2 Examples of finite groups
3 Flavor with non-Abelian discrete symmetry
3.1 Towards non-Abelian Discrete flavor symmetry
3.2 Direct approach of Flavor Symmetry
3.3 CP symmetry of neutrinos
3.4 Indirect approach of Flavor Symmetry

4 Minimal seesaw model with flavor symmetry
5 Prospect

1 Introduction

The discrete transformations (e.g., rotation of a regular polygon) give rise to corresponding symmetries:

Discrete Symmetry

The well known fundamental symmetry in particle physics is, C, P, T : Abelian

Non-Abelian Discrete Symmetry may be important for flavor physics of quarks and leptons.

The discrete symmetries are described by finite groups.

The classification of the finite groups has been completed in 2004, (Gorenstein announced in 1981 that the finite simple groups had all been classified.) about 100 years later than the case of the continuous groups.

Thompson, Gorenstein, Aschbacher

The classification of finite simple group

Theorem -
Every finite simple group is isomorphic to one of the following groups:

- a member of one of three infinite classes of such:
- the cyclic groups of prime order,

```
Zn (n: prime)
```

- the alternating groups of degree at least 5, An ($n>4$)
- the groups of Lie type

```
E
```

- one of 26 groups called the "sporadic groups" Mathieu groups, Monster group - the Tits group (which is sometimes considered a $27_{\text {th }}$ sporadic group).

See Web: http://brauer.maths.qmul.ac.uk/Atlas/v3/

Johannes Kepler More than 400 years ago,
 Kepler tried to understand cosmological structure by five Platonic solids.

Scientists like symmetries!

The Cosmographic Mystery
molecular symmetry

Finite groups are used to classify crystal structures, regular polyhedra, and the symmetries of molecules.
The assigned point groups can then be used to determine physical properties, spectroscopic properties and to construct molecular orbitals.

Finite groups also possibly control fundamental particle physics as well as chemistry and materials science.

Symmetry is an advantageous approach if the dynamics is unknown.

2 Examples of finite groups

Ishimori, Kobayashi, Ohki, Shimizu, Okada, M.T, PTP supprement, 183,2010, arXiv1003.3552, Lect. Notes Physics (Springer) 858,2012

Finite group G consists of a finite number of element of G.

-The number of elements in G is called order.

- The group G is called Abelian if all elements are commutable each other,i.e. $a b=b a$.
- The group G is called non-Abelian if all elements do not satisfy the commutativity.

Subgroup

If a subset H of the group G is also a group, H is called subgroup of G. The order of the subgroup H is a divisor of the order of G.
(Lagrange's theorem)
If a subgroup N of G satisfies $g^{-1} N g=N$ for any element $g \in G$, the subgroup N is called a normal subgroup or an invariant subgroup.

The subgroup H and normal subgroup N of G satisfy $H N=N H$ and it is a subgroup of G, where $H N$ denotes $\left\{h_{i} n_{j} \mid h_{i} \in H, n_{j} \in N\right\}$

Simple group

It is a nontrivial group whose only normal subgroups are the trivial group and the group itself.

A group that is not simple can be broken into two smaller groups, a normal subgroup and the quotient group (factor group), and the process can be repeat If the group is finite, eventually one arrives at uniquely determined simple groups.

G is classified by Conjugacy Class

The number of irreducible representations is equal to the number of conjugacy classes. Schur's lemma

The elements $g^{-1} a g$ for $g \in \mathcal{G}$ are called elements conjugate to the element a.

The set including all elements to conjugate to an element a of G, $\left\{g^{-1} a g,{ }^{\forall} g \in G\right\}$, is called a conjugacy class.

When $a^{h}=e$ for an element $a \in G$, the number h is called the order of a.
The conjugacy class including the identity e consists of the single element e. All of elements in a conjugacy class have the same order

A pedagogical example, S_{3}

smallest non-Abelian finite group

S_{3} consists of all permutations among three objects, $\left(x_{1}, x_{2}, x_{3}\right)$ and its order is equal to $3!=6$.
All of six elements correspond to the following transformations,

$$
\begin{array}{ll}
\mathrm{e}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}\right) & a_{1}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{2}, x_{1}, x_{3}\right) \\
a_{2}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{2}, x_{1}\right) & a_{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{3}, x_{2}\right) \\
a_{4}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{1}, x_{2}\right) & a_{5}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}, x_{1}\right)
\end{array}
$$

Their multiplication forms a closed algebra, e.g.

$$
a_{1} a_{2}=a_{5}, \quad a_{2} a_{1}=a_{4}, \quad a_{4} a_{2}=a_{2} a_{1} a_{2}=a_{3}
$$

By defining $a_{1}=a, a_{2}=b$, all of elements are written $a s\{e, a, b, a b, b a, b a b\}$.
These elements are classified to three conjugacy classes,

$$
C_{1}:\{e\}, \quad C_{2}:\{a b, b a\}, \quad C_{3}:\{a, b, b a b\} . \quad(a b)^{3}=(b a)^{3}=e, \quad a^{2}=b^{2}=(b a b)^{2}=e
$$

The subscript of C_{n}, n, denotes the number of elements in the conjugacy class C_{n}.

Let us study irreducible representations of S_{3}.

The number of irreducible representations must be equal to 3, because there are 3 conjugacy classes.

A representation of G is a homomorphic map of elements of G onto matrices, $D(g)$ for $g \in G . D(g)$ are $(n \times n)$ matrices

$$
\text { Character } \quad \chi_{D}(g)=\operatorname{tr} D(g)=\sum_{i=1}^{d_{\infty}} D(g)_{i i} \text {. }
$$

Orthogonality relations

$$
\sum_{i \in G} \chi_{D_{\alpha}}(g)^{*} \chi_{D_{\beta}}(g)=N_{G} \delta_{\alpha \beta}, \quad \sum_{\alpha} \chi_{D_{\alpha}}\left(g_{i}\right)^{*} \chi_{D_{\alpha}}\left(g_{j}\right)=\frac{N_{G}}{n_{i}} \delta_{C_{i} C_{j}},
$$

Since $C_{1}=\{e\} \quad\left(n_{1}=1\right)$, the orthgonality relation is

$$
\sum_{\alpha}\left[\chi_{\alpha}\left(C_{1}\right)\right]^{2}=\sum_{n} m_{n} n^{2}=m_{1}+4 m_{2}+9 m_{3}+\cdots=N_{G}
$$

m_{n} is number of n-dimensional irreducible representations Irreducible representations of S_{3} are two singlets 1 and 1^{\prime}, one doublet 2.

$$
2+4 \times 1=6
$$

Since $\left(\chi_{1^{\prime}}\left(C_{2}\right)\right)^{3}=1, \quad\left(\chi_{1^{\prime}}\left(C_{3}\right)\right)^{2}=1$ are satisfied,
Orthogonarity conditions determine the Character Table

	h	χ_{1}	$\chi_{1^{\prime}}$	χ_{2}
C_{1}	1	1	1	2
C_{2}	3	1	1	-1
C_{3}	2	1	-1	(0)

$$
C_{1}:\{e\}, C_{2}:\{a b, b a\}, C_{3}:\{a, b, b a b\}
$$

By using this table, we can construct the representation matrix for 2. Because of $\chi_{2}\left(C_{3}\right)=0$ we choose $a=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad \boldsymbol{a}^{2}=\boldsymbol{e}$

$$
\begin{aligned}
& e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad a=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad b=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right), \\
& a b=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad b a=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad b a b=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

11 We can change the representation through the unitary transformation, $\mathrm{U}^{\dagger} \mathbf{g U}$.

A lager group

is constructed from more than two groups by a certain product.

Consider two groups G_{1} and G_{2}

Direct product

The direct product is denoted as $G_{1} \times G_{2}$.
Multiplication rule

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right) \text { for } a_{1}, b_{1} \in G_{1} \text { and } a_{2}, b_{2} \in G_{2}
$$

(outer) semi-direct product

The semi-direct product is denoted as $G_{1} \rtimes_{f} G_{2}$.
Multiplication rule
$\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} f_{a 2}\left(b_{1}\right), a_{2} b_{2}\right)$ for $a_{1}, b_{1} \in G_{1}$ and $a_{2}, b_{2} \in G_{2}$
where $\boldsymbol{f}_{\mathrm{a} 2}\left(\mathbf{b}_{1}\right)$ denotes a homomorphic map from G_{2} to G_{1}.
Consider the group G and its subgroup H and normal subgroup N. When $G=N H=H N$ and $N \cap H=\{e\}$, the semi-direct product $N \rtimes_{f} H$ is isomorphic to G, where we use the map f as $f_{h i}\left(n_{j}\right)=h_{i} n_{j}\left(h_{i}\right)^{-1}$.

Example of semi-direct product

semi-direct product, $Z_{3} \rtimes Z_{2}$.
Here we denote the Z_{3} and Z_{2} generators by c and h, i.e., $c^{3}=e$ and $h^{2}=e$. In this case, can be written by $\mathrm{ch}^{-1}=\mathrm{c}^{m}$

```
only the case with \(m=2\) is non-trivial, \(h c h^{-1}=c^{2}\)
```

This algebra is isomorphic to S_{3}, and h and c are identified as a and $a b$.

$$
\begin{array}{cc}
N=(e, a b, b a), & H=(e, a) \Rightarrow N H=H N \simeq S_{3} \\
Z_{3} & Z_{2}
\end{array}
$$

Semi-direct products generates a larger non-Abelian groups

$$
a^{N}=a^{\prime N}=b^{3}=c^{2}=(b c)^{2}=e, a a^{\prime}=a^{\prime} a, b a b^{-1}=a^{-1}\left(a^{\prime}\right)^{-1}, b a^{\prime} b^{-1}=a, c a c^{-1}=\left(a^{\prime}\right)^{-1}, c a^{\prime} c^{-1}=a^{-1}
$$

$$
\Delta(6)=S_{3} \quad \Delta(24) \simeq S_{4} \quad \Delta(54) \ldots
$$

Familiar non-Abelian finite groups

$$
\begin{array}{lllc}
\mathrm{S}_{\mathrm{n}}: & \mathrm{S}_{2}=\mathrm{Z}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4} \ldots & \text { Symmetric group } & \mathrm{N}! \\
\mathrm{A}_{\mathrm{n}}: & \mathrm{A}_{3}=\mathrm{Z}_{3}, \mathrm{~A}_{4}=\mathrm{T}, \mathrm{~A}_{5} \ldots & \text { Alternating group } & (\mathrm{N}!/ 2 \\
\mathrm{D}_{\mathrm{n}}: & \mathrm{D}_{3}=\mathrm{S}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5} \ldots & \text { Dihedral group } & 2 \mathrm{~N} \\
\mathrm{Q}_{\mathrm{N}(\text { (even })}: \mathrm{Q}_{4}, \mathrm{Q}_{6} \ldots & \text { Binary dihedral group } & 2 \mathrm{~N} \\
\Sigma\left(2 \mathrm{~N}^{2}\right): & \Sigma(2)=\mathrm{Z}_{2}, \Sigma(18), \Sigma(32), \Sigma(50) \ldots & 2 \mathrm{~N}^{2} \\
\Delta\left(3 \mathrm{~N}^{2}\right): & \Delta(12)=\mathrm{A}_{4}, \Delta(27) \ldots & 3 \mathrm{~N}^{2} \\
\mathrm{~T}_{\mathrm{N}(\text { prime number })} \simeq Z_{N} \rtimes Z_{3}: \mathrm{T}_{7}, \mathrm{~T}_{13}, \mathrm{~T}_{19}, \mathrm{~T}_{31}, \mathrm{~T}_{43}, \mathrm{~T}_{49} & 3 \mathrm{~N} \\
\Sigma\left(3 \mathrm{~N}^{3}\right): & \Sigma(24)=\mathrm{Z}_{2} \times(12), \Sigma(81) \ldots & 3 \mathrm{~N}^{3} \\
\Delta\left(6 \mathrm{~N}^{2}\right): & \Delta(6)=\mathrm{S}_{3}, \Delta(24)=\mathrm{S}_{4}, \Delta(54) \ldots & 6 \mathrm{~N}^{2} \\
\mathrm{~T}^{\prime}: \text { double covering group of } \mathrm{A}_{4}=\mathrm{T} & 24
\end{array}
$$

Subgroups are important for particle physics because symmetry breaks down to them.

Ludwig Sylow in 1872:

Theorem 1:
For every prime factor p with multiplicity n of the order of a finite group G, there exists a Sylow p-subgroup of G, of order p^{n}.
A_{4} has subgroups with order 4 and 3 , respectively.

$$
12=2^{2} \times 3
$$

Actually, $\left(Z_{2} \times Z_{2}\right)$ (klein group) and Z_{3} are the subgroup of A_{4}.

For flavour physics, we are interested in finite groups with triplet representations.
S_{3} has two singlets and one doublet: 1, 1', 2, no triplet representation.

Some examples of non-Abelian Finite groups with triplet representation, which are often used in Flavor symmetry

$$
S_{4}, \quad A_{4}, \quad A_{5}
$$

S_{4} group

All permutations among four objects, 4!=24 elements
24 elements are generated by S, T and U : $S^{2}=T^{3}=U^{2}=1, \quad S T^{3}=(S U)^{2}=(T U)^{2}=(S T U)^{4}=1$

5 conjugacy classes
C1: 1
C3: S, T²ST, TST ${ }^{2}$
C6: U, TU, SU, T² U, STSU, ST²SU

$$
\begin{aligned}
& \mathrm{h}=1 \\
& \mathrm{~h}=2
\end{aligned}
$$

C6': STU, TSU, T²SU, ST²U, TST²U, T²STU h=4
C8: $\mathrm{T}, \mathrm{ST}, \mathrm{TS}, \mathrm{STS}, \mathrm{T}^{2}, \mathrm{ST}^{2}, \mathrm{~T}^{2} \mathrm{~S}, \mathrm{ST}^{2} \mathrm{~S} \quad \mathrm{~h}=3$
Irreducible representations:

1. 1', 2, 3, 3'

	h	χ_{1}	$\chi_{1^{\prime}}$	χ_{2}	χ_{3}	$\chi_{3^{\prime}}$
C_{1}	1	1	1	2	3	3
C_{3}	2	1	1	2	-1	-1
C_{6}	2	1	-1	0	1	-1
$C_{6^{\prime}}$	4	1	-1	0	-1	1
C_{8}	3	1	1	-1	0	0

For triplet 3 and 3^{\prime}

$$
U=\mp\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) ; \quad \omega=e^{2 \pi i / 3}
$$

A_{4} group

Even permutation group of four objects (1234) 12 elements (order 12) are generated by S and $T: S^{2}=T^{3}=(S T)^{3}=1: S=(14)(23), T=(123)$

Symmetry of tetrahedron
4 conjugacy classes
C1: 1
$h=1$
C3: S, T²ST, TST ${ }^{2}$
$h=2$
C4: T, ST, TS, STS
$h=3$
$C 4^{\prime}: T^{2}, S T^{2}, T^{2} S, S T^{2} S \quad h=3$

	h	χ_{1}	$\chi_{1^{\prime}}$	$\chi_{1^{\prime \prime}}$	χ_{3}
C_{1}	1	1	1	1	3
C_{3}	2	1	1	1	-1
C_{4}	3	1	ω	ω^{2}	0
$C_{4^{\prime}}$	3	1	ω^{2}	ω	0

Irreducible representations: 1, 1', 1", 3
The minimum group containing triplet without doublet.
For triplet $S=\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right), \quad T=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right) ; \omega=e^{2 \pi i / 3}$

A_{5} group (simple group)

The A_{5} group is isomorphic to the symmetry of a regular icosahedron and a regular dodecahedron.

60 elements are generated S and T.

$$
S^{2}=(S T)^{3}=1 \text { and } T^{5}=1
$$

5 conjugacy classes

Irreducible representations:
 1, 3, 3', 4, 5

For triplet 3
$\mathbf{S}=\frac{1}{\sqrt{5}}\left(\begin{array}{ccc}1 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -\phi & \frac{1}{\phi} \\ \sqrt{2} & \frac{1}{\phi} & -\phi\end{array}\right) \mathbf{T}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{\frac{2 \pi i}{5}} & 0 \\ 0 & 0 & e^{\frac{8 \pi i}{5}}\end{array}\right)$

	h	1	3	3^{\prime}	4	5
C_{1}	1	1	3	3	4	5
C_{15}	2	1	-1	-1	0	1
C_{20}	3	1	0	0	1	-1
C_{12}	5	1	ϕ	$1-\phi$	-1	0
$C_{12^{\prime}}$	5	1	$1-\phi$	ϕ	-1	0

$$
\phi=\frac{1+\sqrt{5}}{2}
$$

3 Flavor symmetry with non-Abelian Discrete group
3.1 Towards non-Abelian Discrete flavor symmetry

In Quark sector

There was no information of lepton flavor mixing before 1998.
Discrete Symmetry and Cabibbo Angle,
Phys. Lett. 73B (1978) 61, S.Pakvasa and H.Sugawara
S_{3} symmetry is assumed for the Higgs interaction with the quarks and the leptons for the self-coupling of the Higgs bosons.

$$
\left.\begin{array}{l}
\mathrm{S}_{3} \text { doublet } \quad \mathrm{S}_{3} \text { singlets } \mathrm{S}_{3} \text { doublet } \\
\left\{\binom{\mathrm{p}_{1}}{n_{1}}_{\mathrm{L}},\binom{\mathrm{p}_{2}}{n_{2}}_{\mathrm{L}}\right.
\end{array}\right\} \left\lvert\,\left\{\begin{array}{c}
\left.\mathrm{p}_{1 \mathrm{R}}\right\},\left\{\mathrm{p}_{2 \mathrm{R}}\right\},\left\{\mathrm{n}_{1 \mathrm{R}}, \mathrm{n}_{2 \mathrm{R}}\right\}
\end{array} \quad \Rightarrow \tan \theta_{\mathrm{c}}=m_{\mathrm{d}} / m_{\mathrm{s}} .\right.\right.
$$

A Geometry of the generations, 3 generations Phys. Rev. Lett. 75 (1995) 3985, L.J.Hall and H.Murayama

$$
(S(3))^{3} \text { flavor symmetry for quarks } Q, U, D
$$

(S(3)) ${ }^{3}$ flavor symmetry and p---> $K^{0} e^{+}$, (SUSY version)
Phys. Rev.D 53 (1996) 6282, C.D.Carone, L.J.Hall and H.Murayama
fundamental sources of flavor symmetry breaking are gauge singlet fields ϕ :flavons
Incorporating the lepton flavor based on the discrete flavor group $\left(S_{3}\right)^{3}$.

1998 Revolution in Neutrinos !

Atmospheric neutrinos brought us informations of neutrino masses and flavor mixing.

$$
P_{\nu_{\mu} \rightarrow \nu_{\mu}}=1-4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \frac{\Delta_{13}}{2}+2\left|U_{\mu 2}\right|^{2}\left|U_{\mu 3}\right|^{2} \Delta_{12} \sin \Delta_{13}+\mathcal{O}\left(\Delta_{12}^{2}\right)
$$

Before 2012 (no data for θ_{13})

Neutrino Data presented $\sin ^{2} \theta_{12} \sim 1 / 3, \sin ^{2} \theta_{23} \sim 1 / 2$

Harrison, Perkins, Scott (2002) proposed
Tri-bimaximal Mixing of Neutrino flavors.

$$
\sin ^{2} \theta_{12}=1 / 3, \sin ^{2} \theta_{23}=1 / 2, \sin ^{2} \theta_{13}=0,
$$

PDG

$$
U_{\text {tri-bimaximal }}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right)
$$

$$
U_{\mathrm{PMNS}} \equiv\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{C P}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{C P}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{C P}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{C P}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{C P}} & c_{23} c_{13}
\end{array}\right)
$$

Tri-bimaximal Mixing of Neutrinos motivates to consider Non-Abelian Discrete Flavor Symmetry.

Tri-bimaximal Mixing (TBM) is realized by the mass matrix

$$
m_{T B M}=\frac{m_{1}+m_{3}}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{m_{2}-m_{1}}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{1}-m_{3}}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

in the diagonal basis of charged leptons.

Mixing angles are independent of neutrino masses.

Integer (inter-family related) matrix elements suggest Non-Abelian Discrete Flavor Symmetry.

Hint for the symmetry in TBM

$$
\left.m_{T B M}=\frac{m_{1}+m_{3}}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{m_{2}-m_{1}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{1}-m_{3}}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\right)
$$

Assign A_{4} triplet $\underline{3}$ for $\left(v_{e}, v_{\mu}, v_{T}\right)_{L}$
E. Ma and G. Rajasekaran, PRD64(2001)113012
$3 \times 3 \Rightarrow 3+3+1+1^{\prime}+1^{\prime \prime}$
$\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}=a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}$
The third matrix is A_{4} symmetric ! The first and second matrices are Unit matrix and Democratic matrix, respectively, which could be derived from S_{3} symmetry.

In 2012

θ_{13} was measured by Daya Bay, RENO. T2K, MINOS, Double Chooz

Tri-bimaximal mixing was ruled out!

$$
\theta_{13} \simeq 9^{\circ} \simeq \theta_{c} / \sqrt{2}
$$

Rather large θ_{13} suggests to search for $C P$ violation!

$$
\begin{gathered}
J_{C P}=s_{23} c_{23} s_{12} c_{12} s_{13} c_{13}^{2} \sin \delta_{C P} \simeq 0.0327 \sin \delta \\
J_{C P}(\text { quark }) \sim 3 \times 10^{-5}
\end{gathered}
$$

Challenge for flavor and CP symmetries for leptons

Summary of discoveries of neutrino oscillations

Neutrino mixing vs. quark mixing

Neutrino mixing (3 3 C.L. range)

0.800-0.844
0.515-0.581
0.139-0.155
0.229-0.516
0.438-0.699
$0.614-0.790$
0.249-0.528
0.462-0.715
0.595-0.776
I. Esteban et al., JHEP 01 (2017) 087

Quark mixing (CKM matrix)

$$
\left[\begin{array}{lll}
0.97434 & 0.22506 & 0.00357 \\
0.22492 & 0.97351 & 0.0414 \\
0.00875 & 0.0403 & 0.99915
\end{array}\right.
$$

They are so much different!

Particle Data Group (2016)

Neutrino mass and mixing (what we know now)

3.2 Direct approach of Flavor Symmetry

Direct Approach

Suppose Flavor symmetry group G Consider only Mass matrices!

Different subgroups of G are preserved in Yukawa sectors of Neutrinos and Charged leptons, respectively.

> | S, T, U are |
| :--- |
| generators |
| of Finite groups |

Consider S_{4} flavor symmetry:

 24 elements are generated by S, T and U: $\mathrm{S}^{2}=\mathrm{T}^{3}=\mathrm{U}^{2}=1, \mathrm{ST}^{3}=(\mathrm{SU})^{2}=(\mathrm{TU})^{2}=(\mathrm{STU})^{4}=1$ Irreducible representations: $1,1^{\prime}, 2,3,3 \prime$It has subgroups, nine Z_{2}, four Z_{3}, three Z_{4}, four $Z_{2} \times Z_{2}\left(K_{4}\right)$

Suppose S_{4} is spontaneously broken to one of subgroups:
Neutrino sector preserves
$(1, S, U, S U)\left(K_{4}\right)$
Charged lepton sector preserves ($1, T, T^{2}$) $\left(Z_{3}\right)$

For 3 and 3^{\prime}

$$
\begin{aligned}
S & =\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) ; \omega=e^{2 \pi i / 3} \\
U & =\mp\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Neutrino and charged lepton mass matrices

 respect S, U and T, respectively:$$
\begin{gathered}
S^{T} m_{L L}^{\nu} S=m_{L L}^{\nu}, \quad U^{T} m_{L L}^{\nu} U=m_{L L}^{\nu}, \quad T^{\dagger} Y_{e} Y_{e}^{\dagger} T=Y_{e} Y_{e}^{\dagger} \\
{\left[S, m_{L L}^{\nu}\right]=0, \quad\left[U, m_{L L}^{\nu}\right]=0, \quad\left[T, Y_{e} Y_{e}^{\dagger}\right]=0}
\end{gathered}
$$

Mixing matrices diagonalize mass matrices also diagonalize S, U, and T, respectively ! The charged lepton mass matrix is diagonal because T is diagonal matrix.
$V_{\nu}=\left(\begin{array}{ccc}2 / \sqrt{6} & / 1 \sqrt{3} & 0 \\ -1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
which digonalizes both S and U.
Independent of mass eigenvalues!
Klein Symmetry can reproduce Tri-bimaximal mixing.

If S_{4} is spontaneously broken to another subgroups, Neutrino sector preserves $\mathrm{SU}\left(\mathrm{Z}_{2}\right)$ Charged lepton sector preserves $T\left(Z_{3}\right)$, mixing matrix is changed !

$$
\begin{gathered}
(S U)^{T} m_{L L}^{\nu} S U=m_{L L}^{\nu}, \quad T^{\dagger} Y_{e} Y_{e}^{\dagger} T=Y_{e} Y_{e}^{\dagger} \\
{\left[S U, m_{L L}^{\nu}\right]=0, \quad\left[T, Y_{e} Y_{e}^{\dagger}\right]=0} \\
\text { Tri-maximal mixing } \\
V_{\nu}=\left(\begin{array}{ccc}
2 / \sqrt{6} & c / \sqrt{3} & s / \sqrt{3} \\
-1 / \sqrt{6} \\
-1 / \sqrt{6} & c / \sqrt{3}-s / \sqrt{2} & -s / \sqrt{3}-c / \sqrt{2} \\
c / \sqrt{3}+s / \sqrt{2} & -s / \sqrt{3}+c / \sqrt{2}
\end{array}\right) \\
T M_{1} \quad c=\cos \theta, s=\sin \theta \quad \text { includes } C \text { P phase. }
\end{gathered}
$$

θ is not fixed by the flavor symmetry.

Mixing sum rules

$$
\sin ^{2} \theta_{12} \simeq \frac{1}{\sqrt{3}}-\frac{2 \sqrt{2}}{3} \sin \theta_{13} \cos \delta_{C P}+\frac{1}{3} \sin ^{2} \theta_{13} \cos 2 \delta_{C P}
$$

Mixing pattern in A_{5} flavor symmetry

It has subgroups, ten Z_{3}, six Z_{5}, five $Z_{2} \times Z_{2}\left(K_{4}\right)$.
Suppose A_{5} is spontaneously broken to one of subgroups:
Neutrino sector preserves $\quad S$ and $U\left(K_{4}\right)$
Charged lepton sector preserves $T\left(Z_{5}\right)$

$$
\begin{gathered}
S^{T} m_{L L}^{\nu} S=m_{L L}^{\nu}, \quad U^{T} m_{L L}^{\nu} U=m_{L L}^{\nu}, \quad T^{\dagger} Y_{e} Y_{e}^{\dagger} T=Y_{e} Y_{e}^{\dagger} \\
{\left[S, m_{L L}^{\nu}\right]=0, \quad\left[U, m_{L L}^{\nu}\right]=0, \quad\left[T, Y_{e} Y_{e}^{\dagger}\right]=0} \\
\mathrm{~S}=\frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & \sqrt{2} & \sqrt{2} \\
\sqrt{2} & -\phi & \frac{1}{\phi} \\
\sqrt{2} & \frac{1}{\phi} & -\phi
\end{array}\right) \quad \mathrm{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{\frac{2 \pi i}{5}} & 0 \\
0 & 0 & e^{\frac{8 \pi i}{5}}
\end{array}\right) \quad U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

F. Feruglio and Paris, JHEP 1103(2011) 101 arXiv:1101.0393

$$
U_{G R}=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
\frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
\theta_{13}=0
$$

$$
\tan \theta_{12}=1 / \phi \quad: \quad \phi=\frac{1+\sqrt{5}}{2} \quad \text { Golden ratio }
$$

Neutrino mass matrix has $\mu-$ т symmetry.

$$
m_{\nu}=\left(\begin{array}{ccc}
x & y & y \\
y & z & w \\
y & w & z
\end{array}\right) \quad \text { with } \quad z+w=x-\sqrt{2} y
$$

$\sin ^{2} \theta_{12}=2 /(5+\sqrt{ } 5)=0.2763 . .$.
which is rather smaller than the experimental data.

$$
\sin ^{2} \theta_{12}=0.306 \pm 0.012
$$

3.3 CP symmetry in neutrinos

Possibility of predicting CP phase $\delta_{C P}$ in FLASY
A hint : under $\mu-$ т symmetry

$$
\begin{gathered}
\left|U_{\mu i}\right|=\left|U_{\tau i}\right| i=1,2,3 \\
\cos \theta_{23}=\sin \theta_{23}=\frac{1}{\sqrt{2}} \\
\sin \theta_{13} \cos \delta=0 \\
\delta= \pm \frac{\pi}{2} \quad \text { is predicted since we know } \quad \theta_{13} \neq 0
\end{gathered}
$$

Ferreira, Grimus, Lavoura, Ludl, JHEP2012,arXiv: 1206.7072

Exciting Era of Observation of CP violating phase @T2K and NOvA

 T2K reported the constraint on $\delta_{C P}$ August 4, 2017

Feldman-Cousins method

The 2σ CL confidence interval:
Normal hierarchy: [-2.98, -0.60] radians Inverted hierarchy: [-1.54, -1.19] radians
G.Ecker, W.Grimus and W.Konetschny, Nucl. Phys. B 191 (1981) 465 G.Ecker, W.Grimus and H.Neufeld, Nucl.Phys.B 229(1983) 421

Generalized CP Symmetry

CP Symmetry $\varphi(x) \xrightarrow{\text { CP }} X_{\mathbf{r}} \varphi^{*}\left(x^{\prime}\right), \quad x^{\prime}=(t,-\mathbf{x})$

$$
\begin{aligned}
& X_{\mathbf{r}}^{\nu T} m_{\nu L L} X_{\mathbf{r}}^{\nu}=m_{\nu L L}^{*} \\
& X_{\mathbf{r}}^{\ell \dagger}\left(m_{\ell}^{\dagger} m_{\ell}\right) X_{\mathbf{r}}^{\ell}=\left(m_{\ell}^{\dagger} m_{\ell}\right)^{*}
\end{aligned}
$$

Flavour Symmetry $\varphi(x) \xrightarrow{\mathbf{g}} \rho_{\mathbf{r}}(g) \varphi^{*}(x), \quad g \in G_{f}$

X_{r} must be consistent with Flavor Symmetry $\rho_{\mathbf{r}}(g)$

Suppose a symmetry including FLASY and $C P$ symmetry:
$G_{C P}=G_{f} \rtimes H_{C P}$
is broken to the subgroups in neutrino sector and charged lepton sector.

CP symmetry gives
$X_{\mathbf{r}}^{\nu T} m_{\nu L L} X_{\mathbf{r}}^{\nu}=m_{\nu L L}^{*}$
$X_{\mathbf{r}}^{\ell \dagger}\left(m_{\ell}^{\dagger} m_{\ell}\right) X_{\mathbf{r}}^{\ell}=\left(m_{\ell}^{\dagger} m_{\ell}\right)^{*}$

An example of S_{4} model

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180
One example of $S_{4}: G_{v}=\{S\}$ and $X_{3}{ }^{v}=\{U\}, X_{3}{ }^{\prime}=\{1\}$ satisfy the consistency condition

$$
X_{\mathbf{r}} \rho_{\mathbf{r}}^{*}(g) X_{\mathbf{r}}^{-1}=\rho_{\mathbf{r}}\left(g^{\prime}\right), \quad g, g^{\prime} \in G_{f}
$$

$$
\begin{gathered}
m_{\nu L L}=\alpha\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)+\beta\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\gamma\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)+\epsilon\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right) \\
\text { respects } \mathbf{G}_{\mathbf{v}}=\{\mathbf{S}\}
\end{gathered}
$$

CP symmetry $X_{\mathbf{r}}^{\nu T} m_{\nu L L} X_{\mathbf{r}}^{\nu}=m_{\nu L L}^{*}$

$$
1
$$

α, β, γ are real, ε is imaginary.

$$
\begin{aligned}
& V_{\nu}=\left(\begin{array}{ccc}
2 c / \sqrt{6} & 1 / \sqrt{3} & 2 s / \sqrt{6} \\
-c / \sqrt{6}+i s / \sqrt{2} & 1 / \sqrt{3} & -s / \sqrt{6}-i c / \sqrt{2} \\
-c / \sqrt{6}+i s / \sqrt{2} & 1 / \sqrt{3} & -s / \sqrt{6}+i c / \sqrt{2}
\end{array}\right) \\
& c=\cos \theta, s=\sin \theta \\
& \sin ^{2} \theta_{13}=\frac{2}{3} \sin ^{2} \theta, \sin ^{2} \theta_{12}=\frac{1}{2+\cos 2 \theta}, \sin ^{2} \theta_{23}=\frac{1}{2} \\
& \left|\sin \delta_{C P}\right|=1, \quad \sin \alpha_{21}=\sin \alpha_{31}=0
\end{aligned}
$$

$$
\delta_{\mathrm{CP}}= \pm \pi / 2
$$

The predicton of CP phase depends on the respected Generators of FLASY and CP symmetry. Typically, it is simple value, $0, \pi, \pm \pi / 2$.
$A_{4}, A_{5}, \Delta\left(6 N^{2}\right) \ldots$

3.4 Indirect approach of Flavor Symmetry

Model building by flavons

Flavor symmetry G is broken by flavon (SU_{2} singlet scalors) VEV's.
Flavor symmetry controls Yukaw couplings among leptons and flavons with special vacuum alignments.

Consider an example : A_{4} model

Leptons
\mathbf{A}_{4} triplets $\left(L_{e}, L_{\mu}, L_{\tau}\right)$

$$
\phi_{\nu}\left(\phi_{\nu 1}, \phi_{\nu 2}, \phi_{\nu 3}\right) \begin{aligned}
& \text { couple to } \\
& \text { neutrino sector } \\
& \phi_{E}\left(\phi_{E 1}, \phi_{E 2}, \phi_{E 3}\right)
\end{aligned}
$$

\mathbf{A}_{4} singlets $e_{R}: \mathbf{1} \mu_{R}: \mathbf{1}^{\prime \prime} \tau_{R}: \mathbf{1}^{\prime}$
Mass matrices are given by A_{4} invariant couplings with flavons

$$
\begin{aligned}
& 3_{\mathrm{L}} \times 3_{\mathrm{L}} \times 3_{\text {flavon }} \rightarrow 1, \quad 3_{\mathrm{L}} \times 1_{\mathrm{R}}{ }^{(\mathfrak{})(\text { (‘) }} \times 3_{\text {flavon }} \rightarrow 1 \\
& \text { G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) } 64
\end{aligned}
$$

Flavor symmetry G is broken by VEV of flavons

$$
\begin{gathered}
\mathbf{3}_{\mathbf{L}} \times \mathbf{3}_{\mathbf{L}} \times \mathbf{3}_{\text {flavon }} \mathbf{\rightarrow} \mathbf{1}
\end{gathered} \quad \mathbf{3}_{\mathbf{L}} \times \mathbf{1}_{\mathbf{R}}\left(\mathbf{1}_{\mathbf{R}}, \mathbf{1}_{\mathbf{R}} "\right) \times \mathbf{3}_{\text {flavon }} \rightarrow \mathbf{1}, ~\left(\begin{array}{ccc}
2\left\langle\phi_{\nu 1}\right\rangle & -\left\langle\phi_{\nu 3}\right\rangle & -\left\langle\phi_{\nu 2}\right\rangle \\
m_{\nu L L} \sim y\left(\begin{array}{ccc}
y_{e}\left\langle\phi_{E 1}\right\rangle & y_{e}\left\langle\phi_{E 3}\right\rangle & y_{e}\left\langle\phi_{E 2}\right\rangle \\
-\left\langle\phi_{\nu 3}\right\rangle & 2\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle \\
-\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle & 2\left\langle\phi_{\nu 3}\right\rangle
\end{array}\right) \quad m_{E} \sim\left(\begin{array}{cc}
y_{\mu}\left\langle\phi_{E 2}\right\rangle & \left.y_{\mu}\left\langle\phi_{E 1}\right\rangle\right\rangle \\
y_{\tau}\left\langle\phi_{E 3}\right\rangle & y_{\tau}\left\langle\phi_{E 2}\right\rangle \\
y_{\tau}\left\langle\phi_{E 1}\right\rangle
\end{array}\right)
\end{array}\right.
$$

However, specific Vacuum Alingnments preserve S and T generator.
Take $\left\langle\phi_{\nu 1}\right\rangle=\left\langle\phi_{\nu 2}\right\rangle=\left\langle\phi_{\nu 3}\right\rangle \quad$ and $\quad\left\langle\phi_{E 2}\right\rangle=\left\langle\phi_{E 3}\right\rangle=0$

$$
\Rightarrow \quad\left\langle\phi_{\nu}\right\rangle \sim(1,1,1)^{T}, \quad\left\langle\phi_{E}\right\rangle \sim(1,0,0)^{T}
$$

Then, $\left\langle\phi_{\nu}\right\rangle$ preserves S and $\left\langle\phi_{E}\right\rangle$ preserves T .
m_{E} is a diagonal matrix, on the other hand, $m_{V L L}$ is

$$
m_{\nu L L} \sim 3 y\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-y\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

two generated masses and one massless neutrinos! (0,3y, 3y)
Flavor mixing is not fixed!

Adding A_{4} singlet $\xi: \mathbf{1}$ in order to fix flavor mixing matrix.

$$
\begin{aligned}
& 3_{\mathrm{L}} \times \mathbf{3}_{\mathrm{L}} \times \mathbf{1}_{\text {flavon }} \rightarrow \mathbf{1} \\
& m_{\nu L L} \sim y_{1}\left(\begin{array}{ccc}
2\left\langle\phi_{\nu 1}\right\rangle & -\left\langle\phi_{\nu 3}\right\rangle & -\left\langle\phi_{\nu 2}\right\rangle \\
-\left\langle\phi_{\nu 3}\right\rangle & 2\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle \\
-\left\langle\phi_{\nu 2}\right\rangle & -\left\langle\phi_{\nu 1}\right\rangle & 2\left\langle\phi_{\nu 3}\right\rangle
\end{array}\right)+y_{2}\langle\xi\rangle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \left\langle\phi_{\nu 1}\right\rangle=\left\langle\phi_{\nu 2}\right\rangle=\left\langle\phi_{\nu 3}\right\rangle, \text { which preserves S symmetry. } \\
& m_{\nu L L}=3 a\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-a\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+b\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Flavor mixing is determined: Tri-bimaximal mixing. $\boldsymbol{\theta}_{13}=0$

$$
m_{\nu}=3 a+b, b, 3 a-b \Rightarrow m_{\nu_{1}}-m_{\nu_{3}}=2 m_{\nu_{2}}
$$

There appears a Neutrino Mass Sum Rule.
This is a minimal framework of A_{4} symmetry predicting mixing angles and masses.

A_{4} model easily realizes non-vanishing θ_{13}.

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

$$
\left.\begin{array}{c}
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}=a_{1} * b_{1}+a_{2} * b_{3}+a_{3} * b_{2} \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}^{\prime}=a_{1} * b_{2}+a_{2} * b_{1}+a_{3} * b_{3} \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}^{\prime \prime}=a_{1} * b_{3}+a_{2} * b_{2}+a_{3} * b_{1} \\
\mathbf{\xi} \\
\mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{array} \begin{array}{c}
\mathbf{1}^{\prime \prime} \times \mathbf{1}^{\prime} \Rightarrow \mathbf{1} \\
0
\end{array} \begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& M_{\nu}=a\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+b\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+c\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+d\left(\begin{array}{lll}
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
a=\frac{y_{\phi_{v}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \quad b=-\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3 \Lambda}, \quad c=\frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \quad d=\frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda} \quad a=-3 b
\end{array} . \quad \begin{array}{l}
\Lambda=-3
\end{array}\right)
\end{aligned}
$$

Both normal and inverted mass hierarchies are possible.
$M_{\nu}=V_{\text {tri-bi }}\left(\begin{array}{ccc}a+c-\frac{d}{2} & 0 & \frac{\sqrt{3}}{2} d \\ 0 & a+3 b+c+d & 0 \\ \frac{\sqrt{3}}{2} d & 0 & a-c+\frac{d}{2}\end{array}\right) V_{\text {tri-bi }}^{T}$ Tri-maximal mixing: TM2

$$
\Delta m_{31}^{2}=-4 a \sqrt{c^{2}+d^{2}-c d}, \quad \Delta m_{21}^{2}=(a+3 b+c+d)^{2}-\left(a+\sqrt{c^{2}+d^{2}-c d}\right)^{2}
$$

Inverted hierarchy

4 Minimal seesaw model with flavor symmetry

We search for a simple scheme to examine the flavor structure of quark/lepton mass matrices because the number of available data is much less than unknown parameters.

For neutrinos, 2 mass square differences, 3 mixing angles in experimental data however, 9 parameters in neutrino mass matrix

Remove a certain of parameters in neutrino mass matrix by assuming

2 Right-handed Majorana Neutrinos m_{1} or m_{3} vanishes

- Flavor Symmetry S_{4}

S_{4} : irreducible representations $1,1^{\prime}, 2,3,3{ }^{\prime}$

Assign: Lepton doublets L: 3^{\prime} Right-handed neutrinos V_{R} : 1
Introduce: two flavons (gauge singlet scalars) 3^{\prime} in $S_{4} \Phi_{\text {atm }}, \Phi_{\text {sol }}$

Consider specific vacuum alignments for 3^{\prime}

$$
\left\langle\phi_{\mathrm{atm}}\right\rangle \sim\left(\begin{array}{c}
\frac{b+c}{2} \\
c \\
b
\end{array}\right), \quad\left\langle\phi_{\mathrm{sol}}\right\rangle \sim\left(\begin{array}{c}
\frac{e+f}{2} \\
f \\
e
\end{array}\right)
$$

preserves $Z_{2}\{1, S U\}$ symmetry for 3^{\prime}.
S_{4} generators: S, T, U

$$
S U(U S)=\mp \frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & 2 & -1 \\
2 & -1 & 2
\end{array}\right) \quad \text { for } 3 \text { and 3'. } \quad S U\left(\begin{array}{c}
\frac{b+c}{2} \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
\frac{b+c}{2} \\
b \\
c
\end{array}\right)
$$

S_{4} invariant Yukawa Couplings

$$
\begin{aligned}
& \frac{y_{\text {atm }}}{\Lambda} \text { ata } L H_{u} \nu_{R 1}^{c}+\frac{y_{\text {sol }}}{\Lambda} \text { @sol } L H_{u} \nu_{R 2}^{c} \\
& 3^{\prime} \times 3^{\prime} \times 1 \\
& 3^{\prime} \times 3^{\prime} \times 1
\end{aligned}
$$

Since

$$
L\left(3^{\prime}\right) \phi\left(3^{\prime}\right)=L_{1} \phi_{1}+L_{2} \phi_{3}+L_{3} \phi_{2}
$$

we obtain a simple Dirac neutrino mass matrix.

$$
M_{D}=\left(\begin{array}{cc}
\frac{b+c}{2} & \frac{e+f}{2} \\
b & e \\
c & f
\end{array}\right)
$$

$$
M_{D}=\left(\begin{array}{cc}
\frac{b+c}{2} & \frac{e+f}{2} \\
b & e \\
c & f
\end{array}\right)
$$

$$
M_{R}=\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right)=M_{0}\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

After seesaw, Mv is rotated by $\mathrm{V}_{\text {TBM }}$

$$
\left(V_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)\right.
$$

$$
M_{\nu}=-M_{D} M_{R}^{-1} M_{D}^{T} \quad \hat{M}_{\nu} \equiv V_{\mathrm{TBM}}^{T} M_{\nu} V_{\mathrm{TBM}}
$$

$$
\hat{M}_{\nu}=\frac{1}{M_{0}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{3}{4}\left((b+c)^{2} p+(e+f)^{2}\right) & \frac{1}{2} \sqrt{\frac{3}{2}}\left(\left(c^{2}-b^{2}\right) p-e^{2}+f^{2}\right) \\
0 & \frac{1}{2} \sqrt{\frac{3}{2}}\left(\left(c^{2}-b^{2}\right) p-e^{2}+f^{2}\right) & \frac{1}{2}\left((b-c)^{2} p+(e-f)^{2}\right)
\end{array}\right)
$$

Trimaximal mixing $T M_{1}$

$$
U_{\mathrm{PMNS}}=V_{\mathrm{TBM}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & e^{-i \sigma} \sin \phi \\
0 & -e^{i \sigma} \sin \phi & \cos \phi
\end{array}\right)
$$

$m_{1}=0$: Normal Hierarchy of Neutrino Masses

Prediction of CP violation

Input Data (Global Analyses) 2 masses, 3 mixing angles Output: $C P$ violating phase $\delta_{C P}$

$$
M_{D}=\left(\begin{array}{cc}
\frac{b+c}{2} & \frac{e+f}{2} \\
b & e \\
c & f
\end{array}\right)
$$

4 real parameters
2 phases
 is allowed

3 real parameters + 1 phase Arg $[b / f]=\Phi_{B}$
King et al. $\quad M_{D}=\left(\begin{array}{cc}0 & f \\ b & 3 f \\ -b & -f\end{array}\right)$
2 real parameters + 1 phase

$k=e / f$

Input of cosmological baryon asymmetry

by leptogenesis with $M_{1} \ll M_{2}$

Y.Shimzu, K, Takagi and M.T (2017)

4 Prospect

Quark Sector ?

\#How can Quarks and Leptons become reconciled?
$\mathrm{T}^{\prime}, \mathrm{S}_{4}, A_{5}$ and $\Delta(96) \quad S U(5)$
$S_{3}, S_{4}, \Delta(27)$ and $\Delta(96)$ can be embeded in SO(10) GUT.
A_{4} and $S_{4} \quad$ PS
For example: See references S.F. King, 1701.0441
quark sector (2,1) for $S U(5) 10$
lepton sector (3) for SU(5) 5
Different flavor structures of quarks and leptons appear! Cooper, King, Luhn (2010,2012), Callen, Volkas (2012), Meroni, Petcov, Spinrath (2012) Antusch, King, Spinrath (2013), Gehrlein, Oppermann, Schaefer, Spinrath (2014) Gehrlein, Petcov,Spinrath (2015), Bjoreroth, Anda, Medeiros Varzielas, King (2015) ...

Origin of Cabibbo angle ?

$\not \approx$ Flavour symmetry in Higgs sector ?

Does a Finite group control Higgs sector ? 2HDM, 3HDM ...
an interesting question since Pakvasa and Sugawara 1978

\# How is Flavor Symmetry tested?

* Mixing angle sum rules

Example: TM1 $\begin{aligned} \sin ^{2} \theta_{23}=\frac{1}{2} \frac{1}{\cos ^{2} \theta_{13}} \geq \frac{1}{2}, & \sin ^{2} \theta_{12} \simeq \frac{1}{\sqrt{3}}-\frac{2 \sqrt{2}}{3} \sin \theta_{13} \cos \delta_{C P}+\frac{1}{3} \sin ^{2} \theta_{13} \cos 2 \delta_{C P} \\ \text { TM2 } & \sin ^{2} \theta_{12}=\frac{1}{3} \frac{1}{\cos ^{2} \theta_{13}} \geq \frac{1}{3}, \quad \cos \delta_{C P} \tan 2 \theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}}\left(1-\frac{5}{4} \sin ^{2} \theta_{13}\right)\end{aligned}$

* Neutrino mass sum rules in FLASY \Leftrightarrow neutrinoless double beta decays
* Prediction of CP violating phase.

We obtained the predictable minimal seesaw mass matrices, which is based on

- Two right-handed Majorana neutrinos M_{1} and M_{2}
- Trimaximal mixing

This is reproduced by the S_{4} flavor symmetry.

$$
M_{D}=v Y_{\nu}=v\left(\begin{array}{cc}
0 & \frac{e+f}{2} \\
b & e \\
-b & f
\end{array}\right)
$$

Three real parameters and one phase

Normal Hierarchy of masses
will be tested by $\delta_{C P}$ and $\sin ^{2} \theta_{23}$.

The cosmological baryon asymmetry can determine the sign of $\delta_{C P}$ by leptogenesis!

Backup slides

A lager group

is constructed from more than two groups by a certain product.
A simple one is the direct product.
Consider e.g. two groups G_{1} and G_{2}. Their direct product is denoted as $G_{1} \times G_{2}$. $\left.\begin{array}{l}\text { Multiplication } \\ \text { rule }\end{array} \boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}\right)\left(\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}\right)=\left(\boldsymbol{a}_{\mathbf{1}} \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}} \boldsymbol{b}_{2}\right)$ for $a_{1}, b_{1} \in G_{1}$ and $a_{2}, b_{2} \in G_{2}$
(outer) semi-direct product
It is defined such as

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} f_{a 2}\left(b_{1}\right), a_{2} b_{2}\right) \text { for } a_{1}, b_{1} \in G_{1} \text { and } a_{2}, b_{2} \in G_{2}
$$

where $\boldsymbol{f}_{\mathrm{a} 2}\left(\mathbf{b}_{1}\right)$ denotes a homomorphic map from G_{2} to G_{1}.
This semi-direct product is denoted as $G_{1} \rtimes_{f} G_{2}$.
We consider the group G and its subgroup H and normal subgroup N , whose elements are h_{i} and n_{j}, respectively.

When $G=N H=H N$ and $N \cap H=\{e\}$, the semi-direct product $N \rtimes_{f} H$ is isomorphic to G, where we use the map f as $\boldsymbol{f}_{\boldsymbol{h i}}\left(\boldsymbol{n}_{\boldsymbol{j}}\right)=\boldsymbol{h}_{\boldsymbol{i}} \boldsymbol{n}_{\boldsymbol{j}}\left(\boldsymbol{h}_{\boldsymbol{j}}\right)^{-1}$.

Since $\left(\chi_{1^{\prime}}\left(C_{2}\right)\right)^{3}=1, \quad\left(\chi_{1^{\prime}}\left(C_{3}\right)\right)^{2}=1$ are satisfied,

Orthogonarity conditions determine the Character Table

	h	χ_{1}	$\chi_{1^{\prime}}$	χ_{2}
C_{1}	1	1	1	2
C_{2}	3	1	1	-1
C_{3}	2	1	-1	0

$$
C_{1}:\{e\}, \quad C_{2}:\{a b, b a\}, C_{3}:\{a, b, b a b\}
$$

By using this table, we can construct the representation matrix for 2 .
Because of $\chi_{2}\left(C_{3}\right)=0$, we choose $a=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad \mathbf{C}_{3}:\{\mathbf{a}, \mathbf{b}, \mathbf{b a b}\}$
Recalling $\boldsymbol{b}^{\mathbf{2}}=\mathbf{e}$, we can write $\quad b=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right), \quad b a b=\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$

$$
\mathbf{C}_{2}:\{\mathbf{a b}, \mathbf{b a}\} \quad a b=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \quad b a=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Consider the case of A_{4} flavor symmetry:

 A_{4} has subgroups:three Z_{2}, four Z_{3}, one $Z_{2} \times Z_{2}$ (klein four-group)
$\mathrm{Z}_{2}:\{1, \mathrm{~S}\},\left\{1, \mathrm{~T}^{2} \mathrm{ST}\right\},\left\{1, T S T^{2}\right\}$

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

$Z_{3}:\left\{1, T, T^{2}\right\},\left\{1, S T, T^{2} S\right\},\left\{1, T S, S T^{2}\right\},\left\{1, S T S, S T^{2} S\right\}$
$K_{4}:\left\{1, S, T^{2} S T, T S T^{2}\right\}$
Suppose A_{4} is spontaneously broken to one of subgroups:
Neutrino sector preserves

$$
Z_{2}:\{1, S\}
$$

Charged lepton sector preserves $\mathrm{Z}_{3}:\left\{1, \mathrm{~T}, \mathrm{~T}^{2}\right\}$

$$
\begin{gathered}
S^{T} m_{L L}^{\nu} S=m_{L L}^{\nu}, \quad T^{\dagger} Y_{e} Y_{e}^{\dagger} T=Y_{e} Y_{e}^{\dagger} \\
{\left[S, m_{L L}^{\nu}\right]=0, \quad\left[T, Y_{e} Y_{e}^{\dagger}\right]=0}
\end{gathered}
$$

Mixing matrices diagonalise $m_{L L}^{\nu}, Y_{e} Y_{e}^{\dagger}$ also diagonalize S and T, respectively!

For the triplet, the representations are given as

$$
\begin{gathered}
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) ; \omega=e^{2 \pi i / 3} \\
V_{\nu}^{T} S V_{\nu}=\operatorname{diag}(\subseteq 1,1,-\subseteq) \\
V_{\nu}=\left(\begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & 0 \\
-c / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
\end{gathered}
$$

Independent of mass eigenvalues!
Freedom of the rotation between $1^{\text {st }}$ and $3^{\text {rd }}$ column because a column corresponds to a mass eigenvalue.

Then, we obtain PMNS matrix.

$\left.V_{\nu}=\left(\begin{array}{c|c}2 c / \sqrt{6} & 1 / \sqrt{3} \\ -c / \sqrt{6}+s / \sqrt{2} & 2 s / \sqrt{6} \\ -c / \sqrt{6}-s / \sqrt{2} & 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right)-s / \sqrt{6}-c / \sqrt{2} \begin{array}{l}6+c / \sqrt{2}\end{array}\right)$
$c=\cos \theta, \quad s=\sin \theta$
Tri-maximal mixing : so called TM_{2}
Θ is not fixed.
Semi-direct model
In general, s is complex.
CP symmetry can predict this phase as seen later.
another Mixing sum rules
$\sin ^{2} \theta_{12}=\frac{1}{3} \frac{1}{\cos ^{2} \theta_{13}} \geq \frac{1}{3}, \quad \cos \delta_{C P} \tan 2 \theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}}\left(1-\frac{5}{4} \sin ^{2} \theta_{13}\right)$

A_{4} model easily realizes non-vanishing θ_{13}.

Modify G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) 64

	$\left(l_{e}, l_{\mu}, l_{\tau}\right)$	e^{c}	μ^{c}	τ^{c}	$h_{u, d}$	ϕ_{l}	ϕ_{ν}	ξ	$(\mathfrak{\xi})$
$S U(2)$	2	1	1	1	2	1	1	1	1
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	3	3	1	1^{\prime}
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	1	1	ω	ω	ω

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

$$
\begin{array}{cc}
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} & =a_{1} * b_{1}+a_{2} * b_{3}+a_{3} * b_{2} \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}^{\prime} & =a_{1} * b_{2}+a_{2} * b_{1}+a_{3} * b_{3} \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}^{\prime \prime}=a_{1} * b_{3}+a_{2} * b_{2}+a_{3} * b_{1} \\
(\xi & \left(\begin{array}{c}
\\
\mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1}
\end{array}\right. \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \mathbf{1}^{\prime \prime} \times \mathbf{1}^{\prime} \Rightarrow \mathbf{1} \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

TM_{1} with NH

$$
M_{D}=\left(\begin{array}{cc}
\frac{b+c}{2} & \frac{e+f}{2} \\
b & e \\
c & f
\end{array}\right)
$$

After rotating $\mathbf{M v}$ by $\mathrm{V}_{\mathrm{TBM}} \quad \hat{M}_{\nu} \equiv V_{\mathrm{TBM}}^{T} M_{\nu} V_{\mathrm{TBM}}, \quad V_{\mathrm{TBM}}=\left(\begin{array}{ccc}\frac{\sqrt{6}}{\sqrt{\frac{1}{2}}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \text { we obtain } & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}}\end{array}\right)$

$$
\hat{M}_{\nu}=\frac{1}{M_{0}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{3}{4}\left((b+c)^{2} p+(e+f)^{2}\right) & \frac{1}{2} \sqrt{\frac{3}{2}}\left(\left(c^{2}-b^{2}\right) p-e^{2}+f^{2}\right) \\
0 & \frac{1}{2} \sqrt{\frac{3}{2}}\left(\left(c^{2}-b^{2}\right) p-e^{2}+f^{2}\right) & \frac{1}{2}\left((b-c)^{2} p+(e-f)^{2}\right)
\end{array}\right) \mathbf{m}_{1}=\mathbf{0}
$$

$$
\begin{aligned}
& m_{2}^{2}+m_{3}^{2}=\frac{f^{4}}{16}\left[B^{4}\left(5 j^{2}+2 j+5\right)^{2}+2 B^{2}(5 j k+j+k+5)^{2} \cos 2 \phi_{B}+\left(5 k^{2}+2 k+5\right)^{2}\right] \\
& m_{2}^{2} m_{3}^{2}=\frac{9}{4}(j-k)^{4} B^{4} f^{8} \quad \frac{e}{f}=k, \quad \frac{b}{c}=j, \quad \frac{c}{f}=B e^{i \phi_{B}}
\end{aligned}
$$

Leptogenesis

CP lepton asymmetry

at the decay of the lighter right-handed Majorana neutrino N_{1}

$$
\epsilon_{N_{1}} \simeq-\frac{3}{16 \pi} \sum_{j} \frac{\operatorname{Im}\left[\left\{\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{j 1}\right\}^{2}\right]}{\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{11}} \frac{1}{p} \quad \mathrm{P}=\mathbf{M}_{\mathrm{R} 2} / \mathbf{M}_{\mathrm{R} 1}
$$

assumption
SM with two right-handed neutrinos

$$
\frac{\operatorname{Im}\left[\left\{\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{21}\right\}^{2}\right]}{\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{11}}=\frac{1}{2} f^{2}(k-1)^{2} \sin 2 \phi_{B}
$$

$$
Y_{B-L}=-\epsilon_{N_{1}} \kappa Y_{N_{1}}^{e q}\left(T \gg M_{1}\right) \quad \eta_{B} \equiv \frac{n_{B}}{n_{\gamma}}=7.04 \times \frac{28}{79} Y_{B-L}
$$

η_{B} is proportional to $(k-1)^{2} \sin 2 \Phi_{B}$
$J_{C P}$ is proportional to $(k-1)(k-1)^{5} \sin 2 \Phi_{B}$

Correlation between $\delta_{C P}$ and cosmological baryon asymmetry

$$
M_{D}=v Y_{\nu}=v\left(\begin{array}{cc}
0 & \frac{e+f}{2} \\
b & e \\
-b & f
\end{array}\right) \quad \frac{e}{f}=k, \quad \arg [b]=\phi_{B}, \quad \frac{b}{f}=B e^{i \phi_{B}}
$$

$$
J_{C P}=-\frac{3}{8} \frac{f^{12}}{M_{0}^{6}}(B \sqrt{p})^{6}(k-1)(k+1)^{5} \sin 2 \phi_{B} \frac{v^{12}}{\left(\Delta m_{13}^{2}-\Delta m_{12}^{2}\right) \Delta m_{13}^{2} \Delta m_{12}^{2}}
$$

$J_{C P}$ is proportional to

 $\sin 2 \phi_{B}$ for $-1 \leq k \leq 1 ;$$$
-\sin 2 \phi_{B} \text { for } k \leq-1, k \geq 1
$$

$$
k=-11 \sim-2,-0.1 \sim-0.5
$$

Inputting $\quad \eta_{B}=(5.8-6.6) \times 10^{-10} 95 \%$ C.L.

$$
\begin{aligned}
& M_{D}=v Y_{\nu}=v\left(\begin{array}{cc}
0 & \frac{e+f}{2} \\
b & e \\
-b & f
\end{array}\right) \\
& \frac{e}{f}=k, \quad \arg [b]=\phi_{B}, \quad \frac{b}{f}=B e^{i \phi_{B}}
\end{aligned}
$$

Our Dirac neutrino mass matrix predicts both the signs of $\delta_{C P}$ and cosmological baryon asymmetry

$$
\begin{gathered}
M_{D}=\left(\begin{array}{cc}
0 & 2 f \\
b & 5 f \\
-b & -f
\end{array}\right), \quad\left(\begin{array}{cc}
0 & f \\
b & 4 f \\
-b & -2 f
\end{array}\right), \quad\left(\begin{array}{cc}
0 & f \\
b & 3 f \\
-b & -f
\end{array}\right) \\
K=-5 \quad \begin{array}{l}
\text { King, et al. }
\end{array}
\end{gathered}
$$

is preferred by T2K and Nova data if M2> M1.

$$
\delta_{C P}<0 \quad \eta_{B}>0
$$

3.2 Origin of Flavor symmetry

Is it possible to realize such discrete symmetres in string theory? Answer is yes!

Superstring theory on a certain type of six dimensional compact space leads to stringy selection rules for allowed couplings among matter fields in four-dimensional effective field theory.

Such stringy selection rules and geometrical symmetries result in discrete flavor symmetries in superstring theory.

- Heterotic orbifold models (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)
- Magnetized/Intersecting D-brane Model (Kitazawa, Higaki, Kobayashi,Takahashi, 06) (Abe, Choi, Kobayashi, HO, 09, 10)

Stringy origin of non-Abelian discrete flavor symmetries
T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz, hep-ph/0611020

$\mathrm{D}_{4}, \Delta(54)$

Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models
H. Abe, K-S. Choi, T. Kobayashi, H. Ohki, 0904.2631
$\mathrm{D}_{4}, \Delta(27), \Delta(54)$
Non-Abelian Discrete Flavor Symmetry from \mathbf{T}^{2} / Z_{N} Orbifolds A.Adulpravitchai, A. Blum, M. Lindner, 0906.0468
$A_{4}, S_{4}, D_{3}, D_{4}, D_{6}$
Non-Abelian Discrete Flavor Symmetries of 10D SYM theory with Magnetized extra dimensions
H. Abe, T. Kobayashi, H. Ohki, K.Sumita, Y. Tatsuta 1404.0137
$\mathrm{S}_{3}, \Delta(27), \Delta(54)$

S^{1} / \mathbf{Z}_{2} orbifold (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)

There are two fixed point under the orbifold twist
These two fixed points can be represented by space group elements which act (θ, v)

$$
(\theta, v) \alpha=\theta \alpha+v
$$

e_{1} : shift vector in one torus $\quad\left(y \sim y+e_{1}\right)$
charge assignment of $Z_{2}:\binom{1}{2} \rightarrow\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{2}$ (stringy selection rule: Coupling is only allowed in matching of the string boundary conditions)

Discrete flavor symmetry from orbifold S^{1} / Z_{2}

This effective Lagrangian also have permutation symmetry of these two fixed point (orbifold geometry).

$$
\binom{1}{2} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{2}=\binom{2}{1}
$$

Closed algebra of these transformations $\quad\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$

$$
\Rightarrow D_{4} \sim S^{2} \cup\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)
$$

Two field localized at two fixed points : doublet of D4 2
Bulk mode (untwisted mode) : singlet of D4 1

Thus full symmetry is larger than geometric symmetry

Alternatively, discrete flavor symmetries may be originated from continuous symmetries

S. King

Restrictions by mass sum rules on $\left|m_{e e}\right|$

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901

Mass sum rules in $A_{4}, T^{\prime}, S_{4}, A_{5}, \Delta(96) \ldots$

(Talk of Spinrath) Barry, Rodejohann, NPB842(2011) arXiv:1007.5217
Different types of neutrino mass spectra correspond to the neutrino mass generation mechanism.

$$
\begin{array}{ll}
\chi \tilde{m}_{2}+\xi \tilde{m}_{3}=\tilde{m}_{1} & (X=2, \xi=1) \quad(X=-1, \xi=1) \\
\frac{\chi}{\tilde{m}_{2}}+\frac{\xi}{\tilde{m}_{3}}=\frac{1}{\tilde{m}_{1}} & \mathbf{M}_{\mathbf{R}} \text { structre in See-saw } \\
\chi \sqrt{\tilde{m}_{2}}+\xi \sqrt{\tilde{m}_{3}}=\sqrt{\tilde{m}_{1}} & \mathbf{M}_{\mathbf{D}} \text { structre in See-saw } \\
\frac{\chi}{\sqrt{\tilde{m}_{2}}}+\frac{\xi}{\sqrt{\tilde{m}_{3}}}=\frac{1}{\sqrt{\tilde{m}_{1}}} & \mathbf{M}_{\mathbf{R}} \text { in inverse See-saw }
\end{array}
$$

X and ξ are model specific complex parameters
King, Merle, Stuart, JHEP 2013, arXiv:1307.2901 King, Merle, Morisi, Simizu, M.T, arXiv: 1402.4271

Let us study irreducible representations of S_{3}.
The number of irreducible representations must be equal to three, because there are three conjugacy classes.

These elements are classified to three conjugacy classes,
$C_{1}:\{e\}, C_{2}:\{a b, b a\}, C_{3}:\{a, b, b a b\}$.
The subscript of C_{n}, n, denotes the number of elements in the conjugacy class C_{n}. Their orders are found as
$(a b)^{3}=(b a)^{3}=e, \quad a^{2}=b^{2}=(b a b)^{2}=e$
Due to the orthogonal relation

$$
\begin{gathered}
\sum_{\alpha}\left[\chi_{\alpha}\left(C_{1}\right)\right]^{2}=\sum_{n} m_{n} n^{2}=m_{1}+4 m_{2}+9 m_{3}+\cdots=6 \\
\sum_{n} m_{n}=3 \quad m_{n} \geq 0
\end{gathered}
$$

We obtain a solution: $\left(m_{1}, m_{2}\right)=(2,1)$
Irreducible representations of S_{3} are two singlets 1 and 1^{\prime}, one doublet 2.

All permutations of S_{3} are represented on the reducible triplet $\left(x_{1}, x_{2}, x_{3}\right)$ as

$$
\begin{aligned}
& \left.\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \begin{array}{l}
\mathbf{e}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
\mathbf{a}_{1}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{3}\right) \\
\mathbf{a}_{2}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{3}, \mathbf{x}_{2}, \mathbf{x}_{1}\right) \\
\mathbf{a}_{3}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{2}\right) \\
\mathbf{a}_{4}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{3}, \mathbf{x}_{1}, \mathbf{x}_{2}\right) \\
\mathbf{a}_{5}:\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \rightarrow\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}\right)
\end{array} \begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

We change the representation through the unitary transformation, $\mathrm{U}^{\dagger} \mathrm{g} \mathrm{U}$, e.g. by using the unitary matrix $U_{\text {tribi, }}$

$$
\text { Then, the six elements of } S_{3} \text { are written as } \quad U_{\text {tribi }}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

These are completely reducible and that the (2×2) submatrices are exactly the same as those for the doublet representation. The unitary matrix $U_{\text {tribi }}$ is called tri-bimaximal matrix.

$$
\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right),\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right),\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right),
$$
 $$
\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right),\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{array}\right),\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)
$$

T' group

Double covering group of $A_{4}, 24$ elements
24 elements are generated by S, T and R : $S^{2}=R, \quad T^{3}=R^{2}=1$,
$(S T)^{3}=1, \quad R T=T R$
Ireducible representations
1, 1', 1", 2, 2', 2", 3
For triplet $R=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

	h	χ_{1}	$\chi_{1^{\prime}}$	$\chi_{1^{\prime \prime}}$	χ_{2}	$\chi_{2^{\prime}}$	$\chi_{2^{\prime \prime}}$	χ_{3}
C_{1}	1	1	1	1	2	2	2	3
C_{1}^{\prime}	2	1	1	1	-2	-2	-2	3
C_{4}	3	1	ω	ω^{2}	-1	$-\omega$	$-\omega^{2}$	0
C_{4}^{\prime}	3	1	ω^{2}	ω	-1	$-\omega^{2}$	$-\omega$	0
$C_{4}^{\prime \prime}$	6	1	ω	ω^{2}	1	ω	ω^{2}	0
$C_{4}^{\prime \prime \prime}$	6	1	ω^{2}	ω	1	ω^{2}	ω	0
C_{6}	4	1	1	1	0	0	0	-1

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right), \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) ; \quad \omega=e^{2 \pi i / 3}
$$

TM $_{1}$ with IH $\quad m_{3}=0$

After taking $M_{D}=\left(\begin{array}{cc}-2 b & \frac{e+f}{2} \\ b & e \\ b & f\end{array}\right)$, we get

$$
\begin{aligned}
\hat{M}_{\nu} & =\frac{1}{M_{0}}\left(\begin{array}{ccc}
6 b^{2} & 0 & 0 \\
0 & \frac{3}{4}(e+f)^{2} & -\frac{1}{2} \sqrt{\frac{3}{2}}(e-f)(e+f) \\
0 & -\frac{1}{2} \sqrt{\frac{3}{2}}(e-f)(e+f) & \frac{1}{2}(e-f)^{2}
\end{array}\right) \\
& =\frac{6 b^{2}}{M_{0}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{f^{2}}{M_{0}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{3}{4}\left(k e^{i \phi_{k}}\right. \\
0 & -\frac{1}{2} \sqrt{\frac{3}{2}}\left(k^{2} e^{2 i \phi_{k}}-1\right) & -\frac{1}{2} \sqrt{\frac{3}{2}}\left(k^{2} e^{2 i \phi_{k}}-1\right) \\
\frac{1}{2}\left(k e^{i \phi_{k}}-1\right)^{2}
\end{array}\right)
\end{aligned}
$$

Mixing angles and CP phase are given only by k and Φ_{k}

TM $_{2}$ with NH or IH $m_{1}=0$ or $m_{3}=0$

After taking $M_{D}=\left(\begin{array}{cc}b & -e-f \\ b & e \\ b & f\end{array}\right)$, we get

$$
\begin{aligned}
\hat{M}_{\nu} & =\frac{1}{M_{0}}\left(\begin{array}{ccc}
\frac{3}{2}(e+f)^{2} & 0 & \frac{\sqrt{3}}{2}\left(e^{2}-f^{2}\right) \\
0 & 3 b^{2} & 0 \\
\frac{\sqrt{3}}{2}\left(e^{2}-f^{2}\right) & 0 & \frac{1}{2}(e-f)^{2}
\end{array}\right) \\
& =\frac{3 b^{2}}{M_{0}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{f^{2}}{M_{0}}\left(\begin{array}{ccc}
\frac{3}{2}\left(k e^{i \phi_{k}}+1\right)^{2} & 0 & \frac{\sqrt{3}}{2}\left(k^{2} e^{2 i \phi_{k}}-1\right) \\
0 & 0 & 0 \\
\frac{\sqrt{3}}{2}\left(k^{2} e^{2 i \phi_{k}}-1\right) & 0 & \frac{1}{2}\left(k e^{i \phi_{k}}-1\right)^{2}
\end{array}\right)
\end{aligned}
$$

TM $_{2}$ with NH or IH $m_{1}=0$ or $m_{3}=0$

After taking $M_{D}=\left(\begin{array}{cc}b & -e-f \\ b & e \\ b & f\end{array}\right)$, we get

$$
\begin{aligned}
\hat{M}_{\nu} & =\frac{1}{M_{0}}\left(\begin{array}{ccc}
\frac{3}{2}(e+f)^{2} & 0 & \frac{\sqrt{3}}{2}\left(e^{2}-f^{2}\right) \\
0 & 3 b^{2} & 0 \\
\frac{\sqrt{3}}{2}\left(e^{2}-f^{2}\right) & 0 & \frac{1}{2}(e-f)^{2}
\end{array}\right) \\
& =\frac{3 b^{2}}{M_{0}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{f^{2}}{M_{0}}\left(\begin{array}{ccc}
\frac{3}{2}\left(k e^{i \phi_{k}}+1\right)^{2} & 0 & \frac{\sqrt{3}}{2}\left(k^{2} e^{2 i \phi_{k}}-1\right) \\
0 & 0 & 0 \\
\frac{\sqrt{3}}{2}\left(k^{2} e^{2 i \phi_{k}}-1\right) & 0 & \frac{1}{2}\left(k e^{i \phi_{k}}-1\right)^{2}
\end{array}\right)
\end{aligned}
$$

TM_{1} with IH in S_{4} flavor symmetry

$$
\begin{aligned}
& 3 \times 3 \times 1 \quad 3^{\prime} \times 3 \times 1^{\prime} \\
& \frac{y_{\mathrm{atm}}}{\Lambda} \phi_{\mathrm{atm}} L H_{u} \nu_{R 1}^{c}+\frac{y_{\mathrm{sol}}}{\Lambda} \phi_{\mathrm{sol}} L H_{u} \nu_{R 2}^{c} \\
& M_{D}=\left(\begin{array}{cc}
-2 b & \frac{e+f}{2} \\
b & e \\
b & f
\end{array}\right) \\
& \left.\left.\begin{array}{c}
\left\langle\phi_{\text {atm }}\right\rangle \\
3
\end{array}\right) \sim\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right), \quad \begin{array}{c}
\left\langle\phi_{\text {sol }}\right\rangle \\
3
\end{array}\right) \sim\left(\begin{array}{c}
\frac{e+f}{2} \\
f \\
e
\end{array}\right) \\
& \left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \text { preserves SU symmetry for } 3 .
\end{aligned}
$$

TM_{2} with NH or IH in A_{4} or S_{4} flavor symmetry
preserves S symmetry for 3 .

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad \begin{gathered}
\text { for } 3 \\
\text { and } 3
\end{gathered}
$$

S is a generator of A_{4} and S_{4} generator

$$
\left(\begin{array}{c}
-e-f \\
e \\
f
\end{array}\right)
$$

breaks $S, T, U, S U$ unless $e=f$.
We need auxiliary Z_{2} symmetry to obtain

$$
M_{D}=\left(\begin{array}{cc}
b & -e-f \\
b & e \\
b & f
\end{array}\right)
$$

TM_{1} with IH $\mathrm{m}_{3}=0$

$$
M_{D}=\left(\begin{array}{cc}
-2 b & \frac{e+f}{2} \\
b & e \\
b & f
\end{array}\right)
$$

$$
\frac{e}{f}=k e^{i \phi_{k}}
$$

$\mathrm{k}=|\mathrm{e} / \mathrm{f}|=0.65 \sim 1.37 \quad \Phi_{\mathrm{k}}= \pm\left(25^{\circ} \sim 38^{\circ}\right)$
$\left|\mathrm{m}_{\mathrm{ee}}\right| \sim 50 \mathrm{meV}$

TM_{2} with $\mathrm{NH} \quad \mathrm{m}_{1}=0$

$$
M_{D}=\left(\begin{array}{cc}
-2 b & \frac{e+f}{2} \\
b & e \\
b & f
\end{array}\right)
$$

$\cos \delta_{C P} \tan 2 \theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}}\left(1-\frac{5}{4} \sin ^{2} \theta_{13}\right)$

Predicted $\delta_{C P}$ is sensitive to k

$$
\begin{gathered}
k=|e / f|=0.78 \sim 1.24 \quad \Phi_{\mathrm{k}}= \pm\left(165^{\circ} \sim 180^{\circ}\right) \\
\left|\mathrm{m}_{\mathrm{ee}}\right|=(2 \sim 4) \mathrm{meV}
\end{gathered}
$$

TM_{2} with IH $\mathrm{m}_{3}=0$

$$
M_{D}=\left(\begin{array}{cc}
-2 b & \frac{e+f}{2} \\
b & e \\
b & f
\end{array}\right)
$$

$$
\cos \delta_{C P} \tan 2 \theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}}\left(1-\frac{5}{4} \sin ^{2} \theta_{13}\right)
$$

$$
\frac{e}{f}=k e^{i \phi_{k}}
$$

$k=|e / f|=0.49 \sim 1.95$
$\Phi_{\mathrm{k}}=-40^{\circ} \sim 40^{\circ}$
$\left|\mathrm{m}_{\mathrm{ee}}\right| \sim 50 \mathrm{meV}$

Combined result

e/f will be fixed by the observation of $\delta_{c p}$.

Predictions at arbitrary c/b=j

case 1: $c / b=-1$, case 2: $c / b=-\infty$, case 3: $c / b=0$

Subgroups and decompositions of multiplets

S_{4} group is isomorphic to $\Delta(24)=\left(Z_{2} \times Z_{2}\right) \rtimes S_{3}$.
A_{4} group is isomorphic to $\Delta(12)=\left(Z_{2} \times Z_{2}\right) \rtimes Z_{3}$.

$$
S_{4} \rightarrow\left(Z_{2} \times Z_{2}\right) \rtimes Z_{2}
$$

Subgroups and decompositions of multiplets

A_{4} group is isomorphic to $\Delta(12)=\left(Z_{2} \times Z_{2}\right) \rtimes Z_{3}$.

$$
\begin{aligned}
& \begin{array}{ccccc}
\mathrm{A}_{4} \rightarrow \mathrm{Z}_{3}
\end{array} \begin{array}{ccc}
A_{4} \simeq \Delta(12) & \mathbf{1}_{k} & 3
\end{array} \quad(\mathrm{k}=0,1,2) \\
& \mathrm{A}_{4} \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2} \\
& \begin{array}{ccc}
A_{4} \simeq \Delta(12) & \mathbf{1}_{k} & \mathbf{3} \\
& \downarrow & \downarrow \\
Z_{2} \times Z_{2} & \mathbf{1}_{0,0} & \mathbf{1}_{1,1}+\mathbf{1}_{0,1}+\mathbf{1}_{1,0}
\end{array}
\end{aligned}
$$

Subgroups and decompositions of multiplets

$$
\mathrm{A}_{5} \rightarrow \mathrm{~A}_{4}
$$

$\mathrm{A}_{5} \rightarrow \mathrm{~S}_{3} \simeq \mathrm{D}_{3}$

$$
\begin{array}{cccccc}
A_{5} & 1 & 3 & 3^{\prime} & 4 & 5 \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
D_{3} & 1_{+} & 1_{-}+2 & 1_{-}+2 & 1_{+}+1_{-}+2 & 1_{+}+2+2
\end{array}
$$

$$
\mathrm{A}_{5} \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2}
$$

$$
\begin{array}{ll}
K_{1}=\left\{v_{1}, v_{2}, v_{3}, e\right\}, & K_{2}=\left\{v_{4}, v_{5}, v_{6}, e\right\} \\
K_{3}=\left\{v_{7}, v_{8}, v_{9}, e\right\} & 5 \text { Klein four groups } \\
K_{4}=\left\{v_{10}, v_{11}, v_{12}, e\right\} & \text { and } K_{5}=\left\{v_{13}, v_{14}, v_{15}, e\right\}
\end{array}
$$

$$
\begin{array}{lllll}
v_{1}=s, & v_{2}=s t^{2} s t^{3} s t^{2}, & v_{3}=t^{2} s t{ }^{3} s t^{2}, & v_{4}=t^{4} s t, & v_{5}=s t^{3} s t^{2} s, \\
v_{6}=t^{2} s t^{3} s t s, & v_{7}=t s t^{4}, \\
v_{11}=t^{2} s t^{3}, & v_{12}=t s t^{3} s t^{2} s, & v_{8}=s t^{2} s t^{3} s, & v_{9}=s t s t_{13}=t s t^{2} s, & v_{14}=t^{3} s t^{2},
\end{array} v_{10}=s t_{15}=s t^{2} s t, s t^{3} s t .
$$

Monstrous moonshine

Modular J function

$$
\begin{gathered}
J(q)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3} \\
+20245856256 q^{4}+333202640600 q^{5}+\cdots
\end{gathered}
$$

$$
q=e^{2 \pi i \tau}, \operatorname{Im}(\tau)>0, J(\tau)=J\left(\frac{a \tau+b}{c \tau+d}\right),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z)
$$

It turns out q-expansion coefficients of J-function are decomposed into a sum of dimensions of some
irreducible representations of the monster group M

$$
\begin{aligned}
& 196884=1+196883,21493760=1+196883+21296876 \\
& 864299970=2 \times 1+2 \times 196883+21296876+842609326 \\
& 20245856256=1 \times 1+3 \times 196883+2 \times 21296876 \\
& +842609326+19360062527, \cdots
\end{aligned}
$$

Dimensions of some irreducible representations of monster :
$\{1,196883,21296876,842609326$
$18538750076,19360062527 \cdots\}$
\mathcal{H} CP is conserved in HE theory before FLASY is broken. $\approx C P$ is a dicrete symmetry.

Branco, Felipe, Joaquim, Rev. Mod. Physics 84(2012), arXiv: 1111.5332 Mohapatra, Nishi, PRD86, arXiv: 1208.2875
Holthhausen, Lindner, Schmidt, JHEP1304(2012), arXiv:1211.6953
Feruglio, Hagedorn, Ziegler, JHEP 1307, arXiv:1211.5560, Eur.Phys.J.C74(2014), arXiv 1303.7178
E. Ma, PLB 723(2013), arXiv:1304.1603

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180
Ding, King, Stuart, JHEP1312, arXiv:1307.4212,
Ding, King, 1403.5846
Meroni, Petcov, Spinrath, PRD86, 1205.5241
Girardi, Meroni, Petcov, Spinrath, JHEP1042(2014), arXiv:1312.1966
Li, Ding, Nucl. Phys. B881(2014), arXiv:1312.4401
Ding, Zhou, arXiv:1312.522
G.J .Ding and S.F.King, Phys.Rev.D89 (2014) 093020
P.Ballett, S.Pascoli and J.Turner, Phys. Rev. D 92 (2015) 093008
A.Di lura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037

Klein four group

Felix Klein

Multiplication table		e	p	q	r
	e	e	p	q	r
	p	p	e	r	q
	q	q	r	e	p
	r	r	q	p	e

With four elements, the Klein four group is the smallest non-cyclic group, and the cyclic group of order 4 and the Klein four-group are, up to isomorphism, the only groups of order 4. Both are abelian groups.

Normal subgroup of A_{4}

$$
Z_{2} \times Z_{2} \quad V=<\text { identity, }(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)>
$$

Taking both the charged lepton mass matrix and the right-handed Majorana neutrino one to be real diagonal:

$$
\begin{aligned}
& M_{R}=M_{0}\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right), \\
& \mathrm{p}=\mathrm{M}_{\mathrm{R} 2} / \mathrm{M}_{\mathrm{R} 1}
\end{aligned}
$$

$$
M_{D}=\left(\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right)_{\mathbf{L R}}
$$

Let us consider the condition in M_{D} to realize the case of $T M_{1}$.

$$
U_{\mathrm{PMNS}}=V_{\mathrm{TBM}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & e^{-i \sigma} \sin \phi \\
0 & -e^{i \sigma} \sin \phi & \cos \phi
\end{array}\right)
$$

$$
V_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Case 1

$T M_{1}$ sum rule

$$
\cos \delta_{C P} \tan 2 \theta_{23} \simeq-\frac{1}{2 \sqrt{2} \sin \theta_{13}}\left(1-\frac{7}{2} \sin ^{2} \theta_{13}\right)
$$

Case 3
Case 2

98

TM_{1} with $\mathrm{NH} \quad \mathrm{m}_{1}=0$

Consider specific three cases
(Remove 2 parameters by adding one zero in M_{D})

$$
\begin{array}{ccc}
\text { Case I } & \mathrm{b}+\mathrm{c}=0 & \text { Case } 2
\end{array} \mathrm{c}=0 \quad 1 \begin{array}{cc}
\text { Case } 3 & \mathrm{~b}=0 \\
M_{D}=\left(\begin{array}{cc}
0 & \frac{e+f}{2} \\
b & e \\
-b & f
\end{array}\right) & M_{D}=\left(\begin{array}{cc}
\frac{b}{2} & \frac{e+f}{2} \\
b & e \\
0 & f
\end{array}\right)
\end{array} M_{D}=\left(\begin{array}{cc}
\frac{c}{2} & \frac{c+f}{2} \\
0 & e \\
c & f
\end{array}\right)
$$

3 real parameters + 1 phase e, f are real : \mathbf{b} is complex

$$
M_{D}=\left(\begin{array}{cc}
0 & f \\
b & 3 f \\
-b & -f
\end{array}\right) \quad \begin{aligned}
& e / f=-3,2 \text { real parameters }+1 \text { phase } \\
& \text { Littlest seesaw model by King et al. }
\end{aligned}
$$

New simple Dirac neutrino mass matrices with different $k=e / f$

$$
\begin{array}{rlll}
M_{D}=\left(\begin{array}{cc}
0 & 2 f \\
b & 5 f \\
-b & 5 f \\
-f
\end{array}\right), & \left(\begin{array}{cc}
0 & 2 f \\
b & -f \\
-b & -5 f \\
5 f
\end{array}\right), & \left(\begin{array}{cc}
0 & f \\
b & 4 f \\
-b & 4 f
\end{array}\right), & \left(\begin{array}{cc}
0 & f \\
b & -2 f \\
-b & 4 f
\end{array}\right) \\
\mathbf{k}=-\mathbf{5} & \begin{array}{c}
\mathbf{k}=-1 / 5 \\
\delta_{C P}= \pm(50-70)^{\circ}
\end{array} & \delta_{\mathrm{CP}}= \pm 120^{\circ} & \mathbf{k}=\mathbf{- 2} \\
\delta_{\mathrm{CP}} \sim \pm 120^{\circ} & \mathbf{k}=\mathbf{- 1 / 2} \\
\delta_{C P}= \pm(50-70)^{\circ} \\
\sin ^{2} \theta_{23} \geqq 0.55 & \sin ^{2} \theta_{23} \sim \mathbf{0 . 4} & \sin ^{2} \theta_{23} \sim \mathbf{0 . 4} & \sin ^{2} \theta_{23} \geqq 0.55
\end{array}
$$

Littlest seesaw model by King et al.

$$
M_{D}=\left(\begin{array}{cc}
0 & f \\
b & 3 f \\
-b & -f
\end{array}\right)
$$

$$
k=-3
$$

$$
\delta_{C P}= \pm(80-105)^{\circ}
$$

$$
\sin ^{2} \theta_{23}=0.45 \sim 0.55
$$

Since simple patterns predict vanishing θ_{13}, larger groups may be used to obtain non-vanishing θ_{13}.
R.de Adelhart Toorop, F.Feruglio, C.Hagedorn, Phys. Lett 703\} (2011) 447

$\Delta(96)$ group

G.J.Ding, Nucl. Phys.B 862 (2012) 1
S. F.King, C.Luhn and A.J.Stuart, Nucl.Phys.B867(2013) 203
G.J.Ding and S.F.King, Phys.Rev.D89 (2014) 093020
C.Hagedorn, A.Meroni and E.Molinaro, Nucl.Phys. B 891 (2015) 499

Generator S, T and $U: \quad S^{2}=(S T)^{3}=T^{8}=1, \quad\left(S T^{-1} S T\right)^{3}=1$
Irreducible representations: 1, $1^{\prime}, 2,3-36,6$
Subgroup: fifteen Z_{2}, sixteen Z_{3}, seven K_{4}, twelve Z_{4}, six Z_{8}
For triplet 3, $\quad \boldsymbol{S}=\frac{1}{2}\left(\begin{array}{ccc}0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1\end{array}\right) \quad \mathbf{T}=\left(\begin{array}{ccc}e^{\frac{6 \pi}{4}} & 0 & 0 \\ 0 & e^{\frac{0 \pi}{4}} & 0 \\ 0 & 0 & e^{\frac{3 \pi}{4}}\end{array}\right)$
If neutrino sector preserves $\left\{S, S T^{4} S^{4}\right\}\left(Z_{2} \times Z_{2}\right)$
charged lepton sector preserve: ST $\left(Z_{3}\right)$

$$
U_{T F H 1}=\left(\begin{array}{ccc}
\frac{1}{6}(3+\sqrt{3}) & \frac{1}{\sqrt{3}} & \frac{1}{6}(-3+\sqrt{3}) \\
\frac{1}{6}(-3+\sqrt{3}) & \frac{1}{\sqrt{3}} & \frac{1}{6}(3+\sqrt{3}) \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right)
$$

$\Theta_{13} \sim 12^{\circ}$ rather large

If A_{5} is broken to other subgroups: for example,
Neutrino sector preserves S or $T^{2} S T^{3} S T^{2}$ (both are K_{4} generator) Charged lepton sector preserves $T\left(Z_{5}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
\frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \times\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
& \tan \theta_{12}=1 / \phi \quad \phi=\frac{1+\sqrt{5}}{2}
\end{aligned}
$$

Θ is not fixed, however, there appear testable sum rules:

$$
\sin ^{2} \theta_{12}=\frac{\sin ^{2} \varphi}{1-\sin ^{2} \theta_{13}} \approx \frac{0.276}{1-\sin ^{2} \theta_{13}} \quad \sin ^{2} \theta_{23} \approx \frac{1}{2}\left(1 \pm(1-\sqrt{5}) \sin \theta_{13}\right)
$$

Monster group is maximal one in sporadic finite group, which is related to the string theory.

Vertex Operator Algebra

Moonshine phenomena

On the other hand,
A_{5} is the minimal simple finite group except for cyclic groups.
This group is succesfully used to reproduce the lepton flavor structure.
There appears a flavor mixing angle with Golden ratio.

Platonic solids (tetrahedron, cube, octahedron, regular dodecahedron, regular icosahedron) have symmetries of A_{4}, S_{4} and A_{5}. which may be related with flavor structure of leptons.

Moonshine phenomena was discovered in Monster group.

Monster group: largest sporadic finite group, of order 8×10^{53}. 808017424794512875886459904961710757005754368000000000

McKay, Tompson, Conway, Norton (1978) observed :
strange relationship between modular form and an isolated discrete group.
q-expansion coefficients of Modular J-function are decomposed into a sum of dimensions of some irreducible representations of the monster group.

Moonshine phenomena

Phenomenon of monstrous moonshine has been solved mathematically in early 1990's using the technology of vertex operator algebra in string theory.
However, we still do not have a 'simple' explanation of this phenomenon.

Monster group: largest sporadic finite group, of order 8×10^{53}. 808017424794512875886459904961710757005754368000000000

McKay, Tompson, Conway, Norton (1978) observed :
strange relationship between modular form and an isolated discrete group.
q-expansion coefficients of Modular J-function are decomposed into a sum of dimensions of some irreducible representations of the monster group.

$$
\begin{gathered}
q=e^{2 \pi i \tau}, \operatorname{Im}(\tau)>0 \\
\begin{array}{c}
J(q)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3} \\
+20245856256 q^{4}+333202640600 q^{5}+\cdots
\end{array} \\
\begin{array}{c}
196884=1+196883,21493760=1+196883+21296876,
\end{array} \\
\begin{array}{c}
864299970=2 \times 1+2 \times 196883+21296876+842609326,
\end{array} \\
20245856256=1 \times 1+3 \times 196883+2 \times 21296876 \\
+842609326+19360062527, \cdots
\end{gathered} \quad\{1,196883
$$

$$
\begin{aligned}
& J(\tau)=J\left(\frac{a \tau+b}{c \tau+d}\right) \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z)
\end{aligned}
$$

\{1, 196883, 21296876, 842609326, $18538750076,19360062527 \cdots\}$ Dimensions of irreducible representations
Phenomenon of monstrous moonshine has been solved mathematically in early 1990's using the technology of vertex operator algebra in string theory 105 However, we still do not have a 'simple' explanation of this phenomenon.

