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1 Introduction

Discrete Symmetry 

The well known fundamental symmetry in particle physics is, 
C, P, T :  Abelian

Non-Abelian Discrete Symmetry may be important 
for flavor physics of quarks and leptons.

The discrete symmetries are described by finite groups.

The discrete transformations (e.g., rotation of a regular polygon) 
give rise to corresponding symmetries: 
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The classification of the finite groups has been completed in 2004,
(Gorenstein announced in 1981 that the finite simple groups had all been classified.)
about 100 years later than the case of the continuous groups.

Thompson,  Gorenstein,  Aschbacher ……

The classification of finite simple group
Theorem —

Every finite simple group is isomorphic to one of the following groups:

• a member of one of three infinite classes of such: 
• the cyclic groups of prime order, Zn  (n: prime)
• the alternating groups of degree at least 5, An  (n>4)
• the groups of Lie type                        E6(q), E7(q), E8(q), ……

• one of 26 groups called the “sporadic groups”  Mathieu groups, Monster group …
• the Tits group (which is sometimes considered a 27th sporadic group).

See Web: http://brauer.maths.qmul.ac.uk/Atlas/v3/
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Finite groups also possibly control fundamental particle physics 
as well as chemistry and materials science.

Finite groups are used to classify crystal structures, regular polyhedra, 
and the symmetries of molecules. 
The assigned point groups can then be used to determine physical properties, 
spectroscopic properties and to construct molecular orbitals. 

Johannes Kepler The Cosmographic Mystery

molecular symmetry

More than 400 years ago, 
Kepler tried to understand cosmological 
structure by five Platonic solids.

Scientists like symmetries !

Symmetry is an advantageous approach if the dynamics is unknown.
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2 Examples of finite groups
Ishimori, Kobayashi, Ohki, Shimizu, Okada, M.T, PTP supprement, 183,2010,arXiv1003.3552,
Lect. Notes Physics (Springer) 858,2012

Finite group G 
consists of a finite number of element of G.

・The number of elements in G is called order.

・The group G is called Abelian 
if all elements are commutable each other,i.e. ab = ba.

・The group G is called non-Abelian 
if all elements do not satisfy the commutativity.
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If a subset H of the group G is also a group, H is called subgroup of G. 
The order of the subgroup H is a divisor of the order of G.

(Lagrange’s theorem)

If a subgroup N of G satisfies g−1Ng = N for any element g ∈ G,
the subgroup N is called a normal subgroup or an invariant subgroup. 

The subgroup H and normal subgroup N of G satisfy HN = NH
and it is a subgroup of G, where HN denotes {hinj |hi ∈ H, nj ∈ N}

Simple group 
It is a nontrivial group whose only normal subgroups 
are the trivial group and the group itself. 

Subgroup

A group that is not simple can be broken into two smaller groups, 
a normal subgroup and the quotient group (factor group), and the process can be repeat
If the group is finite, eventually one arrives at uniquely determined simple groups.
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The elements g−1ag for g ∈G are called 
elements conjugate to the element a. 

The set including all elements 
to conjugate to an element a of G, 
{g−1ag, ∀g ∈ G}, is called a conjugacy class.

When ah = e for an element a ∈ G, 
the number h is called the order of a.

The conjugacy class including the identity e 
consists of the single element e.

All of elements in a conjugacy class have the same order

G is classified by Conjugacy Class
The number of irreducible representations is equal to 
the number of conjugacy classes. Schur’s lemma
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A pedagogical example, S3
smallest non-Abelian finite group

e :  (x1, x2, x3) → (x1, x2, x3) a1 : (x1, x2, x3) → (x2, x1, x3)
a2 : (x1, x2, x3) → (x3, x2, x1)      a3 : (x1, x2, x3) → (x1, x3, x2)
a4 : (x1, x2, x3) → (x3, x1, x2)      a5 : (x1, x2, x3) → (x2, x3, x1)

a1a2 = a5 ,    a2a1 = a4 ,    a4a2 = a2a1a2 = a3

Their multiplication forms a closed algebra, e.g.

S3 consists of all permutations among three objects, (x1, x2, x3) and 
its order is equal to 3! = 6. 
All of six elements correspond to the following transformations,

By defining a1 = a, a2 = b, all of elements are written as  {e, a, b, ab, ba, bab}. 

These elements are classified to three conjugacy classes,
C1 : {e},   C2 : {ab, ba},   C3 : {a, b, bab}. (ab)3=(ba)3=e,   a2=b2 =(bab)2=e

The subscript of Cn, n, denotes the number of elements in the conjugacy class Cn .
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Let us study irreducible representations of S3. 

Irreducible representations of S3 are  two singlets 1 and 1’ , one doublet 2. 

mn is number of n-dimensional irreducible representations 

A representation of G is a homomorphic map of elements of G 
onto matrices, D(g) for g ∈ G.

Character

Orthogonality relations

Since C1 = {e}  (n1=1) , the orthgonality relation is

D(g) are (n × n) matrices

The number of irreducible representations must be equal to 3,
because there are 3 conjugacy classes.

2 + 4×1 = 6
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Orthogonarity conditions determine the Character Table

Since                                               are  satisfied,

By using this table, we can construct the representation matrix for 2.

Because of                    ,  we choose 

C1 : {e}, C2 : {ab, ba}, C3 : {a, b, bab}.

We can change the representation through the unitary transformation, U†gU.

a2=e
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(outer) semi-direct product

Direct product
The direct product is denoted as G1 ×G2 .   

(a1,a2) (b1,b2) = (a1b1, a2b2) for a1,b1 ∈ G1 and a2,b2 ∈ G2

(a1,a2) (b1,b2) = (a1 fa2 (b1), a2b2)  for a1,b1 ∈ G1 and a2,b2 ∈ G2

where fa2 (b1) denotes a homomorphic map from G2 to G1.

The semi-direct product is denoted as G1 f G2. 

A lager group
is constructed from more than two groups by a certain product. 

Consider two groups G1 and G2

Multiplication 
rule

Multiplication 
rule

Consider the group G and its subgroup H and normal subgroup N.
When G = NH = HN and N ∩H = {e}, the semi-direct product N    f H is isomorphic to G,
where we use the map f as fhi (nj) = hi nj (hi)-1  .
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semi-direct product, Z3 Z2.

Here we denote the Z3 and Z2 generators by c and h, i.e., c3 = e and h2 = e. 
In this case, can be written by h c h-1 = cm

only the case with m = 2 is non-trivial, h c h-1 = c2

This algebra is isomorphic to S3 , and h and c are identified as a and ab.

N=(e, ab, ba),  H=(e, a) ⇒ NH=HN   S3

Example of semi-direct product

Z3 Z2
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Dihedral group ZN Z2              DN ,  Δ (2N) ;    aN = e ,  b2 = e ,  bab = a-1 order : 2N

D4
D5

Semi-direct products generates a larger non-Abelian groups 

square
Regular pentagon

Δ (3N2) (ZN ×Z’N ) Z3 , aN = a’N = b3 = e ,  a a’ = a’ a , bab-1 = a-1(a’)-1; ba’b-1 = a

Δ (27)

Δ (6N2) (ZN ×Z’N ) S3 ,

aN = a’N = b3 = c2 = (bc)2 = e, aa’ = a’a,  bab-1 = a-1(a’)-1 , b a’b-1 = a ,cac-1 = (a’)-1 , ca’c-1 = a-1

Δ(6N2) group includes the subgroup, Δ (3N2)

Δ(6)=S3         Δ(24)     S4 Δ(54) …..



order
Sn :        S2 = Z2,  S3,  S4 …            Symmetric group                N !

An:         A3 = Z3,  A4 =T ,  A5 …      Alternating group             (N !)/2

Dn:         D3 = S3,  D4,  D5 …           Dihedral group               2N

QN(even):  Q4,  Q6 ….                        Binary dihedral group      2N

Σ(2N2):   Σ(2) = Z2,  Σ(18),  Σ(32),  Σ(50) …                                2N2

Δ(3N2):   Δ(12) = A4,   Δ(27) …                                                   3N2 

TN(prime number)       ZN Z3 : T7,  T13,  T19,  T31,  T43,  T49 3N

Σ(3N3): Σ(24)=Z2 × (12),   Σ(81) …                                            3N3

Δ(6N2):   Δ(6)=S3,  Δ(24)=S4,  Δ(54) …                                       6N2 

T’ : double covering group of A4 = T                                            24
15

Familiar non-Abelian finite groups 
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A4 has subgroups with order 4 and 3, respectively. 

Ludwig Sylow in 1872:

Theorem 1: 
For every prime factor p with multiplicity n of the order of a finite group G, 
there exists a Sylow p-subgroup of G, of order pn.

12  =  22 × 3

Actually, (Z2×Z2) (klein group) and Z3 are the subgroup of A4 .

Subgroups are important for particle physics
because symmetry breaks down to them.
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Some examples of 
non-Abelian Finite groups with triplet representation,
which are often used in Flavor symmetry

S4,   A4,   A5

For flavour physics,  we are interested in 
finite groups with triplet representations.

S3 has two singlets and one doublet: 1, 1’, 2, 
no triplet representation. 
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S4 group
All permutations among four objects, 4！=24 elements
24 elements are generated by   S, T and U: 
S2=T3=U2=1,  ST3 = (SU)2 = (TU)2 = (STU)4 =1

Irreducible representations: 
1,  1’,  2,  3,  3’

Symmetry of a cube

For triplet 3 and 3’ 

5 conjugacy classes
C1: 1                                                       h=1
C3: S, T2ST, TST2                                                    h=2
C6: U, TU, SU, T2U, STSU, ST2SU         h=2
C6’: STU, TSU, T2SU, ST2U, TST2U, T2STU h=4
C8: T, ST, TS, STS, T2, ST2, T2S, ST2S   h=3



Even permutation group of four objects (1234)
12 elements (order 12) are generated by 
S and T:  S2=T3=(ST)3=1 : S=(14)(23), T=(123)

4 conjugacy classes
C1: 1                        h=1
C3: S, T2ST, TST2            h=2
C4: T, ST, TS, STS       h=3
C4’: T2, ST2, T2S, ST2S   h=3

Irreducible representations: 1, 1’, 1”, 3
The minimum group containing triplet without doublet.

19

Symmetry of tetrahedron

A4 group

For triplet
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The A5 group is isomorphic to the symmetry of
a regular icosahedron and a regular dodecahedron.

60 elements are generated S and T .

A5  group  (simple group)

Irreducible representations: 
1,  3,  3’,  4,  5

S2 = (ST)3 = 1 and T5 = 1

For triplet 3

S= T=

Golden Ratio

5 conjugacy classes
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Discrete Symmetry and Cabibbo Angle,
Phys. Lett. 73B (1978) 61, S.Pakvasa and H.Sugawara

S3 symmetry is assumed for the Higgs interaction with the quarks  
and the leptons for the self-coupling of the Higgs bosons. 

There was no information of lepton flavor mixing before 1998.

In Quark sector

3 Flavor symmetry with non-Abelian Discrete group

3.1  Towards non-Abelian Discrete flavor symmetry

➡

S3 doublet S3 doubletS3 singlets
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A Geometry of the generations, 3 generations
Phys. Rev. Lett. 75 (1995) 3985, L.J.Hall and H.Murayama 

(S(3))3 flavor symmetry and p ---> K0 e+ ,  (SUSY version)
Phys. Rev.D 53 (1996) 6282, C.D.Carone, L.J.Hall and H.Murayama

fundamental sources of flavor symmetry breaking are gauge singlet fields φ:flavons

Incorporating  the lepton flavor based on the discrete flavor group (S3)3.

(S(3))3 flavor symmetry for quarks Q, U, D
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First clear evidence of neutrino 
oscillation was discovered in 1998

Atmospheric neutrinos brought us informations of neutrino masses and flavor mixing. 

1998 Revolution in Neutrinos !



24

Before 2012 (no data for θ13）

Neutrino Data presented sin2θ12～1/3, sin2θ23～1/2 

Tri-bimaximal Mixing of Neutrinos motivates to consider
Non-Abelian Discrete Flavor Symmetry.

Harrison, Perkins, Scott (2002) proposed

PDG

Tri-bimaximal Mixing of Neutrino flavors.



Tri-bimaximal Mixing (TBM) is realized by the mass matrix

Mixing angles are independent of neutrino masses.

in the diagonal basis of charged leptons.

Integer (inter-family related) matrix elements
suggest Non-Abelian Discrete Flavor Symmetry.
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Hint for the symmetry in TBM

The third matrix is A4 symmetric !
The first and second matrices are Unit matrix
and Democratic matrix, respectively, which
could be derived from S3 symmetry.

Assign A4 triplet 3 for (νe,νμ,ντ)L
E. Ma and G. Rajasekaran, PRD64(2001)113012

A4 symmetric
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In 2012   
θ13 was measured by Daya Bay, RENO, 

T2K, MINOS, Double Chooz

Tri-bimaximal mixing was ruled out !

Rather large θ13 suggests to search for CP violation !

Challenge for flavor and CP symmetries for leptons  

0.0327 sinδ
JCP (quark)～3×10-5
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Suppose Flavor symmetry group G
Consider only Mass matrices !

Different subgroups of G 
are preserved in Yukawa
sectors of Neutrinos
and Charged leptons,
respectively.

3.2 Direct approach of Flavor Symmetry

S.F.King

arXiv: 1402.4271  King, Merle, Morisi, Simizu, M.T

S, T, U are 
generators
of Finite groups
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Suppose S4 is spontaneously broken to one of subgroups:
Neutrino sector preserves         (1,S,U,SU) (K4)
Charged lepton sector preserves  (1,T,T2) (Z3)

Consider S4 flavor symmetry: 
24 elements are generated by S, T and U: 
S2=T3=U2=1,  ST3 = (SU)2 = (TU)2 = (STU)4 =1
Irreducible representations: 1,  1’,  2,  3,  3’

It has subgroups, nine Z2, four Z3, three Z4, four Z2×Z2 (K4)

For 3 and 3’
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Tri-bimaximal mixing 

Klein Symmetry can reproduce Tri-bimaximal mixing.

C.S.Lam, PRD98(2008)
arXiv:0809.1185

Neutrino and charged lepton mass matrices 
respect S, U and T, respectively:

Independent of mass eigenvalues !

Mixing matrices diagonalize mass matrices also diagonalize S,U, and T, respectively !

θ13=0

which digonalizes both S and U.

The charged lepton mass matrix is diagonal because T is diagonal matrix.
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If S4 is spontaneously broken to another subgroups,
Neutrino sector preserves         SU (Z2)
Charged lepton sector preserves   T  (Z3),
mixing matrix is changed !

Tri-maximal mixing 
TM1

Θ is not fixed by the flavor symmetry.

Mixing
sum rules

includes CP phase.
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Suppose A5 is spontaneously broken to one of subgroups:
Neutrino sector preserves         S and U (K4)
Charged lepton sector preserves  T (Z5)

Mixing pattern in A5 flavor symmetry

It has subgroups, ten Z3, six Z5, five Z2×Z2 (K4) .

F. Feruglio and Paris, JHEP 1103(2011) 101 arXiv:1101.0393

S= T=
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Golden ratio:

with

Neutrino mass matrix has μ-τ symmetry.

sin2θ12 = 2/(5+√5) = 0.2763…
which is rather smaller than the experimental data.

=

θ13=0
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3.3  CP symmetry in neutrinos

Possibility of predicting CP phase δCP in FLASY

A hint :  under μ-τ symmetry

Ferreira, Grimus, Lavoura, Ludl, JHEP2012,arXiv: 1206.7072

is predicted since we know
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T2K reported the constraint on δCP August 4, 2017

CP conserving values (0,π) fall outside of 2σ intervals

Feldman-Cousins method

Exciting Era of Observation of CP violating phase @T2K and NOvA
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Generalized CP Symmetry

Xr must be consistent with Flavor Symmetry

Consistency condition

CP

g

Holthhausen, Lindner, Schmidt, 
JHEP1304(2012), arXiv:1211.6953

Mu-Chun Chen, Fallbacher, Mahanthappa, Ratz, Trautner, Nucl.Phys. B883 (2014) 267-305

Flavour Symmetry

CP Symmetry

G.Ecker, W.Grimus and W.Konetschny, Nucl. Phys. B 191 (1981) 465
G.Ecker, W.Grimus and H.Neufeld, Nucl.Phys.B 229(1983) 421
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G.J.Ding

Mixing angles
CP phase

Suppose a symmetry
including FLASY 
and CP symmetry:

is broken to the subgroups
in neutrino sector and 
charged lepton sector.

CP symmetry gives
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An example of S4 model

One example of S4:  Gν={S}  and X3
ν={U} ,  X3

l ={1}

α, β, γ are real,  ε is imaginary.

satisfy the consistency condition

respects Gν={S}

CP symmetry

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180
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δCP=±π/2
The predicton of CP phase depends on  
the respected Generators of FLASY and CP symmetry. 
Typically, it is simple value, 0, π, ±π/2 .

A4, A5,  Δ(6N2) …



43

1’ × 1”   → 1 

3L × 3L × 3flavon →  1  ,        3L × 1R
(’)(“) × 3flavon →  1 

Flavor symmetry G is broken by flavon (SU2 singlet scalors) VEV’s.
Flavor symmetry controls Yukaw couplings 
among leptons and flavons with special vacuum alignments.

Consider an example :  A4 model

A4 triplets

A4 singlets

Leptons                 flavons

Model building by flavons         

couple to
neutrino sector

couple to 
charged lepton sector

3.4  Indirect approach of Flavor Symmetry

Mass matrices are given by A4 invariant couplings with flavons
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However, specific Vacuum Alingnments preserve S and T generator.

3L × 3L × 3flavon →  1 3L × 1R (1R’, 1R”) × 3flavon →  1 

Flavor symmetry G is broken by  VEV of flavons

andTake

Then,        preserves S and        preserves T.  

mE is a diagonal matrix, on the other hand, mνLL is

two generated masses and 
one massless neutrinos !
(0, 3y, 3y)
Flavor mixing is not fixed !

⇒

Rank 2
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There appears a Neutrino Mass Sum Rule.

Flavor mixing is determined: Tri-bimaximal mixing. θ13=0

3L × 3L × 1flavon →  1

Adding A4 singlet        in order to fix flavor mixing matrix.

,  which preserves S symmetry.

This is a minimal framework of A4 symmetry predicting mixing angles and masses.
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A4 model easily realizes non-vanishing θ13 .

○ ○

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)
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Both normal and inverted mass hierarchies are possible.

Additional Matrix

Tri-maximal mixing: TM2

Normal hierarchy Inverted hierarchy



Remove a certain of parameters 
in neutrino mass matrix by assuming

● 2 Right-handed Majorana Neutrinos  m1 or m3 vanishes

● Flavor Symmetry S4

4  Minimal seesaw model with flavor symmetry

We search for a simple scheme to examine the flavor structure 
of quark/lepton mass matrices because the number of available data 
is much less than unknown parameters. 

For neutrinos, 2 mass square differences, 
3 mixing angles in experimental data

however, 9 parameters in neutrino mass matrix

Yusuke Simizu, Kenta Takagi, M.T, arXiv:1709.02136
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Introduce: two flavons (gauge singlet scalars) 3’ in S4 Φatm , Φsol

Consider specific vacuum alignments for 3’

S4  generators : S, T, U

for 3 and 3’ .

preserves  Z2 {1, SU} 
symmetry for 3’. 

S4 : irreducible representations 1, 1’, 2, 3, 3’

Assign: Lepton doublets L: 3’ Right-handed neutrinos νR: 1
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3’×3’×13’×3’×1

S4 invariant Yukawa Couplings

Since                                     ,

we obtain a simple Dirac neutrino mass matrix.
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After seesaw, Mν is rotated
by VTBM                               

m1=0:    Normal Hierarchy of Neutrino Masses
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Trimaximal mixing  TM1

m1=0:    Normal Hierarchy of Neutrino Masses
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Prediction of CP violation
Input Data  (Global Analyses) 2 masses, 3 mixing angles

Output:  CP violating phase δCP

4 real parameters
2 phases

3 real parameters + 1 phase

putting one zero 
is allowed

Toward
minimal seesaw

King et al.

2 real parameters + 1 phase

Arg [b/f]=ΦB
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King et al.
k=-3

k=-3
King et.al.

2σ(T2K)

2σ(T2K)

k=-11  ～ -2
-0.1 ～ -0.5

k=e/f
3σ3σ

2σ(T2K)

2σ(T2K)

Magenta by King et al.
green: 1σ

green:1σ

green:1σ

green:1σ
Magenta: King
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Input of cosmological baryon asymmetry

by leptogenesis  with M1<<M2

Y.Shimzu, K, Takagi and M.T (2017)
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4  Prospect

☆How can Quarks and Leptons become reconciled ?

T’, S4,  A5 and Δ(96)                            SU(5)
S3, S4, Δ(27) and Δ(96) can be embeded in  SO(10) GUT.
A4 and S4 PS

For example:
quark sector (2, 1) for SU(5) 10
lepton sector (3) for SU(5) 5

Different flavor structures of quarks and leptons appear !
Cooper, King, Luhn (2010,2012), Callen,Volkas (2012), Meroni, Petcov, Spinrath (2012)
Antusch, King, Spinrath (2013),  Gehrlein, Oppermann, Schaefer, Spinrath (2014)
Gehrlein, Petcov,Spinrath (2015),  Bjoreroth, Anda, Medeiros Varzielas, King (2015) …

Origin of Cabibbo angle ?

See references S.F. King, 1701.0441

Quark Sector ?



57

☆ Flavour symmetry in Higgs sector ?

Does a Finite group control Higgs sector ?
2HDM, 3HDM …
an interesting question since Pakvasa and Sugawara 1978

☆ How is Flavor Symmetry tested ?
＊Mixing angle sum rules

＊Neutrino mass sum rules in FLASY ⇔neutrinoless double beta decays

＊Prediction of CP violating phase.

Example: TM1

TM2
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● Two right-handed Majorana neutrinos  M1 and M2

● Trimaximal mixing
This is reproduced by the S4 flavor symmetry.

Three real parameters
and one phase 

Normal Hierarchy of masses

will be tested by  δCP and sin2θ23 .

The cosmological baryon asymmetry can determine
the sign of δCP by leptogenesis !

We obtained the predictable minimal seesaw mass matrices,
which is based on
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Backup slides
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(outer) semi-direct product

A simple one is the direct product. 
Consider e.g. two groups G1 and G2. Their direct product is denoted as G1 ×G2 .

(a1,a2) (b1,b2) = (a1b1, a2b2) for a1,b1 ∈ G1 and a2,b2 ∈ G2

It is defined such as

(a1,a2) (b1,b2) = (a1 fa2 (b1), a2b2)  for a1,b1 ∈ G1 and a2,b2 ∈ G2

where fa2 (b1) denotes a homomorphic map from G2 to G1.

This semi-direct product is denoted as G1 f G2. 

We consider the group G and its subgroup H and normal subgroup N, 
whose elements are hi and nj , respectively.

When G = NH = HN and N ∩H = {e}, the semi-direct product N    f H is isomorphic to G,
where we use the map f as fhi (nj) = hi nj (hi)-1  .

A lager group
is constructed from more than two groups by a certain product. 

Multiplication 
rule
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Orthogonarity conditions determine the Character Table

Since                                               are  satisfied,

By using this table, we can construct the representation matrix for 2.

Because of                    ,  we choose 

C1 : {e},   C2 : {ab, ba},  C3 : {a, b, bab}.

Recalling b2 = e, we can write

C2 : {ab, ba} 

C3 : {a, b, bab}
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Consider the case of A4 flavor symmetry:
A4 has subgroups:
three Z2, four Z3, one Z2×Z2 (klein four-group)

Z2: {1,S}, {1,T2ST}, {1,TST2} 
Z3: {1,T,T2}, {1,ST,T2S}, {1,TS, ST2}, {1,STS,ST2S}
K4: {1,S,T2ST,TST2}

Suppose A4 is spontaneously broken to one of subgroups:
Neutrino sector preserves         Z2: {1,S}
Charged lepton sector preserves  Z3: {1,T,T2}

Mixing matrices diagonalise              also diagonalize 
S and T, respectively !

S2=T3=(ST)3=1 
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For the triplet, the representations are given as

Independent of mass eigenvalues !
Freedom of the rotation between 1st and 3rd column
because a column corresponds to a mass eigenvalue. 
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Tri-maximal mixing : so called TM2

Θ is not fixed.
In general, s is complex.
CP symmetry can predict this phase as seen later.

Then, we obtain PMNS matrix.

Semi-direct model

another Mixing sum rules
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○

A4 model easily realizes non-vanishing θ13 .

○ ○

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

○
Modify
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After rotating Mν by VTBM                               , 
we obtain

TM1 with NH

m1=0
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Leptogenesis
CP lepton asymmetry

at the decay of the lighter right-handed Majorana neutrino N1

SM with two right-handed neutrinos

P=MR2/MR1

ηB is proportional to (k-1)2 sin2ΦB

JCP is proportional to (k-1)(k-1)5 sin2ΦB

assumption
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Correlation between δCP and cosmological baryon asymmetry 

k= -11 ～ -2, -0.1～ -0.5

JCP is proportional to

One phase ! 
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Inputting 

P=M2/M1
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is preferred by T2K and Noνa data if  M2> M1.

Our Dirac neutrino mass matrix predicts 
both the signs of δCP and cosmological baryon asymmetry 

King, et al.

……

K= -5            K= -2

δCP < 0 ηB > 0
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3.2  Origin of Flavor symmetry

Is it possible to realize such discrete symmetres in string theory?
Answer is yes !

• Heterotic orbifold models (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)

• Magnetized/Intersecting D-brane Model
(Kitazawa, Higaki, Kobayashi,Takahashi, 06 )
(Abe, Choi, Kobayashi, HO, 09, 10)

Superstring theory on a certain type of six dimensional compact
space leads to stringy selection rules for allowed couplings 
among matter fields in four-dimensional effective field theory.

Such stringy selection rules and geometrical symmetries result in 
discrete flavor symmetries in superstring theory. 
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Stringy origin of non-Abelian discrete flavor symmetries
T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz,  hep-ph/0611020
D4,  Δ(54)

Non-Abelian Discrete Flavor Symmetry from T2/ZN Orbifolds
A.Adulpravitchai, A. Blum, M. Lindner, 0906.0468
A4,  S4,  D3,  D4,  D6

Non-Abelian Discrete Flavor Symmetries from 
Magnetized/Intersecting Brane Models
H. Abe, K-S. Choi, T. Kobayashi,  H. Ohki,   0904.2631
D4,  Δ(27),  Δ(54)

Non-Abelian Discrete Flavor Symmetries of 10D SYM 
theory with Magnetized extra dimensions
H. Abe, T. Kobayashi,  H. Ohki, K.Sumita, Y. Tatsuta  1404.0137
S3,  Δ(27),  Δ(54)
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Alternatively, discrete flavor symmetries may 
be originated from continuous symmetries

S. King
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Restrictions by mass sum rules on |mee|

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901

inverted
normal
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King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
King, Merle, Morisi, Simizu, M.T, arXiv: 1402.4271

Mass sum rules in A4, T’, S4, A5, Δ(96) …

Different types of neutrino mass spectra correspond 
to the neutrino mass generation mechanism.

MR structre in See-saw

MR in inverse See-saw

MD structre in See-saw

Χand ξare model specific complex parameters

Barry, Rodejohann, NPB842(2011) arXiv:1007.5217

(Χ=2, ξ=1) (Χ=-1, ξ=1)

(Talk of Spinrath)
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These elements are classified to three conjugacy classes,

C1 : {e},   C2 : {ab, ba},   C3 : {a, b, bab}. 

The subscript of Cn, n, denotes the number of elements in the conjugacy class Cn .
Their orders are found as

(ab)3 = (ba)3 = e,   a2 = b2 = (bab)2 = e

Let us study irreducible representations of S3. 
The number of irreducible representations must be equal to three,
because there are three conjugacy classes.

We obtain a solution:  (m1,m2) = (2, 1)

Irreducible representations of S3 are  two singlets 1 and 1’ , one doublet 2. 

Due to the orthogonal relation 
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All permutations of S3 are represented on the reducible triplet (x1, x2, x3) as

e :  (x1, x2, x3) → (x1, x2, x3)
a1 : (x1, x2, x3) → (x2, x1, x3)
a2 : (x1, x2, x3) → (x3, x2, x1)     
a3 : (x1, x2, x3) → (x1, x3, x2)
a4 : (x1, x2, x3) → (x3, x1, x2)    
a5 : (x1, x2, x3) → (x2, x3, x1)

We change the representation through the unitary transformation, U†gU, 
e.g. by using the unitary matrix Utribi,

Then, the six elements of S3 are written as

These are completely reducible 
and that the (2×2) submatrices
are exactly the same as those
for the doublet representation . 

The unitary matrix Utribi is called
tri-bimaximal matrix.
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T’ group

Double covering group of A4,  24 elements

24 elements are generated by S, T and R: 
S2 = R,  T3 = R2 = 1, 
(ST)3 = 1,  RT = TR

For triplet

Ireducible representations
1,  1’,  1’’,  2,  2’,  2”, 3
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TM1 with IH m3=0

After taking                 ,  we get 

Mixing angles and CP phase are given only by k and Φk
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m1=0 or  m3=0TM2 with NH or IH

After taking                 ,  we get 
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m1=0 or  m3=0TM2 with NH or IH

After taking                 ,  we get 
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★ TM1 with IH  in S4 flavor symmetry

S is a generator of A4 and S4  generator

for 3
and 3’ .

3’3 

preserves SU symmetry for 3.

3×3×1 3’×3×1’

★ TM2 with NH or IH  in A4 or S4 flavor symmetry

preserves S symmetry for 3.

breaks S, T , U, SU unless e=f .
We need auxiliary Z2 symmetry to obtain 
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TM1 with IH   m3=0

k=|e/f|=0.65～1.37 Φk=±(25°～38°)

|mee|～50 meV
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TM2 with NH   m1=0

Predicted δCP is sensitive to k 

k=|e/f|=0.78～1.24   Φk=±(165°～180°)
|mee|=(2～4) meV
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TM2 with IH   m3=0

k=|e/f|=0.49～1.95   Φk= -40°～40°

|mee|～50 meV
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TM2

TM1 Littlest k=-3
by King

Littlest
by King

Combined result

e/f will be fixed by the observation of δcp .

K=-5,-0.5

k=-5,-0.5

k= -2,-0.2

k= -2,-0.52
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case 2: c/b=-∞,case 1: c/b=-1, case 3: c/b=0

Predictions at arbitrary c/b=j

c/b=j=-1 c/b=j=-1

5 parameters
by supposing
j to be real



A4 group is isomorphic to Δ(12) =(Z2×Z2) Z3 .

90

S4 group is isomorphic to Δ(24) =(Z2×Z2) S3 .

S4 → S3

S4 → A4

S4 → (Z2×Z2) Z2

Subgroups and decompositions of multiplets
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A4 group is isomorphic to Δ(12) =(Z2×Z2) Z3 .

A4 → Z3

A4 → Z2×Z2

(k = 0, 1, 2)

Subgroups and decompositions of multiplets



92

A5 → A4

A5 → D5

Subgroups and decompositions of multiplets

A5→ S3      D3

A5 → Z2×Z2
5 Klein four groups
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☆CP is conserved in HE theory before FLASY is broken.
☆CP is a dicrete symmetry. 

Branco, Felipe, Joaquim, Rev. Mod. Physics 84(2012), arXiv: 1111.5332
Mohapatra, Nishi, PRD86, arXiv: 1208.2875
Holthhausen, Lindner, Schmidt, JHEP1304(2012), arXiv:1211.6953
Feruglio, Hagedorn, Ziegler, JHEP 1307, arXiv:1211.5560,

Eur.Phys.J.C74(2014), arXiv 1303.7178
E. Ma, PLB 723(2013), arXiv:1304.1603
Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180
Ding, King, Stuart, JHEP1312, arXiv:1307.4212, 
Ding, King, 1403.5846
Meroni, Petcov, Spinrath, PRD86, 1205.5241
Girardi, Meroni, Petcov, Spinrath, JHEP1042(2014), arXiv:1312.1966
Li, Ding, Nucl. Phys. B881(2014), arXiv:1312.4401
Ding, Zhou, arXiv:1312.522
G.J.Ding and S.F.King, Phys.Rev.D89 (2014) 093020
P.Ballett, S.Pascoli and J.Turner, Phys. Rev. D 92 (2015) 093008
A.Di Iura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037

95
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Klein four group

With four elements, the Klein four group is the smallest non-cyclic group,
and the cyclic group of order 4 and the Klein four-group are, up to 

isomorphism, the only groups of order 4.   Both are abelian groups. 
Normal subgroup of A4

Z2 × Z2       V = < identity, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) >

Multiplication 
table
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LR
p=MR2 / MR1

Taking both the charged lepton mass matrix and
the right-handed Majorana neutrino one to be real diagonal:

Let us consider the condition in MD
to realize the case of TM1 .
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Case 3Case 2

TM1 sum rule

3σ3σ

2σ(T2K)

2σ(T2K)

Magenta by King et al.
green: 1σ

Case 1
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TM1 with NH    m1=0

Case I Case 2 Case 3

Consider specific three cases 
(Remove 2 parameters by adding one zero in MD)

Littlest seesaw model by  King et al.

e/f=-3, 2 real parameters + 1 phase

b+c=0 b=0c=0

3 real parameters + 1 phase e, f are real : b is complex
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k= -5
δCP=±(50-70)°

sin2θ23≧0.55 

k= -1/5
δCP=±120°

sin2θ23～0.4 

k= -2
δCP～±120°

sin2θ23～0.4 

k= -1/2
δCP=±(50-70)°

sin2θ23≧0.55 

New simple Dirac neutrino mass matrices 
with different k=e/f

Littlest seesaw model by King et al.

k=-3
δCP=±(80-105)°

sin2θ23=0.45～0.55 
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Δ(96) group 

Generator  S, T and U : S2=(ST)3=T8=1,     (ST-1ST)3=1

Irreducible representations: 1,  1’,  2,  31 - 36,  6

For triplet 3,

Subgroup : fifteen Z2 , sixteen Z3 , seven K4 , twelve Z4 , six Z8

G.J.Ding and S.F.King, Phys.Rev.D89 (2014) 093020

R.de Adelhart Toorop, F.Feruglio, C.Hagedorn, Phys. Lett 703} (2011) 447

S. F.King, C.Luhn and A.J.Stuart, Nucl.Phys.B867(2013) 203

C.Hagedorn, A.Meroni and E.Molinaro, Nucl.Phys. B 891 (2015) 499

S= T=

Since simple patterns predict vanishing θ13,  larger groups may be used
to obtain non-vanishing θ13.

If neutrino sector preserves  
{S, ST4ST4} (Z2×Z2)
charged lepton sector preserves

ST (Z3)

G.J.Ding, Nucl. Phys.B 862 (2012) 1

Θ13～12° rather large
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If A5 is broken to other subgroups:  for example,

Neutrino sector preserves  S or T2ST3ST2  (both are K4 generator)
Charged lepton sector preserves  T (Z5)

Θ is not fixed, however, there appear testable sum rules:

A.Di Iura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037
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Monster group is maximal one in sporadic finite group,
which is related to the string theory.

Vertex Operator Algebra

On the other hand,
A5 is the minimal simple finite group 
except for cyclic groups.
This group is succesfully used to reproduce 
the lepton flavor structure.
There appears a flavor mixing angle with Golden ratio.

Platonic solids (tetrahedron, cube, octahedron, regular dodecahedron, regular icosahedron)
have symmetries of A4, S4 and A5 ,
which may be related with flavor structure of leptons.   

Moonshine phenomena
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Moonshine phenomena was discovered in Monster group.

Monster group: largest sporadic finite group, of order 8×1053 .
808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

McKay, Tompson, Conway, Norton (1978) observed : 
strange relationship between modular form and an isolated discrete group.

q-expansion coefficients of Modular J-function are decomposed into a sum
of dimensions of some irreducible representations of the monster group.

Moonshine phenomena

Phenomenon of monstrous moonshine has been solved mathematically
in early 1990’s using the technology of vertex operator algebra
in string theory. 
However, we still do not have a ’simple’ explanation of this phenomenon.
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Monster group: largest sporadic finite group, of order 8×1053 .
808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

McKay, Tompson, Conway, Norton (1978) observed : 
strange relationship between modular form and an isolated discrete group.

q-expansion coefficients of Modular J-function are decomposed into a sum
of dimensions of some irreducible representations of the monster group.

Moonshine phenomena

Phenomenon of monstrous moonshine has been solved mathematically
in early 1990’s using the technology of vertex operator algebra in string theory  
However, we still do not have a ’simple’ explanation of this phenomenon.

Dimensions of irreducible representations
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