

Vector-Boson Fusion and Scattering

Michael Rauch | 12 Dec 2017

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Standard Model: gauge theory $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

$$\mathcal{L}_{\mathsf{SM}} \supset -rac{1}{4} \, {\it W}^a_{\mu
u} \, {\it W}^{a,\mu
u}$$

with

$$W^a_{\mu
u} = \partial_\mu W^a_
u - \partial_
u W^a_\mu - ig\epsilon^{abc} W^b_\mu W^c_
u$$

 \Rightarrow vertices with 3 and 4 gauge bosons

e.g. $W^+W^- \rightarrow W^+W^-$

■ build W⁺ - W⁻ - collider

Standard Model: gauge theory $SU(3)_c \otimes \frac{SU(2)_L \otimes U(1)_Y}{SU(3)_c \otimes \frac{SU(2)_L \otimes U(1)_Y}{SU(3)_L \otimes U(1)_U}}}}$

$$\mathcal{L}_{\mathsf{SM}} \supset -rac{1}{4} rac{W^a_{\mu
u}}{W^{a,\mu
u}} W^{a,\mu
u}$$

with

$$W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} - ig\epsilon^{abc}W^{b}_{\mu}W^{c}_{\nu}$$

 \Rightarrow vertices with 3 and 4 gauge bosons

e.g. $W^+W^- \rightarrow W^+W^-$

Standard Model: gauge theory $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

$$\mathcal{L}_{\mathsf{SM}} \supset -rac{1}{4} \, {W}^a_{\mu
u} \, {W}^{a,\mu
u}$$

with

$$W^a_{\mu
u} = \partial_\mu W^a_
u - \partial_
u W^a_\mu - ig \epsilon^{abc} W^b_\mu W^c_
u$$

 \Rightarrow vertices with 3 and 4 gauge bosons

e.g. $W^+W^- \rightarrow W^+W^-$

produce W as parton of the proton

[Cahn, Dawson; ...]

Μ.

Standard Model: gauge theory $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

$$\mathcal{L}_{\mathsf{SM}} \supset -rac{1}{4} \, {W}^a_{\mu
u} \, {W}^{a,\mu
u}$$

with

$$W^a_{\mu
u} = \partial_\mu W^a_
u - \partial_
u W^a_\mu - ig \epsilon^{abc} W^b_\mu W^c_
u$$

 \Rightarrow vertices with 3 and 4 gauge bosons

e.g. $W^+W^- \rightarrow W^+W^-$

produce W as parton of the proton

[Cahn, Dawson; ...]

 \leftrightarrow large background of other processes with same final state \leftrightarrow not a good approximation

Standard Model: gauge theory $SU(3)_c \otimes \frac{SU(2)_L \otimes U(1)_Y}{SU(3)_c \otimes \frac{SU(2)_L \otimes U(1)_Y}{SU(3)_L \otimes U(1)_U}}}}$

$$\mathcal{L}_{\mathsf{SM}} \supset -rac{1}{4} \, {\it W}^{a}_{\mu
u} \, {\it W}^{a,\mu
u}$$

with

$$W^a_{\mu
u} = \partial_\mu W^a_
u - \partial_
u W^a_\mu - ig\epsilon^{abc} W^b_\mu W^c_
u$$

 \Rightarrow vertices with 3 and 4 gauge bosons

e.g. $W^+W^- \rightarrow W^+W^-$

produce WW from proton-proton scattering

[Han, Valencia, Willenbrock; Figy, Oleari, Zeppenfeld; ...]

Event Topology

topology of VBF (vector-boson fusion)/VBS (vector-boson scattering) shows distinct signature

- two so-called tagging jets in forward direction
- reduced jet activity in central direction
- leptonic decay products typically between the tagging jets
- \rightarrow two-sided deep-inelastic scattering

$$z_{j3}^* = \left(y_{j3} - \frac{y_{j1} + y_{j2}}{2}\right) / |y_{j1} - y_{j2}|$$

Event Topology

topology of VBF (vector-boson fusion)/VBS (vector-boson scattering) shows distinct signature

- two so-called tagging jets in forward direction
- reduced jet activity in central direction
- leptonic decay products typically between the tagging jets
- \rightarrow two-sided deep-inelastic scattering

Diboson-VBF production

[Bozzi, Jäger, Oleari, Zeppenfeld (VV); Campanario, Kaiser, Kerner, Zeppenfeld (Vγ)]

[Denner, Hosekova, Kallweit (W⁺W⁺)]

- Important process for LHC run-II and beyond
- Part of the NLO wish list

[Les Houches 2005]

- background to Higgs searches
- access to anomalous triple and quartic gauge couplings

Available tools:

- VBFNLO [Zeppenfeld, MR et al.] NLO QCD, VBF approximation
- Phantom [Ballestrero et al.] LO, $pp \rightarrow 6f$
- automated tools, e.g. GoSam [Cullen et al.] MadGraph5_aMC@NLO

[Artoisenet et al.]

Scale dependence

- sizable scale dependence at LO: $\sim \pm$ 10%
- strongly reduced at NLO: $\sim \pm$ 2% (up to 6% in distributions)
- K-factor around 0.98 for $\mu = m_V$, 1.04 for $\mu = Q$ (momentum transfer)

QCD-Diboson production

Most important background: QCD-Diboson Production All combinations available at NLO QCD:

[Melia, Melnikov, Röntsch, Zanderighi; Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano]

[Campanario, Kerner, Ninh, Zeppenfeld; Gehrmann, Greiner, Heinrich]

+ diagrams where quark line without attached vector bosons is replaced by gluons

QCD-Diboson production

[Campanario, Kerner, Ninh, Zeppenfield]

 $pp
ightarrow e^+
u_e \mu^+
u_\mu$

Impact of NLO QCD corrections

- K factors typically between 1 and 1.5
- corrections < 20% for invariant mass of two leading jets
 > 200 GeV
- huge correction for small m_{jj} due to new phase-space region (almost collinear quark-gluon splitting)
- good scale choice (interpolates between different regions):

$$\mu'_{0} = \frac{1}{2} \Big(\sum_{\text{jets}} p_{T,i} \exp |y_{i} - y_{12}| + \sum_{W} \sqrt{p_{T,i}^{2} + m_{W,i}^{2}} \Big)$$

QCD-EW interference

 $pp
ightarrow e^+
u_e \mu^+
u_\mu$

Comparing contributions at LO

EW: full *O*(α⁶) calculation VBF: VBF approximation (only t-/u-channel diagrams) [Campanario, Kerner, Ninh, Zeppenfeld]

- QCD and EW contributions of similar size (destructive interference for QCD, no gluon-initiated contributions)
- QCD-EW interference largest for large p_{T,j}, small Δy_{tags} up to 20% reducing to 10% (3%) for loose (tight) VBF cuts
- VBF contribution by far dominant in VBF region (96%)
 - \rightarrow good approximation

Definition of VBF region:

- *m_{jj}* > 500 GeV
- Δy_{tags} > 4
- $y_{j_1} \times y_{j_2} < 0$

NLO Electroweak Corrections

Including EW corrections mixes orders

[Biedermann, Denner, Pellen]

	LO	$\mathcal{O}(\cdot)$	α^{6}) $O($	$\mathcal{O}(\alpha_{\rm s}\alpha^5)$		$\alpha_s^2 \alpha^4$)		
EW QCD EW QCD EW QCD								
	NLO	$O(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha)$	$a_s^2 \alpha^5$	$\mathcal{O}(\alpha_{\rm s}^3 \alpha^4)$		
LO fiducial cross sections								
Order	$\mathcal{O}(\alpha$	$\mathcal{O}(c)$	$\alpha_s \alpha^5$) $O($	$\mathcal{O}(\alpha_s^2 \alpha^4)$ Sum				
$\sigma_{\sf LO}$ [fb]	1.4178(2) 0.004815(2) 0.17229(2) 1.6383(2)							
NLO fiducial cross sections								
Order		$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2)$	(α^5)	$\mathcal{O}(\alpha_s^3 \alpha^4)$	Sum	
$\delta \sigma_{\rm NLO}$ [fb]		-0.2169(3)	-0.0568(5)	-0.000	32(3)	-0.0063(4)	-0.2804(7)	
$\delta\sigma_{ m NLO}/\sigma_{ m LO}$ [%]		-13.2	-3.5	0.	0	-0.4	-17.1	

• large EW corrections at $\mathcal{O}(\alpha^7)$

- negative corrections at $\mathcal{O}(\alpha_s \alpha^6)$ mostly also present in VBF approximation (remaining difference: 0.6%)
- photon PDF contribution (not included above) small (+1.5% +2.7%)

NLO EW Differential Distributions

- large Sudakov logarithms from bosonic part
- larger effects than e.g. in diboson production
 - ightarrow Casimir $\mathcal{C}^{\mathsf{ew}}$ larger for bosons than for fermions ightarrow $\langle m_{4\ell}
 angle$ larger for VBS
- ightarrow ightarrow intrinsic feature

NNLO QCD corrections to VBF-Higgs

VBF-Higgs production in NNLO QCD

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi] Karlsruhe

	$\sigma^{({\rm no}\;{\rm cuts})}\;[{\rm pb}]$	$\sigma/\sigma^{\rm NLO}$
LO	$4.032^{+0.057}_{-0.069}$	1.026
NLO	$3.929 {}^{+0.024}_{-0.023}$	1
NNLO	$3.888^{+0.016}_{-0.012}$	0.990
	$\sigma^{\rm (VBF\; cuts)}\;{\rm [pb]}$	$\sigma/\sigma^{\rm NLO}$
LO	$0.957 {}^{+0.066}_{-0.059}$	1.092
NLO	$0.876 {}^{+0.008}_{-0.018}$	1
NNLO	$0.826{}^{+0.013}_{-0.014}$	0.943

central scale: $\mu_0^2(p_{T,H}) = \frac{M_H}{2} \sqrt{\left(\frac{M_H}{2}\right)^2 + \frac{M_H}{2}}$

$$u_0^2(p_{T,H}) = \frac{M_H}{2} \sqrt{\left(\frac{M_H}{2}\right)^2} + p_{T,H}^2$$

jets: anti-
$$k_T$$
, $R = 0.4$,
 $p_{T,j} > 25 \text{ GeV}$, $|y_j| < 4.5$
VBF cuts: $m_{jj} > 600 \text{ GeV}$,
 $\Delta y_{jj} > 4.5$, $y_{j1} \cdot y_{j2} < 0$

tiny corrections to inclusive cross section

■ significant (O(-10%)) corrections in VBF region

Jet-Clustering Dependence

- in NNLO calculation fixed choice of jet-clustering parameters (*R*, *n*)
- ↔ no dependence at LO
 ⇒ can use VBF-H+3jets NLO QCD calculation, [MR, Zeppenfeld] to convert between different values
 dσ^{NNLO}_{H3+}(R, n) = dσ^{NNLO}_{H3+}(R=0.4, n=-1) + dσ^{NLO}_{H3+}(R, n)

$$H_{HJ}^{HJ} = d\sigma_{HJ}^{HJ} = (R=0.4, n=-1) \underbrace{-d\sigma_{HJ}^{HJ} + (R=0.4, n=-1) + d\sigma_{HJ}^{HJ} + (R, n)}_{=\Delta(R,n)}$$

[Kauer, Reina, Repond, Zeppenfeld]

- differential *E_T*-distribution inside jet cone (ZEUS: black dots)
- Energy flow significantly smaller for NLO (max. 2 partons, red) than for NNLO (up to 3 partons, blue)

Integrated Cross Section

VBF-*Hjj*, \sqrt{S} = 13 TeV, m_{jj} > 600 GeV, Δy_{jj} > 4.5

- band: uncertainty from scale variation
- small cone misses part of the jet energy
 - \Rightarrow smaller m_{ii}
 - \Rightarrow less events with $m_{ii} > 600 \text{ GeV}$

Differential Cross Sections

VBF-*Hjj*, $\sqrt{S} = 13$ TeV, $m_{jj} > 600$ GeV, $\Delta y_{jj} > 4.5$

- good agreement between NLO and NNLO result also in distributions
- remaining effects in some phase-space regions possible explanations: 2-loop effects,

suppressed radiation between tagging jets

disclaimer:

nothing special about R = 1.0 for VBF-Higgs production \leftrightarrow possible large corrections by other effects (underlying event, pile-up, ...)

NLO plus Parton Shower

Combine advantages of NLO calculations and parton shower

NLO calculation

- normalization correct to NLO
- additional jet at high-p_T accurately described
- theoretical uncertainty reduced

State of the Art

Implementations for specific VBF processes

 POWHEG-BOX currently available VBF implementations: Z [Jäger, Schneider, Zanderighi]

 W^{\pm}, Z $W^{\pm}W^{\pm}, W^{\pm}W^{\mp}$ ZZ

- VBF-H with POWHEG method
- HJets++

Parton shower

[Schissler, Zeppenfeld]

[Jäger, Karlberg, Zanderighi]

[Jäger, Zanderighi]

- Sudakov suppression at small p_T
- events at hadron level possible

[Alioli, Hamilton, Nason, Oleari, Re]

[D'Errico, Richardson]

[Campanario, Figy, Plätzer, Sjödahl]

VBFNLO

VBFNLO

F Physics Vector-Boson-Eusion at Next-to-Leading Order

Fully flexible parton-level Monte Carlo for processes with electroweak bosons

Process list

- VBF/VBS production at NLO QCD of
 - Higgs
 - Higgs plus third hard jet

(including Higgs decays)

- Higgs plus photonHiggs pair
- vector boson (W, Z, γ)
- two vector bosons (W⁺W⁻, W[±]W[±], WZ, ZZ, W γ , Z γ)
- diboson production (all combinations)
- triboson production (all combinations) (semi-leptonic decay mode contributes to VBS final state)
- ...
- new physics models
 - anomalous Higgs, triple and quartic gauge couplings
 - ...
- BLHA interface to Monte-Carlo event generators
 - \rightarrow NLO event output

Herwig 7 H7

- fully automated matching of NLO to parton showers through Matchbox module [work led by S. Plåtzer with substantial contributions by J. Bellm, A. Wilcock, MR, C. Reuschle]
- subtractive (MC@NLO-type, \oplus) and multiplicative (POWHEG-type, \otimes) matching
- angular-ordered (QTilde, PS) and dipole (Dipoles) shower
- matrix elements through binary interface, no event files

VBFNLO 3 & Herwig 7 – this talk

matrix elements from VBFNLO via BLHA2 interface

[Binoth et al., Alioli et al.]

- extensions to make accessible
 - phase-space sampling
 - (electroweak) random helicity summation
 - anomalous couplings

Distributions

Process as example: $pp \rightarrow ((Hjj \rightarrow)W^+W^-jj \rightarrow)e^+\nu_e\mu^-\bar{\nu}_\mu jj$ via VBF Four-lepton invariant mass

Distributions

Process as example: $pp \rightarrow ((Hjj \rightarrow)W^+W^-jj \rightarrow)e^+\nu_e\mu^-\bar{\nu}_\mu jj$ via VBF Four-lepton invariant mass

- all parton-shower results smaller than NLO cross section
- additional K-factor effect for LO \oplus Dipoles result (K = 1.077)
- no relevant shape changes (as expected: insensitive to QCD effects)

Four-lepton Invariant Mass

- ← central scale µ₀ = p_{T,j1} transverse momentum of leading jet
- $\leftarrow \bullet \text{ band: scale variation} \\ \{\mu_F, \mu_R, \mu_Q\} / \mu_0 \in [\frac{1}{2}; 2] \\ \mu_i / \mu_j \in [\frac{1}{2}; 2] \end{cases}$
- ← factorization scale $\mu_F/\mu_0 \in [\frac{1}{2}; 2]$
- ← renormalization scale $\mu_R/\mu_0 \in [\frac{1}{2}; 2]$
- ← shower scale $\mu_Q/\mu_0 \in [\frac{1}{2}; 2]$
- \leftarrow \blacksquare all three scales

Four-lepton Invariant Mass

- consistent variation of scales between hard process and parton shower
- large factorization scale dependence for LO result
- larger dependence for down variation of renormalization scale in angular-ordered shower:

larger $\alpha_s \rightarrow$ more splittings \rightarrow bigger migration effects

- small variations from shower-scale changes
- modest remaining overall uncertainty

Transverse Momentum Third Jet

- large scale variation bands for
 - shower scale in LO⊕Dipoles

 $\rightarrow \text{pure parton-shower} \\ \text{effect}$

fact./ren. scale in "NLO"

 $\rightarrow \text{LO accuracy of} \\ \text{observable}$

- reduced for both NLO + parton-shower curves
- still significant remaining uncertainty O(10 – 20%)
- $\blacksquare \rightarrow call$ for multi-jet merging

Rapidity of third jet

Rapidity of third jet relative to two tagging jets $y_3^* = y_3 - \frac{y_1 + y_2}{2}$

- VBF colour structure suppresses additional central jet radiation
- colour connection between tagging jet and remnant
- ↔ distinction from QCD-induced production

Rapidity of third jet

Rapidity of third jet relative to two tagging jets

$$y_3^* = y_3 - \frac{y_1 + y_2}{2}$$

- impact of parton showers (+LO) long unclear
- Herwig predicts very low radiation in central region
- large shower-scale unc.
- stabilised when combining with NLO
- still reduction present
- scale variation bands not overlapping
- only small effects in forward region (mostly global normalization)

Rapidity of third jet - POWHEG

Rapidity of third jet - POWHEG

• band: joint variation $\mu_F = \mu_R = \mu_Q \in [\frac{1}{2}, 2] \mu_0$

- similar predictions from MC@NLO-like (\oplus) and POWHEG-like (\otimes) matching
- also holds for other distributions

Effective Field Theory

Assumption: new physics is heavy

Classic example: μ decay \rightarrow Fermi theory

Integrate out W boson propagator:

$$\frac{i}{q^2 - M_W^2} \to \frac{i}{-M_W^2} + \mathcal{O}\left(\frac{M_W}{E}\right)$$

valid if $q^2 \ll M_W^2$

 \Rightarrow Effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d > 4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

M. Rauch - Vector-Boson Fusion and Scattering

Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d > 4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- operators O contain SM fields only
- respect SM gauge symmetries
- suppressed by $1/\Lambda^{d-4}$ (Λ : scale of new physics)
 - \rightarrow keep only leading order(s) (lowest dimension d = 6)
- building blocks:
 - Higgs field Φ
 - (covariant) derivative ∂^{μ} , D^{μ}
 - field strength tensors G^{μν}, W^{μν}, B^{μν}
 - fermion fields ψ
- d = 6 constrained from diboson production
 - \rightarrow probe next order d = 8
- Motivation:
 - d = 6 from loop contribution to vertex \rightarrow might be suppressed
 - d = 8 from integrating out tree-level propagator

Linear Lagrangian

linear realization of the EFT

[Buchmüller, Wyler; Hagiwara et al; Grzadkowski et al; ...]

- D6: 59 operators when assuming
 - baryon/lepton-number conservation
 - flavour universality

List of Operators (only gauge and Higgs couplings)

$$\begin{split} \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) & \mathcal{O}_{B} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \widehat{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \, \widehat{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} &= \Phi^{\dagger} \, \widehat{B}_{\mu\nu} \, \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{WWW} &= \operatorname{Tr} \left[\widehat{W}^{\mu}{}_{\nu} \, \widehat{W}^{\nu}{}_{\rho} \, \widehat{W}^{\rho}{}_{\mu} \right] & \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\widetilde{W}} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \widetilde{W}^{\mu\nu} \left(D_{\nu} \Phi \right) & \mathcal{O}_{\widetilde{B}} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \widetilde{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\widetilde{W}W} &= \Phi^{\dagger} \, \widetilde{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi & \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \, \widetilde{B}_{\mu\nu} \, \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{W}WW} &= \operatorname{Tr} \left[\widetilde{W}^{\mu}{}_{\nu} \, \widehat{W}^{\nu}{}_{\rho} \, \widehat{W}^{\rho}{}_{\mu} \right] \end{split}$$

One constraint on CP-odd operators

$$\mathcal{O}_{\widetilde{W}} + \frac{1}{2}\mathcal{O}_{\widetilde{W}W} = \mathcal{O}_{\widetilde{B}} + \frac{1}{2}\mathcal{O}_{\widetilde{B}B}$$

Additional CP-even operator

$$\mathcal{O}_{\phi W} = \operatorname{Tr} \left[W^{\mu \nu} W_{\mu \nu} \right] \Phi^{\dagger} \Phi \equiv 2 \mathcal{O}_{WW}$$

Vertex Contributions

List of Operators (only gauge and Higgs couplings)

$$\begin{split} \mathcal{O}_W &= \left(D_\mu \Phi \right)^\dagger \, \widehat{W}^{\mu\nu} \left(D_\nu \Phi \right) \\ \mathcal{O}_{WW} &= \Phi^\dagger \, \widehat{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{WWW} &= \mathrm{Tr} \left[\widehat{W}^\mu{}_\nu \, \widehat{W}^\nu{}_\rho \, \widehat{W}^\rho{}_\mu \right] \\ \mathcal{O}_{\widetilde{W}} &= \left(D_\mu \Phi \right)^\dagger \, \widetilde{W}^{\mu\nu} \left(D_\nu \Phi \right) \\ \mathcal{O}_{\widetilde{W}W} &= \Phi^\dagger \, \widetilde{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{W}WW} &= \mathrm{Tr} \left[\widetilde{W}^\mu{}_\nu \, \widehat{W}^\nu{}_\rho \, \widehat{W}^\rho{}_\mu \right] \end{split}$$

$$\begin{split} \mathcal{O}_{\mathcal{B}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{B}^{\mu \nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\mathcal{B}\mathcal{B}} &= \Phi^{\dagger} \widehat{B}_{\mu \nu} \widehat{B}^{\mu \nu} \Phi \\ \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\overline{\mathcal{B}}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widetilde{B}^{\mu \nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\overline{\mathcal{B}}\mathcal{B}} &= \Phi^{\dagger} \widetilde{B}_{\mu \nu} \widehat{B}^{\mu \nu} \Phi \end{split}$$

Modification of corresponding triple-gauge-coupling vertices:

	\mathcal{O}_{WWW}	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\phi,2}$	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\widetilde{W}}$	$\mathcal{O}_{\widetilde{B}}$	$\mathcal{O}_{\widetilde{W}W}$	$\mathcal{O}_{\widetilde{B}B}$
WWZ	Х	Х	Х				X	X	X		
$WW\gamma$	Х	Х	Х				Х	Х	Х		
HWW		Х		Х		Х		Х		Х	
HZZ		Х	х	Х	х	Х		Х	х	Х	х
$HZ\gamma$		х	х	Х	х	(X)		Х	х	Х	х
$H\gamma\gamma$				Х	х	(X)				Х	х
WWWW	Х	Х					Х				
WWZZ	Х	Х					Х				
$WWZ\gamma$	Х	Х					Х				
$WW\gamma\gamma$	Х						Х				

Dimension-8

Bosonic dimension-8 operators

(D6 could be loop-induced \rightarrow D8 effects can become sizable [Arzt, Einhorn, Wudka])

$$\begin{split} \mathcal{O}_{S,0} &= \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S,1} &= \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S,2} &= \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right] \end{split}$$

$$\begin{split} \mathcal{O}_{M,0} &= \mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right] \\ \mathcal{O}_{M,1} &= \mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,2} &= \left[\widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right] \\ \mathcal{O}_{M,3} &= \left[\widehat{B}_{\mu\nu}\widehat{B}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,4} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}D^{\mu}\Phi\right] \times \widehat{B}^{\beta\nu} \\ \mathcal{O}_{M,5} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}D^{\nu}\Phi\right] \times \widehat{B}^{\beta\mu} \\ \mathcal{O}_{M,7} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi\right] \end{split}$$

$$\begin{split} \mathcal{O}_{T,0} &= \mathsf{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \mathsf{Tr}\left[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta}\right] \\ \mathcal{O}_{T,1} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right] \times \mathsf{Tr}\left[\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu}\right] \\ \mathcal{O}_{T,2} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right] \times \mathsf{Tr}\left[\widehat{W}_{\beta\nu}\widehat{W}^{\nu\alpha}\right] \\ \mathcal{O}_{T,5} &= \mathsf{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \widehat{B}_{\alpha\beta}\widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,6} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right] \times \widehat{B}_{\mu\beta}\widehat{B}^{\alpha\nu} \\ \mathcal{O}_{T,7} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right] \times \widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha} \\ \mathcal{O}_{T,8} &= \widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\widehat{B}_{\alpha\beta}\widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,9} &= \widehat{B}_{\alpha\mu}\widehat{B}^{\mu\beta}\widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha} \end{split}$$

[Eboli, Gonzalez-Garcia]

- \rightarrow each operators contains at least four bosons
- \Rightarrow leading contribution to quartic gauge coupling

Unitarity Violation

Important gauge cancellations between different diagram types

Iongitudinal W scattering through quartic gauge boson vertex

high energy limit: centre-of-mass energy $\sqrt{s} \to \infty$ $\mathcal{M}_{quartic vertex} \propto s^2 \to cross section diverges \quad \sigma \propto s^4/s = s^3 \to \infty$ add triple gauge boson vertices

 $\mathcal{M}_{\text{quartic+triple vertices}} \propto s \rightarrow \text{still divergent}$ additional Higgs diagrams

Unitarization

Anomalous gauge couplings spoil cancellation \leftrightarrow effects can become large \rightarrow unitarity violation

Several solutions:

- consider only unitarity-conserving phase-space regions throws away information → reduced sensitivity
- (dipole) form factor multiplying amplitudes

$$\mathcal{F}(s) = rac{1}{\left(1 + rac{s}{\Lambda_{\mathrm{FF}}^2}
ight)^n} \qquad \qquad \Lambda_{\mathrm{FF}}^2, \; n: \text{free parameters}$$

 K-matrix unitarization [Alboteanu, Kilian, Reuter, Sekulla] based on partial-wave analysis [Jacob, Wick] project amplitude back onto Argand circle

Cross Section Results

Example Process: $pp (\rightarrow W^+W^+jj) \rightarrow e^+\nu_e\mu^+\nu_\mu jj$ at NLO QCD accuracy

kink form factor (simplified projection for comparison):

$$F_{kink}(E) = \begin{cases} 1 & \text{for } E \leq \Lambda_{FF,kink} \ , \\ \left(\frac{\Lambda_{FF,kink}}{E}\right)^4 & \text{for } E > \Lambda_{FF,kink} \ , \end{cases}$$

- huge effects for un-unitarized result ↔ unphysical
- K-matrix method maximising contribution while staying in physical region
- lacksquare \rightarrow study parton-shower and hadronization impact

Impact of Current Limits

Investigate impact of D6 vs D8 operators on VBS

D6 input: Global Higgs and Gauge analysis of run-I data

[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]

Take results and apply to vector-boson scattering

 \Rightarrow No contribution from \mathcal{O}_{GG} and fermionic operators

f_{χ}/Λ^2 [TeV ⁻²]	LHC-Higgs + LHC-TGV + LEP-TGV					
	Best fit	95% CL interval				
f _{WW}	-0.1	(-3.1, 3.7)				
f _{BB}	0.9	(-3.3, 6.1)				
f _W	1.7	(-0.98, 5.0)				
f _B	1.7	(-11.8, 8.8)				
fwww	-0.06	(-2.6, 2.6)				
$f_{\phi,2}$	1.3	(-7.2, 7.5)				

For simplicity: use pos. and neg. 95% CL bound with other parameters set to zero \rightarrow slightly larger effect than true 95% CL bound

Additionally:

effect from dimension-8 operator $\mathcal{O}_{\mathcal{S},1}$

using CMS, $W^{\pm}W^{\pm}jj$, $\sqrt{S} = 8$ TeV, no unitarization [arXiv:1410.6315] $f_{S,1}/\Lambda^4 \in (-118, 120)$ TeV⁻⁴ (for $f_{S,0}/\Lambda^4 = 0$)

Results

Process: $pp \rightarrow W^+W^+jj \rightarrow \ell^+ \nu \ell^+ \nu jj$, $\sqrt{S} = 13$ TeV, VBF cuts, NLO QCD

- last bin: overflow bin, m_{4ℓ} > 2000 GeV
- effect of D6 contributions in general small; largest one by O_{WWW}
- D8 operator clearly dominating

Results

cross section when requiring $m_{4\ell} > m_{4\ell}^{\text{cut}}$

• \mathcal{O}_{WWW} contribution large only for very high $m_{4\ell} \leftrightarrow$ low event counts

excess of 10 events for $m_{4\ell} > 1$ TeV, $\mathcal{L} = 100$ fb⁻¹, SM contrib. of 10 events other D6 operators below 1 event

 \leftrightarrow unitarity violating contributions (?)

O_{S1} yielding large excess even without cuts on m_{4l}

excess of almost 500 events for $m_{4\ell} > 1$ TeV, $\mathcal{L} = 100$ fb⁻¹ even after unitarization excess of 37 events

Experimental Results

VBF / VBS processes also measured by ATLAS and CMS

• VBF-H production well established: $\frac{\sigma}{\sigma_{\text{CM}}} = 1.18^{+0.25}_{-0.23}$

[ATLAS&CMS Higgs combination]

Observation of EW

limits on D8 operators

Conclusions

Vector-boson fusion and scattering

- characteristic signature: two tagging jets in forward regions
- enhance over irred. QCD background by VBF cuts
- state-of-the-art: NLO EW, NNLO QCD, NLO QCD + parton shower
- modest higher-order corrections
 ↔ need to consider not only scale variation, but also e.g. jet definition as uncertainty
- parton-shower study performed with Herwig 7 & VBFNLO 3
 - compatible behavior of both parton showers and matching schemes
 - small parton-shower effects for distributions of variables already present at LO
 - presence of central rapidity gap stabilised
 - $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- testing anomalous (triple and) quartic gauge couplings
 - \rightarrow (fairly) model-independent constraints on new-physics effects

Conclusions

Vector-boson fusion and scattering

- characteristic signature: two tagging jets in forward regions
- enhance over irred. QCD background by VBF cuts
- state-of-the-art: NLO EW, NNLO QCD, NLO QCD + parton shower
- modest higher-order corrections
 ↔ need to consider not only scale variation, but also e.g. jet definition as uncertainty
- parton-shower study performed with Herwig 7 & VBFNLO 3
 - compatible behavior of both parton showers and matching schemes
 - small parton-shower effects for distributions of variables already present at LO
 - presence of central rapidity gap stabilised
 - $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- testing anomalous (triple and) quartic gauge couplings
 - \rightarrow (fairly) model-independent constraints on new-physics effects

Conclusions

Vector-boson fusion and scattering

- characteristic signature: two tagging jets in forward regions
- enhance over irred. QCD background by VBF cuts
- state-of-the-art: NLO EW, NNLO QCD, NLO QCD + parton shower
- modest higher-order corrections
 ↔ need to consider not only scale variation, but also e.g. jet definition as uncertainty
- parton-shower study performed with Herwig 7 & VBFNLO 3
 - compatible behavior of both parton showers and matching schemes
 - small parton-shower effects for distributions of variables already present at LO
 - presence of central rapidity gap stabilised
 - $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- testing anomalous (triple and) quartic gauge couplings
 - \rightarrow (fairly) model-independent constraints on new-physics effects

BLHA Interface

Defined standardized interface between Monte Carlo tools and one-loop programs

→Binoth Les Houches Accord (BLHA)

[arXiv:1001.1307, arXiv:1308.3462]

- tree-level evaluation of matrix elements well under control
- modular structure of NLO calculations
- algorithms for treatment of infrared singularities (Catani-Seymour, FKS, ...)
- lacksquare \rightarrow incorporate one-loop matrix element information into MC tools

Distribution of tasks:

- MC tool:
 - cuts, histograms, parameters
 - Monte Carlo integration
 - phasespace ($\rightarrow VBFNLO$)
 - IR subtraction
 - Born, colour- and spin-correlated Born (only BLHA1)
- One-loop provider (OLP):
 - one-loop matrix elements $2\Re(\mathcal{M}_{10}^{\dagger}\mathcal{M}_{virt})$ (coefficients of ϵ^{-2} , ϵ^{-1} , ϵ^{0} ; $|\mathcal{M}_{LO}|^{2}$)
 - Born, colour- and spin-correlated Born (only BLHA2)

Setup stage via "contract" file

(needed for tools which generate code on the fly)

Run-time stage via binary interface (function calls) \rightarrow fast

Validation

Compare LO+j results between VBFNLO stand-alone run and interfaced to Herwig 7 via Matchbox

(inclusive cuts, with leptonic gauge boson decays into single different-flavour combination, Higgs non-decaying)

Setup

Generation-level cuts:

 $p_{T,j} > 20 \text{ GeV},$ anti- k_T jets with R = 0.4, $p_{T,\ell} > 15 \text{ GeV},$ $m_{e^+,\mu^-} > 15 \text{ GeV},$ $m_{j1,j2} > 400 \text{ GeV},$ $|y_j|$ $egin{aligned} |y_j| &< 5.0\,, \ b ext{-quark veto} \ |y_\ell| &< 3.0\,, \end{aligned}$

 $|y_{j1} - y_{j2}| > 3.0$

Analysis-level cuts:

 $\begin{array}{ll} p_{T,j} > 30 \; {\rm GeV}\,, & |y_j| < 4.5\,, \\ {\rm anti-}k_T \; {\rm jets} \; {\rm with} \; R = 0.4\,, & b\mbox{-quark veto} \\ p_{T,\ell} > 20 \; {\rm GeV}\,, & |y_\ell| < 2.5\,, \\ m_{e^+,\mu^-} > 15 \; {\rm GeV}\,, & \\ m_{j1,j2} > 600 \; {\rm GeV}\,, & |y_{j1} - y_{j2}| > 3.6 \end{array}$

Missing Transverse Momentum

Transverse Momentum of Leading Lepton

R Separation of Leading Jet and Leading Lepton

$$\Delta R = \sqrt{\Delta y^2 + \Delta \phi^2}$$

Jacobian peak at $\Delta R_{i1\ell 1} = \pi$

Combination EFT with Parton Shower

[VBFNLO 3 & Herwia 7]

Can also combine K-matrix in setup with parton shower Example: VBF- W^+W^+ ($pp \rightarrow e^+\nu_e \mu^+\nu_\mu jj$) anom. coupl.: $f_{S,1} = 100 \text{ TeV}^{-4}$

No significant shape changes in $m_{4\ell}$ when switching on PS (integrated c.s. PS/NLO: -3.0% (SM) / -3.8% (K-matrix))

Combination EFT with Parton Shower

No significant shape changes in $m_{4\ell}$ when switching on PS (integrated c.s. PS/NLO: -3.0% (SM) / -3.8% (K-matrix))

 $\leftrightarrow p_{i,3}^T$ mostly sensitive to parton-shower effects