Top Production Cross Section -

Matching of Relativistic and Non-Relativistic Regimes

Angelika Widl

in collaboration with

André Hoang, Bahman Dehnadi, Maximilian Stahlhofen, Vicent Mateu

Motivation

Relativistic Regime

Non-Relativistic Regime

Matching

Outlook

Motivation

top quark properties: $m_t^{pole} pprox 170\,{
m GeV},\ \Gamma_t pprox 2\,{
m GeV}$

precise measurement of top quark properties for:

- stability of the SM vacuum
- electroweak precision tests
- new physics searches
- ...

Top production cross section in the pole mass scheme:

Vacuum Polarization known up to α^3 [Hoang, Mateu, Zebarjad '08] \checkmark

 \checkmark Vacuum Polarization known up to α^3 [Hoang, Mateu, Zebarjad '08]

5 / 30

– scales: m, $|ec{p}|\sim$ mv, $E\sim$ mv 2 $(m_t\sim$ 170 GeV , v $\sim lpha\sim$ 0.1)

- scales: m,
$$|\vec{p}| \sim mv, E \sim mv^2$$
 $(m_t \sim 170 \, {\rm GeV}$, $v \sim lpha \sim 0.1)$

- large disparity of scales $m \gg mv \gg mv^2 \gg \Lambda_{QCD}$

– scales: m,
$$|ec{p}| \sim$$
 mv, $E \sim$ mv 2 $(m_t \sim$ 170 GeV , $v \sim lpha \sim$ 0.1)

- large disparity of scales $m \gg mv \gg mv^2 \gg \Lambda_{QCD}$
- problems:

1. large logarithms
$$\log\left(\frac{E^2}{m^2}\right), \log\left(\frac{\vec{p}^2}{m^2}\right)$$

– scales: m,
$$|ec{p}| \sim$$
 mv, $E \sim$ mv 2 $(m_t \sim$ 170 GeV , $v \sim lpha \sim$ 0.1)

- large disparity of scales $m \gg mv \gg mv^2 \gg \Lambda_{QCD}$
- problems:

1. large logarithms $\log\left(\frac{E^2}{m^2}\right), \log\left(\frac{\vec{p}}{m^2}\right)$

2. Coulomb singularity contributions of order $\frac{\alpha^2}{v^3}$, $\frac{\alpha^3}{v^4}$, $\frac{\alpha^4}{v^5}$, ...

Fields in vNRQCD and pNRQCD:

field	(<i>E</i> , <i>m</i>)
potential quark	(mv^2, mv)
soft gluon	(mv, mv)
ultrasoft gluon	(mv^2, mv^2)

Fields in vNRQCD and pNRQCD:

field	(<i>E</i> , <i>m</i>)
potential quark	(mv^2, mv)
soft gluon	(mv, mv)
ultrasoft gluon	(mv^2, mv^2)

Example:

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$$

$$\alpha_s \sim v!$$

Green function of the non-relativistic Schrödinger equation:

<u>Free Hamiltonian</u>: $H_0 = \vec{p}^2/m$

Green function of the non-relativistic Schrödinger equation:

<u>Free Hamiltonian</u>: $H_0 = \vec{p}^2/m$

$$(H_0 - E) G_0(\vec{p}, \vec{p}') = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}')$$

Green function of the non-relativistic Schrödinger equation:

<u>Free Hamiltonian</u>: $H_0 = \vec{p}^2/m$

(

$$\begin{aligned} H_0 - E) \ G_0(\vec{p}, \vec{p}\,') &= (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}\,') \\ G_0(\vec{p}, \vec{p}\,') &= (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}\,') \, \frac{-1}{E - \vec{p}^2/m} \\ G_0(\vec{x}, \vec{x}\,', E) &= \int \frac{d^3 p}{(2\pi)^3} \frac{-1}{E - \vec{p}^2/m} \, e^{i\vec{p}\,(\vec{x} - \vec{x}\,')} \end{aligned}$$

Green function of the non-relativistic Schrödinger equation:

<u>Free Hamiltonian</u>: $H_0 = \vec{p}^2/m$

$$(H_0 - E) G_0(\vec{p}, \vec{p}') = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}')$$
$$G_0(\vec{p}, \vec{p}') = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}') \frac{-1}{E - \vec{p}^2/m}$$
$$G_0(\vec{x}, \vec{x}', E) = \int \frac{d^3p}{(2\pi)^3} \frac{-1}{E - \vec{p}^2/m} e^{i\vec{p}(\vec{x} - \vec{x}')}$$

$$G_0(0,0,E) \sim$$

$$(H_0 - E) G(\vec{p}, \vec{p}') + \int \frac{d^3k}{(2\pi)^3} V(\vec{p} - \vec{k}) G(\vec{k}, \vec{p}) = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}')$$

$$(H_0 - E) G(\vec{p}, \vec{p}') + \int \frac{d^3k}{(2\pi)^3} V(\vec{p} - \vec{k}) G(\vec{k}, \vec{p}) = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}')$$

$$G(\vec{p},\vec{p}') = G_0(\vec{p},\vec{p}') + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} G_0(\vec{p},\vec{p}_1) V(\vec{p}_1 - \vec{p}_2) G_0(\vec{p}_2,\vec{p}') + \dots$$

$$(H_0-E) \, G(\vec{p},\vec{p}\,') + \int rac{d^3k}{(2\pi)^3} V(\vec{p}-\vec{k}) \, G(\vec{k},\vec{p}) = (2\pi)^3 \delta^{(3)}(\vec{p}-\vec{p}\,')$$

$$G(\vec{p},\vec{p}') = G_0(\vec{p},\vec{p}') + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} G_0(\vec{p},\vec{p}_1) V(\vec{p}_1 - \vec{p}_2) G_0(\vec{p}_2,\vec{p}') + \dots$$

$$(H_0 - E) G(\vec{p}, \vec{p}') + \int \frac{d^3k}{(2\pi)^3} V(\vec{p} - \vec{k}) G(\vec{k}, \vec{p}) = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}')$$
$$G(\vec{p}, \vec{p}') = G_0(\vec{p}, \vec{p}') + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} G_0(\vec{p}, \vec{p}_1) V(\vec{p}_1 - \vec{p}_2) G_0(\vec{p}_2, \vec{p}') + \dots$$

$$G(0,0,E) = \lim_{r \to 0} \frac{m^2}{4\pi} \left[iv + \frac{1}{mr} - \alpha_s C_F \left(\log(-2i \, mvr) - 1 + 2\gamma_E + \psi \left(1 - i \frac{C_F \alpha_s}{2v} \right) \right) \right]$$

 $L = \log(v)$

$$(\cdots \cdots + \cdots) c_1(\nu)$$

$$v \qquad \alpha_s (1,L) \qquad \alpha_s^2/v \qquad \alpha_s^3/v^2 \qquad \text{LO}$$

- $\alpha_s v$ $\alpha_s^2 (1, L, L^2)$ $\alpha_s^3 / v (1, L)$ NLO
- $v^3 \qquad \alpha_s v^2 (1,L) \qquad \alpha_s^2 v (1,L) \qquad \alpha_s^3 (1,L,L^2,L^3) \qquad \text{NNLO}$

 $L = \log(v)$

→ NNLO Schrödinger equation solved numerically [Hoang, Teubner '99]

Large Logarithms

 \longrightarrow resum logs with vNRQCD

 $m \gg |\vec{p}| \gg E \gg \Lambda_{QCD}$

Large Logarithms

 \longrightarrow resum logs with vNRQCD

 $m \gg |ec{p}| \gg E \gg \Lambda_{QCD}$

correlated scales

$$E = \frac{\vec{p}^2}{m}$$

Large Logarithms

 \longrightarrow resum logs with vNRQCD

 $m \gg |ec{p}| \gg E \gg \Lambda_{QCD}$

 μ_{us}, μ_s

correlated scales
$$E = \frac{\vec{p}^2}{m}$$

renormalization scales

12 / 30
\longrightarrow resum logs with vNRQCD

 $m \gg |\vec{p}\,| \gg E \gg \Lambda_{QCD}$

correlated scales

$$E = \frac{\vec{p}^2}{m}$$

renormalization scales

 $\mu_{\rm us},\ \mu_{\rm s}$

logs

$$\log\left(\frac{E^2}{\mu_{us}^2}\right), \log\left(\frac{\vec{p}^2}{\mu_s^2}\right)$$

 \longrightarrow resum logs with vNRQCD

 $m \gg |\vec{p}\,| \gg E \gg \Lambda_{\text{QCD}}$

correlated scales $E = \frac{\vec{p}^2}{m}$

renormalization scales

subtraction velocity ν

logs

 μ_{us}, μ_s

$$\log\left(\frac{E^2}{\mu_{us}^2}\right), \log\left(\frac{\vec{p}^2}{\mu_s^2}\right)$$
$$\mu_{us} = m\nu^2, \ \mu_s = m\nu$$

12 / 30

Expansion of currents:

$$j^{i} = \bar{\psi}(x) \gamma^{i} \psi(x) = \sum_{\vec{p}} \left(c_{1}(\nu) \mathcal{O}_{\vec{p},1}^{i} + c_{2}(\nu) \mathcal{O}_{\vec{p},2}^{i} \right), \qquad \begin{array}{c} \mathcal{O}_{\vec{p},1}^{i} = \psi_{\vec{p}}^{\dagger} \sigma^{i}(i\sigma_{2}) \chi_{-\vec{p}}^{*} \\ \mathcal{O}_{\vec{p},2}^{i} = \frac{1}{m^{2}} \psi_{\vec{p}}^{\dagger} \vec{p}^{2} \sigma^{i}(i\sigma_{2}) \chi_{-\vec{p}}^{*} \end{array}$$

Expansion of currents:

$$j^{i} = \bar{\psi}(x) \gamma^{i} \psi(x) = \sum_{\vec{p}} \left(c_{1}(\nu) \mathcal{O}_{\vec{p},1}^{i} + c_{2}(\nu) \mathcal{O}_{\vec{p},2}^{i} \right), \qquad \begin{array}{c} \mathcal{O}_{\vec{p},1}^{i} = \psi_{\vec{p}}^{\dagger} \sigma^{i}(i\sigma_{2}) \chi_{-\vec{p}}^{*} \\ \mathcal{O}_{\vec{p},2}^{i} = \frac{1}{m^{2}} \psi_{\vec{p}}^{\dagger} \vec{p}^{2} \sigma^{i}(i\sigma_{2}) \chi_{-\vec{p}}^{*} \end{array}$$

Cross section:

$$\begin{split} \sigma_{t\bar{t}} &= A(q^2) \,\,\mathrm{Im}\left[-i\int d^4x \,\,e^{iqx}\,\langle 0|\mathrm{T}\,j_{\mu}(x)\,j^{\mu}(0)|0\rangle\right] \\ &= A(q^2) \,\,\mathrm{Im}\left[c_1(\nu)\,\,\mathcal{A}_1(\nu,\nu,m) + 2\,c_1(\nu)c_2(\nu)\,\,\mathcal{A}_2(\nu,m,\nu)\right] \end{split}$$

$$\begin{split} \mathcal{A}_{1} &= i \sum_{\vec{p},\vec{p}'} \int d^{4} x \; e^{i q x} \left\langle 0 | \mathrm{T} \; \boldsymbol{\mathcal{O}}_{\vec{p},1}(x) \; \boldsymbol{\mathcal{O}}_{\vec{p}',1}^{\dagger}(0) | 0 \right\rangle \\ \mathcal{A}_{2} &= \frac{i}{2} \sum_{\vec{p},\vec{p}'} \int d^{4} x \; e^{i q x} \left\langle 0 | \mathrm{T} \; \boldsymbol{\mathcal{O}}_{\vec{p},1} \; \boldsymbol{\mathcal{O}}_{\vec{p}',2}^{\dagger} + \boldsymbol{\mathcal{O}}_{\vec{p},2} \; \boldsymbol{\mathcal{O}}_{\vec{p}',1}^{\dagger} | 0 \right\rangle \end{split}$$

 $c_1(\nu) \mathcal{A}_1(\nu, v, m)$

$$c_1(\nu) \mathcal{A}_1(\nu, v, m)$$

$$\nu = 1$$
 $\mu_{us} = m, \ \mu_s = m \rightarrow \text{determine } c_1$

$$c_1(\nu) \, \mathcal{A}_1(\nu, v, m)$$

- logs in
$$\mathcal{A}_1$$
: log $\left(\frac{E^2}{\mu_{us}^2}\right) \sim \log\left(\frac{v^4}{\nu^4}\right)$,
log $\left(\frac{\vec{p}^2}{\mu_s^2}\right) \sim \log\left(\frac{v^2}{\nu^2}\right)$

$$c_1(\nu)\,\mathcal{A}_1(\nu,\nu,m)$$

- logs in
$$\mathcal{A}_1$$
: $\log\left(\frac{E^2}{\mu_{us}^2}\right) \sim \log\left(\frac{v^4}{v^4}\right)$,
 $\log\left(\frac{\bar{p}^2}{\mu_s^2}\right) \sim \log\left(\frac{v^2}{v^2}\right)$

-
$$\nu = 1 \rightarrow \nu = v$$
 use RGE running for $c_1(\nu)$

-
$$\nu = v$$
 evaluate $c_1(\nu) \mathcal{A}_1(\nu, v, m)$

$$c_1(\nu)\,\mathcal{A}_1(\nu,\nu,m)$$

- logs in
$$\mathcal{A}_1$$
: $\log\left(\frac{E^2}{\mu_{us}^2}\right) \sim \log\left(\frac{v^4}{\nu^4}\right)$,
 $\log\left(\frac{\bar{p}^2}{\mu_s^2}\right) \sim \log\left(\frac{v^2}{\nu^2}\right)$

-
$$\nu = 1 \rightarrow \nu = v$$
 use RGE running for $c_1(\nu)$

-
$$v = v$$
 evaluate $c_1(v) \mathcal{A}_1(v, v, m)$

- matching at
$$h \cdot m \longrightarrow \log(h)$$

evaluate at $\nu = v \cdot f \longrightarrow \log(f)$

v	α_s (1, L)	α_s^2/v	α_s^3/v^2	LO
---	-------------------	----------------	------------------	----

 $\alpha_{s}v$ $\alpha_{s}^{2}(1,L,L^{2})$ $\alpha_{s}^{3}/v(1,L)$ NLO

 $v^3 \qquad \alpha_s v^2 (1,L) \qquad \alpha_s^2 v (1,L) \qquad \alpha_s^3 (1,L,L^2,L^3) \qquad \text{NNLO}$

 $L = \log(v)$

V	α_s (1, L)	α_s^2/v	α_s^3/v^2	LL
	$\alpha_{s}v$	α_s^2	α_s^3/v	NLL
v^3	$\alpha_s v^2$	$\alpha_s^2 v$	α_s^3	NNLL

 $L = \log(v)$

Non-Relativistic Regime

$$\mu_m = h m, \, \mu_s = h m (\nu f), \, \mu_{us} = h m (\nu f)^2$$

Non-Relativistic Regime

$$\mu_m = h m, \, \mu_s = h m (\nu f), \, \mu_{us} = h m (\nu f)^2$$

Renormalization Group Improved (RGI) :

[Hoang, Manohar, Stewart, Teubner '01]

[Hoang, Stahlhofen '14]

- $-\nu \sim v$
- f and h variation

Non-Relativistic Regime

$$\mu_m = h m, \, \mu_s = h m (\nu f), \, \mu_{us} = h m (\nu f)^2$$

Renormalization Group Improved (RGI) :

[Hoang, Manohar, Stewart, Teubner '01]

[Hoang, Stahlhofen '14]

- $-\nu \sim v$
- f and h variation

-
$$\nu \sim 1$$
, $h \sim \sqrt{v}$
- h variation

 \Rightarrow include leading order finite width effects:

$$v = \sqrt{\frac{q-2m}{m}} \to \sqrt{\frac{q-2m+i\Gamma_t}{m}}$$

 \Rightarrow include leading order finite width effects:

$$v = \sqrt{\frac{q-2m}{m}} \to \sqrt{\frac{q-2m+i\Gamma_t}{m}}$$

$$q^2 > 400 \text{ GeV}$$
 $\sigma_{matched} = \sigma_{QCD}$
 $q^2 \sim (2m)^2$ $\sigma_{matched} = \sigma_{QCD} + (\sigma_{NRQCD} - \sigma_{expanded})$

QCD	α ⁰	α^1	α ²	α ³	α4
	v	α	<u>02</u> V	$\frac{\alpha^3}{v^2}$	$\frac{\alpha^4}{v^3}$
		αν	α^2	<u>0</u> 3 V	$\frac{\alpha^4}{v^2}$
	v ³	α v²	$\alpha^2 v$	α^3	<u>α</u> ⁴ ∨
	v ⁴	α v ³	$\alpha^2 v^2$	α^3 v	α^4
	÷	÷	÷	÷	÷

 $\begin{array}{ll} q^2 > 400 \ {\rm GeV} & \sigma_{matched} = \sigma_{QCD} \\ q^2 \sim (2m)^2 & \sigma_{matched} = \sigma_{QCD} + (\sigma_{NRQCD} - \sigma_{expanded}) \end{array}$

NRQCD						
LO	v	α	<u>0</u> 2 V	$\frac{\alpha^3}{v^2}$	$\frac{\alpha^4}{v^3}$	
NLO		αν	α2	<u>α³</u> V	$\frac{\alpha^4}{v^2}$	
NNLO	v ³	αv^2	$\alpha^2 v$	α^3	<u>~</u> V	
N ³ LO	v ⁴	αv^3	$\alpha^2 v^2$	α ³ v	α^4	

$$q^2 > 400 \,\text{GeV}$$
 $\sigma_{matched} = \sigma_{QCD}$
 $q^2 \sim (2m)^2$ $\sigma_{matched} = \sigma_{QCD} + (\sigma_{NRQCD} - \sigma_{expanded})$

	α ^θ	α^1	α^2	α^3	_	
LO	v	α	$\frac{\alpha^2}{v}$	$\frac{\alpha^3}{v^2}$	$\frac{\alpha^4}{v^3}$	
NLO		αν	α^2	<u>0</u> ³ V	$\frac{\alpha^4}{v^2}$	
NNLO	v ³	αv^2	$\alpha^2 v$	α^3	<u>~</u> v	
	v ⁴	αv^3	$\alpha^2 v^2$	$\alpha^3 v$	α^4	
	:	:	÷	÷	÷	

 $\begin{array}{ll} q^2 > 400 \ {\rm GeV} & \sigma_{matched} = \sigma_{QCD} \\ q^2 \sim (2m)^2 & \sigma_{matched} = \sigma_{QCD} + (\sigma_{NRQCD} - \sigma_{expanded}) \end{array}$

	σ_{NRQCD}		σ_{QCD}
matching.	LL	\longleftrightarrow	α^1
	NLL	\longleftrightarrow	α^2
	NNLL	\longleftrightarrow	α^3

results in the pole mass scheme:

	σ_{NRQCD}		σ_{QCD}
matching [.]	LL	\longleftrightarrow	α^1
ind to ing.	NLL	\longleftrightarrow	α^2
	NNLL	\longleftrightarrow	α^3

results in the pole mass scheme:

1S mass

\checkmark renormalon free

[Hoang, Ligeti, Manohar '98]

$$m_{1S} = m_{pole} + (C_F \alpha_s(\mu) m_{pole}) \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} c_{n,k} \alpha_s(\mu)^n \log\left(\frac{\mu}{C_F \alpha_s(\mu) m_{pole}}\right)$$
$$= m_{pole} - \frac{2}{9} \alpha_s^2 m_{pole} + \dots$$

1S mass

 \checkmark renormalon free

[Hoang, Ligeti, Manohar '98]

$$m_{1S} = m_{pole} + (C_F \alpha_s(\mu) m_{pole}) \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} c_{n,k} \alpha_s(\mu)^n \log\left(\frac{\mu}{C_F \alpha_s(\mu) m_{pole}}\right)$$
$$= m_{pole} - \frac{2}{9} \alpha_s^2 m_{pole} + \dots$$

$$m_{1S} = m_{pole} + \left(C_F \alpha_s(\mu) m_{pole}\right) \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} c_{n,k} \alpha_s(\mu)^n \log\left(\frac{\mu}{C_F \alpha_s(\mu) m_{pole}}\right)$$
$$= m_{pole} - \frac{2}{9} \alpha_s^2 m_{pole} + \dots$$

	αθ	α ¹	α^2	α ³	
LO	v				
NLO					
NNLO					
	:	:	1	:	

Pole mass:

$$m_{1S} = m_{pole} + \left(C_F \alpha_s(\mu) m_{pole}\right) \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} c_{n,k} \alpha_s(\mu)^n \log\left(\frac{\mu}{C_F \alpha_s(\mu) m_{pole}}\right)$$
$$= m_{pole} - \frac{2}{9} \alpha_s^2 m_{pole} + \dots$$

	αθ	αl	α^2	α^3	
LO	v				
NLO					
NNLO					
	:	:		:	

Pole mass:

1S mass:

	α^{Θ}	α^1	α^2	α^3	
LO	v		<u>α</u> ² V		
NLO				$\frac{\alpha^3}{v}$	
NNLO			$\alpha^2 v$		
	:	:	÷	:	

MS mass :

$$m_{pole} = \overline{m} + \overline{m} \sum_{n=1}^{\infty} a_n(n_l, n_h) \alpha_s(\overline{m})^n$$
$$= \overline{m} + \overline{m} \alpha_s a_1 + \dots \qquad (\overline{m} = \overline{m}^{(nl+1)}(\overline{m}^{(nl+1)}))$$

MS mass :

Pole mass:

	αθ	α ¹	α^2	α^3	
LO	v				
NLO					
NNLO					
	:	÷	:	÷	

	α ^θ	α^1	α^2	α^3	
				$\frac{\alpha^3}{v^5}$	
			$\frac{a^2}{v^3}$		
		v		$\frac{\alpha^3}{v^3}$	
LO	v		<u>0</u> 2 V		
NLO		αν			
NNLO					
	:	:	:	:	

MS mass:

MSR mass :

[Hoang, Jain, Scimemi, Stewart '08]

$$m_{pole} = \overline{m} + \overline{m} \sum_{n=1}^{\infty} a_n(n_l, n_h) \alpha_s(\overline{m})^n = \overline{m} + \overline{m} \alpha_s a_1 + \dots$$
$$m_{pole} = m_{MSRn}(R) + R \sum_{n=1}^{\infty} a_n(n_l, 0) \alpha_s(R)^n = m_{MSRn}(R) + \alpha_s R a_1 + \dots$$

 \Rightarrow choose $R \sim m v$

MSR mass with $R \sim m v$:

Pole mass:

	αθ	al	α²	α^3	
LO	v				
NLO					
NNLO					
	:	-	:	:	

MSR	mass:

	α ^θ	α^1	α ²	α ³	
LO	v	$\frac{\alpha}{v} \frac{R}{m}$	$\frac{\alpha^2}{v^3} \frac{R^2}{m^2}$	$\frac{\alpha^3}{v^5} \frac{R^3}{m^3}$	
NLO			$\frac{\alpha^2}{v} \frac{R}{m}$	$\frac{\alpha^3}{v^3} \frac{R^2}{m^2}$	
NNLO		α v $\frac{R}{m}$	$\frac{\alpha^2}{v} \frac{R^2}{m^2}$	$\frac{\alpha^3}{v^3}\frac{R^3}{m^3}$, $\frac{\alpha^3}{v}\frac{R}{m}$	
	÷	:	:	:	

 $R \sim m v \sim m \alpha$

Results in the MSR mass scheme:

Conclusion

Summary

- matched $\sigma_{\textit{NRQCD}}$ and $\sigma_{\textit{QCD}}$
- implemented of the MSR mass scheme

Outlook

- N^3LO corrections for the fixed order cross section
- higher order electroweak effects

Conclusion

Summary

- matched σ_{NRQCD} and σ_{QCD}
- implemented of the MSR mass scheme

Outlook

- N^3LO corrections for the fixed order cross section
- higher order electroweak effects

Thank you for your attention!