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motivations
* the muon magnetic anomaly aμ = (g - 2) / 2 is measured to 0.5 ppm [Muon G-2 Coll. ’06]

* within the SM aμ is known to 0.4 ppm [PDG ’16]

* tension with SM prediction at ~ 3.5 standard deviations:

aµ
exp − aµ

SM = 27.6 ± 8.0( ) ⋅10−10 [Muon G-2 Coll. '06]

= 28.8 ± 8.0( ) ⋅10−10 [PDG '16]

* future experiments at FermiLab [E989] and J-PARC (E34) aim at a target precision of ~ 2 10-10

ultra cold muon beam (JPARC)storage ring (FNAL)
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* largest uncertainties from Hadronic Vacuum Polarization (HVP) and Hadronic Light by Light (HLbL)

aµ
HLbL = 10.5 ± 2.6( ) ⋅10−10   [Hagiwara et al. '11, PDG '16]

dispersion theory combined 
with data on e+e- → hadrons

aµ
HVP α em

2( ) = 692.3± 4.2( ) ⋅10−10    [Davier et al. '11]

                 = 694.9 ± 4.3( ) ⋅10−10 [Hagiwara et al. '11]
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HVP:

HLbL:

* dispersion formalism much more involved for HLbL

Hartmut	Wittig Hadronic	contributions	to	(g–2)

HLbL	from	transi7on	π0	⟶	γ✻γ✻

41

Pseudoscalar	meson	exchange	expected	
to	dominate	LbL	scaGering: ⇡

⇡0 , ⌘ , ⌘0

+ . . .

Compute	transi6on	form	factor	between	π0	and	two	off-shell	photons:
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important processes like
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Fig. 29. Hadronic higher order VP contributions: a)-c) involving LO vacuum polarization, d) involving HO vacuum polarization
(FSR of hadrons).

perturbative QCD prediction. Less problematic is the space–like (Euclidean) region −q2 → ∞, since it is
away from thresholds and resonances.

The time–like quantity R(s) intrinsically is non-perturbative and exhibits bound states, resonances, in-
stanton effects (η′) and in particular the hadronization of the quarks. In applying pQCD to describe real
physical cross–sections of hadro–production one needs a “rule” which bridges the asymptotic freedom regime
with the confinement regime, since the hadronization of the colored partons produced in the hard kicks into
color singlet hadrons eludes a quantitative understanding. The rule is referred to as quark hadron dual-
ity 15 [231,232], which states that for large s the average non–perturbative hadron cross–section equals the
perturbative quark cross–section:

σ(e+e− → hadrons)(s) ≃
∑

q
σ(e+e− → qq̄, qq̄g, · · ·)(s) , (129)

where the averaging extends from the hadron production threshold up to s–values which must lie sufficiently
far above the quark–pair production threshold (global duality). Qualitatively, such a behavior is visible in
the data Fig. 22 above about 2 GeV between the different flavor thresholds sufficiently above the lower
threshold. A glance at the region from 4 to 5 GeV gives a good flavor of duality at work. Note however that
for precise reliable predictions it has not yet been possible to quantify the accuracy of the duality conjecture.
A quantitative check would require much more precise cross–section measurements than the ones available
today. Ideally, one should attempt to reach the accuracy of pQCD predictions. In addition, in dispersion
integrals the cross–sections are weighted by different s–dependent kernels, while the duality statement is
claimed to hold for weight unity. One procedure definitely is contradicting duality reasonings: to “take pQCD
plus resonances” or to “take pQCD where R(s) is smooth and data in the complementary ranges”. Also
adjusting the normalization of experimental data to conform with pQCD within energy intervals (assuming
local duality) has no solid foundation. Nevertheless, the application of pQCD in the regions advocated
in [229] seems to be on fairly solid ground on a phenomenological level. A more conservative use of pQCD
is possible by going to the Euclidean region and applying the Adler function [233] method as proposed in
Refs. [234,165,235]. As mentioned earlier, the low energy structure of QCD also exhibits non–perturbative
quark condensates. The latter also yield contributions to R(s), which for large energies are calculable by the
operator product expansion of the current correlator Eq. (64) [236]. The corresponding ⟨mq q̄q⟩/s2 power
corrections in fact are small at energies where pQCD applies [234,82] and hence not a problem in our context.

4.2. Higher Order Hadronic Vacuum Polarization Corrections

At order O(α3) there are several classes of hadronic VP contributions with typical diagrams shown in
Fig. 29. They have been estimated first in [187]. Classes (a) to (c) involve leading hadronic VP insertions and
may be treated using DRs together with experimental e+e−–annihilation data. Class (d) involves leading
QED corrections of the charged hadrons and correspond to the inclusion of hadronic final state radiation
(FSR).

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated without particular
problems as described in the following.

15Quark–hadron duality was first observed phenomenologically for the structure function in deep inelastic electron–proton
scattering [230].
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Fig. 10. The universal third order contribution to aµ. All fermion loops here are muon–loops. Graphs 1) to 6) are the light–by—
light scattering diagrams. Graphs 7) to 22) include photon vacuum polarization insertions. All non–universal contributions follow
by replacing at least one muon in a closed loop by some other fermion.

set of diagrams Fig. 12. The latter 518 diagrams without fermion loops also are responsible for the largest
part of the uncertainty in Eq. (52). Note that the universal O(α4) contribution is sizable, about 6 standard
deviations at current experimental accuracy, and a precise knowledge of this term is absolutely crucial for
the comparison between theory and experiment.
• The universal 5–loop QED contribution is still largely unknown. Using the recipe proposed in Ref. [37],
one obtains the following bound

A(10)
1 = 0.0(4.6) , (53)

for the universal part as an estimate for the missing higher order terms.
As a result the universal QED contribution may be written as

auni
ℓ = 0.5

(α

π

)

− 0.328 478 965 579 193 78 . . .
(α

π

)2

+1.181 241 456 587 . . .
(α

π

)3
− 1.9144(35)

(α

π

)4
+ 0.0(4.6)

(α

π

)5

23

blank
δaµ

HVP ~ 3.9 ± 0.1( ) ⋅10−10

aµ
HVP α em

3( )         [Jegerlehner&Nyffeler '09]

usually not included in aµ
HVP α em

3( ), but taken into account in the experimental determination of aµ
HVP α em

2( )
[mainly e+e− →π +π −γ ]

self-energy exchange

aµ
HVP α em

3( )a+b+c = −9.84 ± 0.07( ) ⋅10−10

aµ
HLbL = 10.5 ± 2.6( ) ⋅10−10

⎫
⎬
⎪

⎭⎪
0.7 ± 2.6( ) ⋅10−10     [Hagiwara et al. '11, PDG '16]NOTE:

estimate in scalar QED [Melnikov ’01]
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* several lattice QCD calculations of                    are available: RBC/UKQCD, HPQCD, ETMC, ...

* no lattice results available for the e.m. corrections to the HVP δaμHVP

* during the last few years the issue of the electromagnetic corrections to hadron observables has been
   addressed on the lattice:

  - hadron spectrum [BMW, RM123, RBC/UKQCD]: no IR divergencies (various techniques)

  - leptonic hadron decays [RM123 + Soton PRD ’15]: presence of IR divergencies

***** first application of the RM123 approach to the IB corrections for aμHVP *****

the RM123 approach is based on a double expansion in the “small’’ parameters αem and (md - mu)
~ 1% [JHEP ’12, PRD ’13]

                                     only isospin-symmetric QCD gauge configurations are required

aµ
HVP α em

2( )

***** lattice QCD calculations of aµ
HVP α em

2( )  and δaµ
HVPare mandatory *****
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master formula

aµ
HVP = 4α em

2 dQ2

0

∞

∫
1
mµ
2 f

Q2

mµ
2

⎛

⎝⎜
⎞

⎠⎟
Π Q2( )−Π 0( )⎡⎣ ⎤⎦

 

Q = Euclidean 4-momentum

kinematical kernel:    f s( ) = 1
s

s
4 + s

4 + s − s
4 + s + s

⎛

⎝⎜
⎞

⎠⎟

2

          peaked at s = 5 − 2 ! 0.24

Π Q2( ) = HVP form factor appearing in the covariant decomposition of the HVP tensor:

Πµν Q( ) = d 4x eiQ⋅x∫ Jµ x( )Jν 0( ) = δ µνQ
2 −QµQν⎡⎣ ⎤⎦ Π Q2( )

Jµ x( ) = qf
f =u , d , s, c, ...
∑ ψ f x( )γ µψ f x( )

 

Π Q2( )−Π 0( ) = 2 dt
0

∞

∫ V t( ) cos Qt( )−1
Q2 + 1

2
t 2⎡

⎣⎢
⎤
⎦⎥

V t( ) ≡ 1
3

d!x∫
i=1, 2, 3
∑ Ji

!x,t( )Ji 0( ) = vector correlator

[Bernecker&Meyer EPJA ’11]

calculable on 
the lattice
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* hybrid method: lattice evaluation of the HVP form factor Π(Q2) as FT (periodic momenta)
 
   - low Q2: parameterization using lattice data (Padé approximants, conformal polynomials, VMD, ...)

   - mid Q2: direct integration of the lattice data in Q2

   - high Q2: matching with pQCD

   * alternatively, the sine-cardinal method: direct FT at arbitrary Q [exp. suppressed finite-T effects]
RBC/UKQCD ’16

ETMC ’14, RBC/UKQCD ’16,
HPQCD ’14 and ’16, CLS ’17...

* time moments [HPQCD ’14]

   - HVP form factor Π(Q2) reconstructed from the time behavior of the vector correlator V(t)

Π Q2( )−Π 0( ) = Π j
j=1

∞

∑ Q2 j

Π j = −( ) j+1 V2 j+2
2 j + 2( )!

V2 j+2 = a
4 t 2 j+2 V t( )

t
∑

- few moments (j≤4) and Padé approximants
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aµ
HVP = 4α em

2 dt
0

∞

∫ !f t( )V t( )

V t( ) = 1
3

d"x∫ ψ f
"x,t( )γ iψ f

"x,t( )
f
∑ ψ ′f 0( )γ iψ ′f 0( )

′f
∑

i=1,2,3
∑

!f t( ) ≡ 2 dQ2

0

∞

∫
1
mµ
2 f

Q2

mµ
2

⎛

⎝⎜
⎞

⎠⎟
cos Qt( )−1

Q2 + 1
2
t 2⎡

⎣⎢
⎤
⎦⎥

time-momentum representation

 
!f t( )  is proportional to t 4  at small t and to t 2  at large t

[Bernecker&Meyer EPJA ’11]

f s( ) = 1
s

s
4 + s

4 + s − s
4 + s + s

⎛

⎝⎜
⎞

⎠⎟

2

= kinematical kernel

 
!f t( ) = 1

36
mµ
2t 4 +O t 4( ), !f t( ) t→∞⎯ →⎯⎯ 1

2
t 2

peaked at s ≈ 5 − 2 ≈ 0.24

* enhancement of the large time distance behavior of the vector correlator V(t)
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aµ
HVP = aµ

HVP <( )+ aµHVP >( )

aµ
HVP <( ) = 4α em

2 qf
2 w t( ) f t( )V t( )

t =0

Tdata

∑

aµ
HVP >( ) = 4α em

2 qf
2 w t( ) f t( ) GV

2MVt =Tdata+1

∞

∑ e−MV t

f t( ) ≡ 4
mµ

2 dω
0

∞

∫
1

4 +ω 2
4 +ω 2 −ω
4 +ω 2 +ω

⎛

⎝
⎜

⎞

⎠
⎟

2
cos ωmµ t( )−1

ω 2 + 1
2
mµ

2 t 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

GV ≡ 1
3

0 Ji 0( ) V 2

i=1, 2, 3
∑ =  coupling constant with the ground-state

w t( ) = weights of the (cubic) Simpson formula

- we will limit ourselves to connected diagrams only (each quark flavor f contributes separately)

- the vector correlator V(t) can be calculated at discretized values of t between t = 0 and t = T / 2 

overlined quantites are 
in lattice units 

t ≤ Tdata < T/2 (to avoid backward signals)

t > Tdata > tmin (ground-state dominance)

mµ = amµ ,  t = t / a,  MV = aMV ,...

(dropped in what follows for the sake of simplicity) 
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the kernel function f(t)

f t( )
t 2

= 1
36
mµ
2 t 2 +O t 4( ), f t( )

t 2 t→∞⎯ →⎯⎯ 1
2

* some sensitivity to the lattice spacing

10-5
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10-2

10-1

100

1 10 100 1000

a ~ 0.089 fm

a ~ 0.082 fm

a ~ 0.062 fm

f(
t)

 /
 t

2

t = t / a

m
µ
 = 105.7 MeV

T/2 = 48

0.0
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0.2

0.3

0.4

0.5
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m
lepton

 = m
µ

m
lepton

 = 2 m
µ

m
lepton

 = 3 m
µ

m
lepton

 = 5 m
µ

m
lepton

 = m
τ

f(
t)

 /
 t

2
t = t / a

a ~ 0.062 fm

* sensitivity to the mass of the lepton:

enhancement of the large time distances 
for light leptons
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avoid the mixing of strange and charm quarks in the valence sector we adopted a
non-unitary set up in which the valence strange and charm quarks are regularized
as Osterwalder-Seiler fermions, while the valence up and down quarks have the
same action of the sea. Working at maximal twist such a setup guarantees an
automatic O(a)-improvement.

We considered three values of the inverse bare lattice coupling � and di↵erent
lattice volumes, as shown in Table 1, where the number of configurations analyzed
(N

cfg

) corresponds to a separation of 20 trajectories. At each lattice spacing,
di↵erent values of the light sea quark masses have been considered. The light
valence and sea quark masses are always taken to be degenerate. The bare masses
of both the strange (aµ

s

) and the charm (aµ
c

) valence quarks are obtained, at
each �, using the physical strange and charm masses and the mass renormalization
constants (method M1) determined in Ref. [3].

ensemble � V/a4 aµsea = aµ` aµ� aµ� Ncfg aµs aµc

A30.32 1.90 32

3 ⇥ 64 0.0030 0.15 0.19 150 0.02363 0.27903
A40.32 0.0040 100

A50.32 0.0050 150

A40.24 24

3 ⇥ 48 0.0040 150

A60.24 0.0060 150

A80.24 0.0080 150

A100.24 0.0100 150

A40.20 20

3 ⇥ 48 0.0040 150

B25.32 1.95 32

3 ⇥ 64 0.0025 0.135 0.170 150 0.02094 0.24725
B35.32 0.0035 150

B55.32 0.0055 150

B75.32 0.0075 80

B85.24 24

3 ⇥ 48 0.0085 150

D15.48 2.10 48

3 ⇥ 96 0.0015 0.1200 0.1385 100 0.01612 0.19037
D20.48 0.0020 100

D30.48 0.0030 100

Table 1: Values of the simulated sea and valence quark bare masses for the 16 ETMC

gauge ensembles with N
f

= 2+1+1 dynamical quarks adopted in this work (see Ref. [3]).

The values of the strange and charm quark bare masses aµ
s

and aµ
c

, given for each

gauge ensemble, correspond to the physical strange and charm quark masses determined

in Ref. [3].

The values of the lattice spacing are [3]: a = 0.0885(36), 0.0815(30), 0.0619(18)
fm at � = 1.90, 1.95 and 2.10, respectively. The kernel function f(t)/t

2
, calculated

for the above three values of the lattice spacing using Eq. (14), is shown in Fig. 1.

4

 a = {0.0885, 0.0815, 0.0619} fm 
at

 β = {1.90, 1.95, 2.10}

pion masses in  the range
210 - 450 MeV

ETMC ensembles with Nf = 2+1+1

* correlators calculated in the PRACE project on “QED corrections to meson decay rates in LQCD’’

* number of stochastic sources per gauge configuration not optimal for the vector correlator
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local e.m. current

at maximal twist:    J
µ

L x( ) = qf ZV ψ f x( )γ µψ f x( )                ZV = vector RC

d 4x eiQ⋅x∫ J
µ

L x( )J
ν

L 0( ) =Πµν Q( ) +δ µνZ1
1
a2

− S6 +
S5
2

2
⎛
⎝⎜

⎞
⎠⎟
+δ µνZmm

2

+ δ µνZLQ
2 +δ µνZT δ µνQ

2 −QµQν( ) +O a2( )

thanks to the findings of Burger et al. [ETMC] JHEP ’15

Πµν Q( ) = transverse polarization tensor
S5 6( ) = v.e.v. of dim-5(6) terms of Symanzik expansion of twisted-mass action

Z1,m,L ,T = non-perturbative mixing coefficients

d 4x eiQ⋅x −1( )∫ J
µ

L x( )J
ν

L 0( ) =Πµν Q( ) +δ µνZLQ
2 +δ µνZT δ µνQ

2 −QµQν( ) +O a2( )

 
dt cos(Qt)−1

Q2
⎛
⎝⎜

⎞
⎠⎟∫ d!x∫

1
3

J
i

L !x,t( )J
i

L 0( )
i=1, 2, 3
∑ =Π Q2( ) + ZL + ZT( ) +O a2( )

2 dt
0

∞

∫
cos(Qt)−1

Q2 + 1
2
t 2⎛

⎝⎜
⎞
⎠⎟
V t( ) =Π Q2( )−Π 0( ) +O a2( )

 
Q = Q,

!
0{ }

Πµν Q( ) = δ µνQ
2 −QµQν⎡⎣ ⎤⎦ Π Q2( )
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matching with pQCD

once-subtracted dispersion relation:    ΠR Q2( ) =Π Q2( )−Π 0( ) = 1
12π 2 ds

4Mπ
2

∞

∫
Q2

s s +Q2( ) R
had s( )

                                                           σ e+e−→hadrons s( ) = 4πα em
2

s
Rhad s( )

V t( ) = dQ
−∞

∞

∫ e− iQtQ2ΠR Q2( ) = 1
24π 2 ds

4Mπ
2

∞

∫ s e− s tRhad s( ) + ...∝δ t( ), ′′δ t( )...⎡⎣ ⎤⎦

pQCD behavior @ LO:    RpQCD s( ) = qf2Nc 1− 4m2

s
1+ 2m2

s
⎛
⎝⎜

⎞
⎠⎟
Θ s − 4m2⎡⎣ ⎤⎦ +O α s( )         m = on-shell quark mass

V pQCD t( ) t > 0⎯ →⎯⎯
qf

2Nc

6π 2
1
t 3 e

−2mt 1+ 2mt + 2m2t 2( ) + 4m3 dy y2 1− 1
y2 1+ 1

2y2
⎛
⎝⎜

⎞
⎠⎟
−1

⎡

⎣
⎢

⎤

⎦
⎥e−2myt

1

∞

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

              mt<<1⎯ →⎯⎯
qf

2

2π 2
1
t 3 +O m3( )

massless limit
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A30.32, B25.32, D20.48 share a common value of the light-quark mass (ml ~ 12 MeV) and differ in the value of the 
lattice spacing (a ~ 0.089, 0.082, 0.062 fm)

dashed green lines: massless pQCD behavior (~ 1 / t3)

solid green line: massive pQCD behavior for the charm case

* possible issue: contributions from t < a (or equivalently Q2 > 1 / a2) 

thanks to our values of the lattice spacing, which correspond to Q2 ≥ 5 GeV2, the contribution from t < a turns 
out always to be well within the uncertainties
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ground-state identification

number of stochastic sources per 
gauge configuration not optimal 
for the vector correlator

not OK for the light contribution

~ OK for the strange contribution 

   OK for the charm contribution
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FIG. 4: The vector correlator V (t)/q2
f

(in physical units) in the case of the light (left panel) and strange (right

panel) quarks for the ETMC gauge ensembles specified in the inset, which share an approximate common

value of the light-quark mass m
`

' 12 MeV and di↵er in the values of the lattice spacing.

the case of the strange quark. In this way we find that the quality of the plateaux, shown in

Fig. 5, is acceptable in the strange sector and nice in the charm one. In the case of the light-quark

contribution an increase of the statistics by a factor ⇡ 20 is expected to be needed.

For each gauge ensemble the masses M
V

and the matrix elements Z
V

are extracted from a

single exponential fit (including the proper backward signal) in the range t
min

 t  t
max

. The

values chosen for t
min

and t
max

are collected in Table II.

� V/a4 t
min

(s̄s) t
max

(s̄s) t
min

(c̄c) t
max

(c̄c)

1.90 323 ⇥ 64 14 28 16 30

243 ⇥ 48 14 20 16 22

203 ⇥ 48 14 20 16 22

1.95 323 ⇥ 64 15 28 17 30

243 ⇥ 48 15 20 17 22

2.10 483 ⇥ 96 20 40 22 44

TABLE II: Values of t
min

and t
max

chosen to extract the ground-state signal from the strange and charm

contributions to the vector correlator V (t) for the ETMC gauge ensembles of Table I.
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FIG. 5: E↵ective mass of the vector correlator V (t) in the case of the strange (left panel) and charm (right

panel) contributions for the ETMC gauge ensembles specified in the insets.

IV. STRANGE AND CHARM CONTRIBUTIONS: LOWEST ORDER

Let’s start by considering the evaluation of ahad
µ

(<) and ahad
µ

(>) defined in Eq. (15) for various

values of the “cut” T
data

chosen in the range between t
min

and t
max

given in Table II.

The results for the strange contribution to ahad
µ

(<), ahad
µ

(>) and their sum ahad
µ

obtained adopt-

ing four choices of T
data

, namely: T
data

= (t
min

+ 2), (t
min

+ t
max

)/2, (t
max

� 2) and (T/2 � 4),

are collected in Table III for illustrative purposes in the case of few ETMC gauge ensembles.

The separation between ahad
µ

(<) and ahad
µ

(>) depends on the specific value of T
data

, as it

should be, but their sum ahad
µ

is almost independent of the choice of the value of T
data

in the range

between t
min

and t
max

. This is also reassuring of the fact that the value of ahad
µ

is not contaminated

significantly by the presence of backward signals in the correlator V (t).

In the case of the charm contribution the value of ahad
µ

(>) is always several orders of magnitude

smaller than ahad
µ

(<) and the latter turns out to be the same for all the four choices of T
data

.

Note that for T
data

= T/2�4 the contribution ahad
µ

(>) does not exceed ⇡ 1% of the total value

ahad
µ

(i.e., it does not exceed the statistical uncertainty of ahad
µ

) even at the smallest values of the

time extension T .

The results obtained for the strange and charm contributions to ahad
µ

are shown by the empty

markers in Fig. 6. We observe a quite mild dependence on the light-quark mass and also small

residual FSEs visible only in the case of the strange contribution.

Meff = log
V t( )

V t −1( )
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aµ
HVP = aµ

HVP <( )+ aµHVP >( )

aµ
HVP <( ) = 4α em

2 qf
2 f t( )V t( )

t =0

Tdata

∑

aµ
HVP >( ) = 4α em

2 qf
2 f t( ) GV

2MVt =Tdata+1

∞

∑ e−MV t

strange contribution

tmin, tmax( ) = ground-state dominance

four choices:

Tdata =
tmin + 2( ), tmin + tmax( ) / 2,

tmax − 2( ), T / 2 − 4( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

* the sum is independent on Tdata

in what follows Tdata = T 2 − 4

aµ
HVP >( ) aµHVP < 1%

and within the statistical errors

16

ensemble A40.24

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

ahad
µ

(<) 38.03 (28) 38.65 (29) 39.10 (29) 39.67 (30)

ahad
µ

(>) 1.97 (13) 1.41 (10) 1.00 (8) 0.49 (5)

ahad
µ

40.00 (32) 40.06 (31) 40.10 (31) 40.16 (31)

ensemble A30.32

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

ahad
µ

(<) 40.44 (19) 42.77 (23) 43.26 (25) 43.32 (25)

ahad
µ

(>) 3.15 (18) 0.63 (5) 0.11 (1) 0.05 (1)

ahad
µ

43.59 (30) 43.40 (25) 43.37 (25) 43.37 (25)

ensemble B25.32

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

ahad
µ

(<) 40.83 (14) 43.18 (17) 44.05 (18) 44.16 (19)

ahad
µ

(>) 3.52 (14) 1.11 (6) 0.23 (1) 0.11 (1)

ahad
µ

44.35 (22) 44.29 (19) 44.28 (19) 44.27 (19)

ensemble D15.48

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

ahad
µ

(<) 42.34 (17) 45.86 (19) 46.50 (20) 46.58 (20)

ahad
µ

(>) 4.27 (18) 0.75 (5) 0.10 (1) 0.02 (1)

ahad
µ

46.61 (24) 46.61 (20) 46.60 (20) 46.60 (20)

TABLE III: Results for the strange contribution to ahad
µ

(<), ahad
µ

(>) and their sum ahad
µ

, in units of 10�10
,

obtained assuming T
data

= (t
min

+ 2), (t
min

+ t
max

)/2, (t
max

� 2) and (T/2 � 4) for the ETMC gauge

ensembles A40.24, A30.32, B25.32 and D15.48. Errors are statistical only.

In Ref. [10] a modification of the calculated ahad
µ

at pion masses above the physical point has

been proposed in order to weaken the pion mass dependence of the resulting ahad
µ

for improving

the reliability of the chiral extrapolation. Though the procedure of Ref. [10] has been conceived

mainly for the light contribution to ahad
µ

, we have explored its usefulness also in the case of the

strange and charm contributions. The proposal consists in multiplying the Euclidean 4-momentum

transfer Q2 by a factor equal to (M
V

/Mphys

V

)2 in order to modify the Q2-dependence of the HVP

function ⇧
R

(Q2) without modifying its value at the physical point. One obtains the same e↵ect in

in units of 10-10stat. errors only
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strange contribution Mϕ= 1.095 GeV charm contribution MJ/ψ= 3.0969 GeV 

amµ
ELM = aMV

m
µ

phys

MV
phys

Effective Lepton Mass (ELM) procedure

instead of am
µ

phys :

- no need of the value of the lattice spacing (no sensitivity to the lattice scale setting)

- sensitivity to the precision of the vector meson mass aMV

much better precision with the ELM procedure

[ETMC JHEP ’14]
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s, c = A
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s, c 1+ A
1

s, cξ + Ds, c a2 + Fs, c ξ e
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MπL
⎡

⎣
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⎤

⎦
⎥

ξ = Mπ
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strange contribution:

charm contribution:

fitting functions:    aµ
s, c = A

0

s, c 1+ A
1

s, cξ + Ds, c a2 + Fs, c ξ e
−MπL

MπL
⎡

⎣
⎢

⎤

⎦
⎥

a
µ

s phys( ) = 53.1±1.6stat+ fit ±1.5input ±1.3a2 ± 0.2FSE ± 0.1chiral( ) ⋅10−10

= 53.1± 2.5( ) ⋅10−10

a
µ

c phys( ) = 14.75 ± 0.42stat+ fit ± 0.36input ± 0.10a2 ± 0.03FSE ± 0.01chir( ) ⋅10−10

= 14.75 ± 0.56( ) ⋅10−10

aµ
c phys( ) = 14.42 ± 0.39( ) ⋅10−10     HPQCD '14, N f = 2 +1+1⎡⎣ ⎤⎦

= 14.3± 0.2 ± 0.1( ) ⋅10−10 CLS/Mainz '17, N f = 2⎡⎣ ⎤⎦

aµ
s phys( ) = 53.41± 0.59( ) ⋅10−10     HPQCD '14, N f = 2 +1+1⎡⎣ ⎤⎦

= 53.1± 0.9−0.3
+0.1( ) ⋅10−10     RBC/UKQCD '16, N f = 2 +1⎡⎣ ⎤⎦

= 51.1±1.7 ± 0.4( ) ⋅10−10 CLS/Mainz '17, N f = 2⎡⎣ ⎤⎦

ξ = Mπ
2

4π f0( )2

error budget:    a2: with/without the ELM procedure
                         FSE: F = 0 or F ≠ 0
                         chir: A1 = 0 or A1 ≠0
                         input: uncertainties due to the scale setting, to the physical quark masses, ...
                         stat+fit: statistical + fitting procedure errors
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leading-order e.m. corrections

20

V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵
em

to ahad
µ

, which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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(a) (b) (c) (d) (e)

FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has

�V (t) ⌘ �V self (t) + �V exch(t) + �V tad(t) + �V PS(t) + �V S(t) (41)

with

�V self (t) + �V exch(t) =
4⇡↵

em

3

X

i=1,2,3

X

~x,y1,y2

h0|T
(

J†
i

(~x, t)
X

µ

JC

µ

(y1)J
C
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e.m. shift of the critical mass for the quark flavor f , while Z
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and Z
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are related to the mass
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B. Local versus conserved vector currents on the lattice

The vector correlator V (t) can be calculated using either the lattice conserved vector current

JC

µ

(x) or the local vector current J
µ

(x). The latter needs to be renormalized and in our twisted-

mass setup the local vector current for each quark flavor f is given by

J
µ

(x) = q
f

Z
V
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f

(x)�
µ

 
f

(x) , (17)

where, being at maximal twist, the renormalization is multiplicative through the renormalization

constant Z
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.

The variation of the lattice action with respect to a vector rotation ↵
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(x) of the quark fields,

i.e.  (x) ! eiqf↵V (x)  (x) and  (x) !  (x) e�iqf↵V (x) (for any quark flavor f), provides the

relevant Ward-Takahashi identity for the conserved current JC

µ

expressed in terms of the backward

lattice derivative. In our twisted-mass setup one has
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According to the vector Ward-Takahashi identity the polarization tensor hJC
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(y)i is not trans-
verse because of the contact term arising from the vector rotation of the conserved current JC
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which generates the backward lattice derivative of the tadpole operator and is power divergent as

1/a3. Thus, in the case of two conserved currents the transverse HVP tensor is defined as
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On the contrary, in the case of one conserved and one local currents there is no contact term

because the vector rotation of the local current (17) is zero. One gets
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(x)J
⌫

(y)i , (21)

which is transverse only with respect to the µ index (i.e., @b
µ

⇧CL

µ⌫

(x, y) = 0, where @b
µ

is the backward

lattice derivative).

In the case of two local currents the polarization tensor hJ
µ

(x)J
⌫

(y)i is not transverse. The

mixing pattern of the product of two local currents with all possible operators with equal and lower
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵
em

to ahad
µ

, which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.
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are related to the mass
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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FIG. 1: Fermionic connected diagrams contributing at O(e2) and O(m
d

�m
u

) to the IB corrections to meson

masses: exchange (a), self energy (b), tadpole (c), pseudoscalar insertion (d) and scalar insertion (e).

In order to evaluate the diagrams (1a)-(1e) the following correlators are considered:
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is the (lattice) conserved e.m. current, and
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is the tadpole operator with �
PS

(x) = i 
f1
(x)�5 

f2(x) being the interpolating field for a PS meson

composed by two valence quarks f1 and f2 with charges q1e and q2e. In our twisted-mass setup

the Wilson parameters of the two valence quarks are chosen to be opposite (r1 = �r2) in order to

guarantee that discretization e↵ects on M
PS

are of order O(a2m⇤
QCD

).

Within the quenched QED approximation the correlator �CJ(t) corresponds to the sum of the

diagrams (1a)-(1b), while the correlators �CT (t), �CPf (t) and �CS(t) represent the contributions

of the diagrams (1c), (1d) and (1e), respectively. The removal of the photon zero-mode is done

LO in QED: 1
Z f

MS,µ*( ) = α emq f
2

4π
6 log aµ*( )− 22.596⎡⎣ ⎤⎦ [Aoki et al. PRD ’98]

O α em( )

“factorization approximation” between QED and QCD vertex correctionsZm
fact = 1± 0.2

Zm = mass RC in QCD
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* lattice formulations of QCD which break chiral symmetry    ⇒    additive mass renormalization

QED contribution:    δmf
crit = e.m. shift of the critical mass

(twisted) Wilson term    ⇒    power-divergent (1/a) mass counterterm   ⇒    critical mass mcrit

vector WT identity:    δmf
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!x,t( )γ 0ψ f
!x,t( )T y( )iψ f 0( )γ 5ψ f 0( ){ } 0
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!x ,y
∑ T ψ f

!x,t( )γ 0ψ f
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for details see arXiv:1704.06561 (to appear in PRD)
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ZA = ZA

0( )
+α emZA

1( ) +O α em
2( ) = ZA

0( )
1− 2.51406α emq f

2ZA
fact( ) +O α em

2( )

* e.m. corrections to the renormalization of the (local) e.m. current:

perturbative estimate at LO 

“factorization approximation” between QED and QCD vertex corrections
with violations at 20% level (preliminary estimate)

ZA
fact = 1± 0.2

* addition of a further contribution:

δV t( ) = δV self t( ) +δV exch t( ) +δV tad t( ) +δV PS t( ) +δV S t( ) +δV ZA t( )

we have adopted a maximally twisted-mass setup with quarks and anti-quarks regularized with opposite 
values of the Wilson r-parameter: the vector current renormalizes multiplicatively with ZA 

δV ZA t( ) = −2.51406α emq f
2 ZA

fact V (t)
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 87, 114505 (2013)

114505-12

quenched QED
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LIB effects à la RM123 [JHEP 1204(2012), Phys.Rev. D87(2013)]

Leading Isospin Breaking (LIB) effects can be calculated directly by expanding
the lattice path-integral in powers of ↵em and (md � mu)

O(~g) =
⌦

R[U,A;~g] O[U,A;~g]
↵A,~g0

⌦

R[U,A;~g]
↵A,~g0 =

⌦

⇣

1 + Ṙ + ...
⌘⇣

O + Ȯ + ...
⌘

↵

⌦

1 + Ṙ + ...
↵

= O(~g0) +�O

sea quark e.m. effects via (noisy) fermion disconnected diagrams

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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* neglect of the electric sea-quark charges: qf
sea = 0
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- contributions with different signs

- partial cancellations among the various terms
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* the sum is independent on Tdata

in what follows Tdata = T 2 − 4

δ aµ
HVP >( ) δaµ

HVP < 2 %
and well within the statistical errors

in units of 10-12stat. errors only

23

ensemble A40.24

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

�ahad
µ

(<) �2.05 (22) �2.13 (23) �2.17 (24) �2.24 (27)

�ahad
µ

(>) �0.25 (14) �0.17 (11) �0.13 (10) �0.05 (6)

�ahad
µ

�2.30 (31) �2.30 (30) �2.29 (30) �2.29 (30)

ensemble A30.32

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

�ahad
µ

(<) �2.13 (15) �2.45 (20) �2.52 (25) �2.52 (26)

�ahad
µ

(>) �0.36 (18) �0.07 (8) �0.01 (2) �0.01 (1)

�ahad
µ

�2.49 (30) �2.52 (27) �2.53 (26) �2.53 (26)

ensemble B25.32

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

�ahad
µ

(<) �2.78 (18) �3.26 (20) �3.54 (24) �3.55 (25)

�ahad
µ

(>) �0.76 (20) �0.28 (12) �0.05 (4) �0.03 (2)

�ahad
µ

�3.54 (29) �3.54 (27) �3.59 (26) �3.58 (26)

ensemble D15.48

s̄s (t
min

+ 2) (t
min

+ t
max

)/2 (t
max

� 2) (T/2� 4)

�ahad
µ

(<) �2.44 (24) �3.17 (41) �3.31 (44) �3.30 (43)

�ahad
µ

(>) �0.82 (21) �0.14 (7) �0.02 (2) �0.01 (1)

�ahad
µ

�3.26 (41) �3.30 (44) �3.33 (44) �3.31 (43)

TABLE IV: Results for the strange contribution to �ahad
µ

(<), �ahad
µ

(>) and their sum �ahad
µ

, in units of

10�12
, obtained assuming T

data

= (t
min

+ 2), (t
min

+ t
max

)/2, (t
max

� 2) and (T/2 � 4) for the ETMC

gauge ensembles A40.24, A30.32, B25.32 and D15.48. Errors are statistical only.

The precision of the lattice data can be drastically improved by forming the ratio of the e.m. cor-

rection over the lowest-order term. Therefore, in what follows we perform our analysis in the terms

of the ratio �ahad
µ

/ahad
µ

, shown in Fig. 10 by the empty markers. We have checked that in the case

of the e.m. corrections the use of the ELM procedure (37) does not improve the precision of the

lattice data.

It can be seen from Fig. 10 that the dependence on the light-quark mass m
`

is quite mild and

that FSEs are visible only in the case of the strange quark. A theoretical calculation of FSEs for

�ahad
µ

is not yet available. According to the general findings of Ref. [39] the universal FSEs are
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strange contribution charm contribution

- in the ratios δaµ
HVP aµ

HVP  various systematics cancel out

- errors dominated by the uncertainties in Zm
fact  and ZA

fact

- the ELM procedure does not improve the precision

- no FSEs are visible
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δa
µ

s

a
µ

s = −0.07 (3) %                              
δa

µ

c

a
µ

c = −0.30 (7) %

* for the strange and charm contributions: e.m. corrections << uncertainties of the lowest order

* at the physical pion mass and in the continuum limit:

using our lowest order results

δa
µ

s = − 3.9 ±1.4( ) ⋅10−12                                δa
µ

c = − 4.4 ±1.0( ) ⋅10−12

a
µ

s = 53.1± 2.5( ) ⋅10−10                               a
µ

c = 14.75 ± 0.56( ) ⋅10−10

we have
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* number of stochastic sources / gauge configuration

light (u, d) contribution

variance:    ∝ e−2Mπ t

noise / signal:    ∝ e M ρ −Mπ( )t

similar to the nucleon case    [Parisi, Lepage] 

- thanks to improvements in the Dirac inverter (DDαAMG versus CG) we plan to reach 160 sources / gauge conf.
  for all ETMC ensembles (presently only 4 out of 16)
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with physical lepton mass with effective lepton mass

- FSEs are clearly visible

- the ELM procedure makes the pion mass dependence milder, but increases the statistical uncertainty
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Finite Size Effects

V2π t( ) L→∞⎯ →⎯⎯ 1
24π 2 ds

4Mπ
2

∞

∫ s e− s tR2π s( ) = 1
24π 2 ds

4Mπ
2

∞

∫ s 1− 4Mπ
2

s
⎛
⎝⎜

⎞
⎠⎟

3
2
e− s t Fπ s( ) 2

* infinite volume limit of two-pion states [Meyer ’11]

time-like pion form factor
* the case of finite volume [Meyer ’11]

V2π t; L( ) = An
2

n
∑ e−ωnt                             ω n ≡ 2 Mπ

2 + kn
2

kn :     δ11 kn( ) +φ knL
2π

⎛
⎝⎜

⎞
⎠⎟ = nπ- interacting pions [Luscher ’91]

An
2 :           Fπ ω n

2( ) 2
= kn

∂δ11 kn( )
∂kn

+ knL
2π

′φ knL
2π

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

3πω n
2

2kn
2 An

2

δ11 = scattering phase shift (p-wave, T=1)
φ = known kinematic function

- non-interacting pions [Francis et al ’13]:

 

V2π t; L( )−V2π t;∞( ) = Mπ
4

3π 2 t
K2 Mπ L2 !n2 + 4t 2⎡

⎣
⎤
⎦

Mπ
2 L2 !n2 + 4t 2( ) − 1

MπL
!n

dy K0 Mπ y L2 !n2 + 4t 2⎡
⎣

⎤
⎦

1

∞

∫ sinh MπL
!n y −1( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
!n≠0
∑

aµ
2π( ) L( )− aµ2π( ) ∞( )

Ki z( ) z>>1⎯ →⎯⎯ π
2z

e− z
⎯ →⎯⎯⎯⎯⎯⎯ ∝ MπL( )2 e−MπL sizable effects expected at the physical pion 

for current lattice volumes [CLS/Mainz ’17]

kn = 2nπ L
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a
µ

u , d( ) phys( ) = 589 ± 21stat+ fit( ) ⋅10−10
aµ

u , d( ) phys( ) = 572 ±11( ) ⋅10−10     ETMC '14[ ]
= 598 ±11( ) ⋅10−10     HPQCD '16[ ]
= 588 ± 36( ) ⋅10−10     CLS/Mainz '17[ ]

* impact of finite size + a2 effects ~ 15 % *

other lattice results

aµ
u , d( ) = − α em

2

12π 2 log Mπ
2

mµ
2

⎛

⎝⎜
⎞

⎠⎟
+ A Mπ

2  + a2 D + DmMπ
2( )

+ F aµ
2π( ) L( )− aµ2π( ) ∞( )⎡⎣ ⎤⎦

leading chiral log [Golterman et al ’17]

FSEs from non-interacting pions 
[Francis et al ’13]

empty markers: lattice data

filled markers: data corrected by the FSE of the 
                         fitting procedure 

fitting Ansätz

A, D, Dm , F :     free parameters
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 87, 114505 (2013)
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Figure 1: Fermionic connected diagrams contributing at O(e2) and O(m
d

� m
u

)
to the IB corrections to meson masses: exchange (a), self energy (b), tadpole (c),

pseudoscalar insertion (d) and scalar insertion (e).
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is the (lattice) conserved e.m. current1,

T (y) =
X

f

0

q2
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X
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 ̄
f

0(y)(�
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. (7)

is the tadpole operator and �
PS

(x) = i 
f1
(x)�5 f2(x) is the interpolating field

for a PS meson composed by two valence quarks f1 and f2 with charges q1e, q2e
and masses m1, m2. In our twisted-mass setup the Wilson parameters of the two
valence quarks are chosen to be opposite (r1 = �r2) in order to guarantee that

discretization e↵ects on M
(0)
PS

are of order O(a2m).
In Eqs. (2-5) within the QED quenched approximation the correlator �CJ(t)

corresponds to the sum of the diagrams (1a)-(1b), while the correlators �CT (t),
�CPf (t) and �CS(t) represent the contributions of the diagrams (1c)-(1e), respec-
tively.

1The use of the conserved e.m. current guarantees the absence of contact terms in the product
Jµ(y1)Jµ(y2).
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δa
µ

u , d( )

a
µ

u , d( ) phys( ) ∼ 0.5 ± 0.5%

δa
µ

u , d( ) phys( ) ∼ 3 ± 3( ) ⋅10−10

* more statistics is needed *
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CONCLUSIONS

* the HVP contribution to the muon (g-2), aμHVP, is presently one of the major sources of the theoretical
   uncertainty

* in the past few years several lattice results have been obtained and many more are expected in the next
   future

* no lattice results are currently available for the e.m. and strong isospin-breaking corrections to aμHVP

* the RM123 approach is based on a double expansion in the “small’’ parameters αem and (md - mu), and
   has been already applied successfully to the calculation of the charged meson masses and to the
   leptonic decay rates of pseudoscalar mesons

* using the time-momentum representation of the HVP form factor both the lowest-order aμ(αem2) and
   the e.m. and strong isospin-breaking corrections aμ(αem3) have been determined with good precision
   in the case of the strange and charm contributions:

a
µ

s α em
2( ) = 53.1± 2.5( ) ⋅10−10                              a

µ

c α em
2( ) = 14.75 ± 0.56( ) ⋅10−10

a
µ

s α em
3( ) = − 3.9 ±1.4( ) ⋅10−12                              a

µ

c α em
3( ) = − 4.4 ±1.0( ) ⋅10−12
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* removal of the quenched QED approximation (effects of the sea-quark electric charges)

* non-diagonal flavor contributions to aμHVP

open issues

evaluation of fermionic disconnected diagrams

Jµ x( )Jv y( )⊂ qfψ f x( )γ µψ f x( ) q ′fψ ′f y( )γ νψ ′f y( )

work is in progress ...

- preliminary lattice estimates [HPQCD, RBC/UKQCD, CLS/Mainz] are in the range - (1 – 2 %)
- new lattice results expected in the near future

* in the case of u- and d-quarks more statistics is required and we have reached till now only preliminary
   results:

a
µ

u , d( ) α em
2( ) = 589 ± 21stat( ) ⋅10−10                              a

µ

u , d( ) α em
3( ) = 3± 3( ) ⋅10−10
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that
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Figure 1: Fermionic connected diagrams contributing at O(e2) and O(m
d
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to the IB corrections to meson masses: exchange (a), self energy (b), tadpole (c),

pseudoscalar insertion (d) and scalar insertion (e).
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is the (lattice) conserved e.m. current1,
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is the tadpole operator and �
PS

(x) = i 
f1
(x)�5 f2(x) is the interpolating field

for a PS meson composed by two valence quarks f1 and f2 with charges q1e, q2e
and masses m1, m2. In our twisted-mass setup the Wilson parameters of the two
valence quarks are chosen to be opposite (r1 = �r2) in order to guarantee that

discretization e↵ects on M
(0)
PS

are of order O(a2m).
In Eqs. (2-5) within the QED quenched approximation the correlator �CJ(t)

corresponds to the sum of the diagrams (1a)-(1b), while the correlators �CT (t),
�CPf (t) and �CS(t) represent the contributions of the diagrams (1c)-(1e), respec-
tively.

1The use of the conserved e.m. current guarantees the absence of contact terms in the product
Jµ(y1)Jµ(y2).
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 Vµ = Zψ ′f
!x,t( )γ µψ f
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* local vector current with maximally twisted-mass setup

* two choices of the Wilson r-parameters:

m ′f = mf     same mass
q ′f = qf       same electric charge

r ′f = rf       Z = ZV

r ′f = −rf     Z = ZA

* the two currents differ by O(a2) *
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