
The MSR Mass
and the O(ΛQCD) Renormalon Sum Rule

Christopher Lepenik

in collaboration with
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Introduction MSR Mass O(ΛQCD) Renormalon Sum Rule Summary

Motivation and Introduction - Renormalons

I When interactions in QFT are “weak” → perturbation theory
allows to express observable O as series in the (renormalized)
interaction strength α

O =
∑
n

cnα
n .

I Almost always divergent for any α with behavior

cn ∼ ann!nb (n→∞) .

I Particular source of divergence: Renormalons.
I Related to sensitivity of O to small and large momenta (long

and short distance).
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Introduction MSR Mass O(ΛQCD) Renormalon Sum Rule Summary

Motivation and Introduction - Renormalons

I Relation of observable O to its perturbative series?
I QFTs of phenomenological relevance:

I Not possible to construct non-perturbatively from perturbative
expansions and analyticity properties of Green’s function.

I Non-trivial, non-perturbative structure of vacuum and its
excitations.

I Non-perturbative power corrections.
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Motivation and Introduction - Renormalons

I Important in QCD: Infrared Renormalons related to large
distances/small momenta.

I αs grows with distance → sensitivity to regions where QCD is
non-perturbative.

I Leads to irreducible error and bad perturbative behavior.
I Examples: Pole mass in QCD, soft function in effective field

theories.
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Motivation and Introduction - Renormalons

Let’s consider the relation between the pole and MS mass in more
detail:

I Pole mass:
I Absorbs all contributions from on-shell self energy diagrams,

including contributions from energies < 1 GeV - clearly IR
sensitive

/p−mQ + Σ(m2
Q) = /p−mpole

Q .

I Often appropriate scheme when dealing with on-shell particles.
I MS mass:

I Absorb only UV 1/ε divergences from on-shell self energy
diagrams - by construction only sensitive to short distance
aspects of QCD - “short distance mass”.
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Motivation and Introduction - Renormalons

I Relation between pole and MS (mQ(mQ) ≡ mQ):

mpole
Q = mQ +mQ

∞∑
n=1

aMS
n

(
α

(nl+1)
s (mQ)

4π

)n
.

I Observation: Intrinsic scale of the MS mass is mQ itself.
I Perturbative corrections of order mQ.
I No logs if µ = mQ.
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Motivation and Introduction - Renormalons

I Explore contributions to aMS
n from class of diagrams with

massless quark bubble insertions to all orders.
I Leads to (µ = mQ, αs ≡ αs(mQ), q̂2 ≡ q2/m2

Q)

A(αs) ∼
∞∑
n=0

αnsn
n
`

(6π)n
∫ ∞

0
dq̂2 F

(
q̂2
)

︸ ︷︷ ︸
“Gluon momentum distribtion”

logn
(
q̂2 e−5/3

)
.

I Large logarithmic enhancement for q̂2 � 1 !
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Motivation and Introduction - Renormalons

I Evaluate integral for small momenta:

F (q̂2) = 2√
q̂2 +O

(√
q̂2
)
,

⇒ A(αs) ∼
∞∑
n=0

αns

(−2n`
6π

)n
n! + . . .

I Infrared renormalon behavior!
I How can we deal with the result?
I Can we assign a number to the series?
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Motivation and Introduction - Renormalons

I How to deal with divergent series?
I Generalize summation process - has to give right answer for

convergent series.
I Particularly useful for summing divergent asymptotic series is

Borel summation:

A series s(x) =
∑∞
n=0 cnx

n is called Borel-summable if the Borel
transform

B[s](t) =
∞∑
n=0

cnt
n

n!

is convergent for t > 0 and if the integral

S(x) =
∫ ∞

0
dt e−tB[s](tx)

exists. S(x) is the value of the series.
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Motivation and Introduction - Renormalons

I Assumption: Perturbative series is asymptotic in the sense∣∣∣∣∣O(α)−
n∑
i=0

ciα
i

∣∣∣∣∣ < Kn+1α
n+1 .

I Can not be proven but is reasonable since phenomenology using
perturbation theory works very well.

I Ordinary summation: Best approximation typically given when
truncating at smallest term → irreducible error.

I Note: While a divergent perturbative series implies
non-analyticity at α = 0, non-analyticity does not imply
divergence. A convergent series can still differ from O by
exponentially small terms exp (−1/α).
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Motivation and Introduction - Renormalons

A(αs) ∼
∞∑
n=0

αns

(
β0
2π

)n
n! + . . .

I Before applying tools to our example: Use a “dirty trick” -
naive non-Abelianization n` →− 3/2(11− 2/3n`) = −3/2β0.

I Can be justified diagrammatically - includes some non-Abelian
corrections. Profound consequences!

I Apply Borel summation technique (u ≡ tβ0/4π)

B[A](u) ∼ 1
1− tβ0

2π
+ · · · = 1

2
1

1/2− u + . . . .

I Pole of the Borel transform at u = 1/2.
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Motivation and Introduction - Renormalons

B[A](u) ∼ 1
1/2− u + . . .

I Meaning of the pole? Let’s Borel sum the series:

A(αs) =
∫ ∞

0
du e−

4πu
β0αsB[A](u) .

I Integral exists, but one has to choose path in complex plain to
avoid singularity → Ambiguity of the Borel summation!
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Motivation and Introduction - Renormalons

B[A](u) ∼ 1
1/2− u + . . .

I Size of ambiguity

∆
[∫ ∞

0
du e

− 4πu
β0αs(mQ) 1

u− k

]
∼
(

Λ2
QCD
m2
Q

)k
.

I Gives rise to non-perturbative power corrections.
I Pole-MS relation: k = 1/2, multiplied with mQ ⇒ O(ΛQCD)

ambiguity!
I More informations about renormalons: [Beneke, hep-ph/9807443]
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Motivation and Introduction - Revisiting Mass Schemes

Why is this important?
I Quark masses:

I Important parameters for SM predictions.
I Quark masses are no physical observables (confinement) and are

renormalization scheme dependent!
I Can choose appropriate mass scheme depending on the

application.
I Pole mass:

I Bad perturbative behavior even at low orders → much larger
errors in extractions!

I Irreducible error of order ΛQCD unacceptable for future
precision measurements (ILC: ∆mt . 100 MeV).
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Motivation and Introduction - Revisiting Mass Schemes

mpole
Q −mQ = mQ

∞∑
n=1

aMS
n

(
α

(n`+1)
s (mQ)

4π

)n

I Reconsider the MS mass:
I Intrinsic physical scale: mQ.
I Problem: Only physically relevant for µ > mQ

I Perturbative corrections of order mQ.
I Scales � mQ: Virtual heavy quark effects should be integrated

out.
I Standard scheme for most high energy applications, but not

right choice for low energy experiments (e.g. at threshold).
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Motivation and Introduction - Revisiting Mass Schemes

m1S
Q −m

pole
Q = MB

∞∑
n=1

n−1∑
k=0

cn,k

(
α

(n`)
s (µ)

4π

)n
logk

(
µ

MB

)
,

(MB≡CFαs(µ)mpole
Q )

I Low scale short distance mass: 1S mass [Hoang et al.,
hep-ph/9809423]:

I Define as half of the mass of heavy quarkonium spin triplet
ground state.

I Intrinsic physical scale: Inverse Bohr radius MB ≡ CFαsmpole
Q .

I (By definition) well suited for threshold experiments.
I Still: Conversion to MS involves large scale hierarchy...
I Other short distance mass schemes: PS, Kinetic, RS, jet, static, ...
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MSR Mass - Basic Idea and Definitions

I Need concept of a short distance mass with freely adjustable,
universal scale R.

I Makes it possible to relate heavy quark mass values extracted
at widely separated scales by using an IR-renormalization group
equation.

I Resums large logarithms,
I Should be free of O(ΛQCD) renormalon.

I Mass can then be used in arbitrary low energy processes and
evolved to high energy scales without any troubles.
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MSR Mass - Basic Idea and Definitions

mpole
Q −mMSR

Q (R)= R

∞∑
n=1

an

(
α

(n`)
s (R)

4π

)n
an = aMS

n (nh = 0)

I Define the MSR mass [Hoang et al., 0803.4214]:
I Idea:

I Asymptotic behavior of perturbative pole-MS relation depends
on number of massless quarks n`, but not on mQ.

I Can replace mQ by arbitrary scale R and use relation as
definition of a new mass scheme.
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MSR Mass - Basic Idea and Definitions

I Properties:
I Low scale short distance mass with direct relation to on-shell

self energy diagrams.
I Very easy and direct relation to MS mass.

I MSR mass automatically inherits conceptual cleanness and
good infrared properties.

I (Almost) no additional computational effort.

Christopher Lepenik 20
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MSR Mass - Basic Idea and Definitions

I MSR mass expected to have applications primarily for R < mQ

→ integrate out virtual heavy quark effects.
I Change flavor scheme α(n`+1)

s → α
(n`)
s - matching to MS.

I Note: This is called the “natural” MSR scheme.
I MSR mass is the natural generalization of MS mass for

renormalization scales � mQ!
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MSR Mass - Basic Idea and Definitions

I Possible interpretation of R: MSR mass contains self-energy
corrections of the pole mass only for scales larger than R.

I Note: Handy property for analyzing mass parameter in Monte
Carlo generators (R↔ Shower cut-off).

I MSR mass formally agrees with pole mass for R→ 0.
I However: Limit ambiguous (involves evolving through Landau

pole) → manifestation of renormalon ambiguity.
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MSR Mass - R-evolution

R
d

dRm
MSR
Q (R) = R

d
dR

mpole
Q −R

∞∑
n=1

an

(
α

(n`)
s (R)

4π

)n
= −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

I R-evolution equation:
I RGE for the IR scale R, relating MSR masses at different

scales.
I Easily solved numerically - good numerical behavior even for R close to

Landau pole.
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MSR Mass - R-evolution

R
d

dRm
MSR
Q (R) = −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

I Properties:
I Sums systematically asymptotic renormalon series and large

logarithms to all orders.
I Free of the O(ΛQCD) renormalon (renormalon behavior

independent of R).
I R-evolution equation does not only have logarithmic (like most

RGEs) but also linear dependence on R.
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MSR Mass - R-evolution

I Compare R-evolution and fixed order perturbation theory
(FOPT):

I Error estimation in R-evolution: Expand αs(R) in terms of
αs(λR) and vary λ. Leads to common logarithmic scale
variation.

I FOPT: Renormalon behavior cancels only if same scale for all αs
is used - possibly large logarithms for widely separated scales.
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MSR Mass - R-evolution

I Renormalon cancellation for equal µ choice at large β0:

[
mpole
Q −mMSR

Q (R)
]
β0
∼ R

∞∑
n=0

(
β0αs(R)

2π

)n+1

n!

= R

∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!
n∑
k=0

1
k! logk µ

R
,

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0
∼

∼
∞∑
n=0

(
β0αs(µ)

2π

)n+1

n!
(
R1

n∑
k=0

1
k! logk µ

R1
−R0

n∑
k=0

1
k! logk µ

R0

)
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MSR Mass - R-evolution
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I R-evolution vs. FOPT for widely separated scales:
I Significant µ dependence in FOPT - large logs spoil

convergence!
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MSR Mass - R-evolution
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I R-evolution vs. FOPT for similar scales:
I Very similar in behavior and size.
I Shows equivalence of λ variation in R-evolution and µ variation

in FOPT.
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O(ΛQCD) Renormalon Sum Rule - Overview

I Analytic solution of R-evolution equation provides useful
expression for Borel transform of the pole-MSR series.

I Conceptional feature: Systematic reordering of terms in
asymptotic series associated to renormalon ambiguity in leading
and subleading.

I Possible to derive analytically the Borel transform of any given
perturbative series from perspective of carrying a O(ΛQCD)
renormalon.

I Yields analytic expression for normalization of singular term in
Borel transform.

I Will show some applications.
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O(ΛQCD) Renormalon Sum Rule - Derivation

R
d

dR
m

MSR
Q (R) = −R

∞∑
n=0

γ
R
n

(
αs(R)

4π

)n+1

mMSR
Q (R)−mpole

Q = −
∫ R

0
dR̄ γR(αs(R̄))

= ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk Γ(− b̂1 − k, tR)

tR = −2π/(β0αs(R)), b̂1 = β1/(2β0), Sk = Sk({an}, {βn})

I Solve R-evolution equation describing the pole-MSR difference
analytically:

I All-order representation of the original series.
I Can use solution to study the encoded O(ΛQCD) renormalon.
I Sum over k: Reordering of series provides information about

leading and subleading contributions to renormalon.
I k = 0: Resums leading large β0 terms.
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O(ΛQCD) Renormalon Sum Rule - Derivation

mMSR
Q (R)−mpole

Q = ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk Γ(− b̂1 − k, tR)

I Ambiguity visible through multivaluedness of incomplete
gamma function (tR < 0).

I Arises in integration over Landau pole at t = 0.
I Compare:

mMSR
Q (R0)−mMSR

Q (R1) =

= ΛQCD

∞∑
k=0

eiπ(b̂1+k) Sk

[
Γ(− b̂1 − k, t0)− Γ(− b̂1 − k, t1)

]

I Ambiguity cancels in the difference.
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O(ΛQCD) Renormalon Sum Rule - Derivation

I Goal: Useful Borel space expression. Next steps:
I Asymptotic expansion of incomplete Gamma-function,
I Borel transform,
I Hypergeometric function identities.

I Result:

B
[
mMSR
Q (R)−mpole

Q

]
(u) =

= −N1/2

[
R

4π
β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]
+ 2R

∞∑
`=0

g`Q`(u)

N1/2 = β0 Γ(1 + b̂1)
2π

∞∑
k=0

Sk

Γ(1 + b̂1 + k)

Q`(u) =
∞∑
k=0

Sk

k+`−1∑
i=0

2i Γ(1 + b̂1 + i− `)
Γ(1 + b̂1 + k) Γ(i+ 1)

ui
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O(ΛQCD) Renormalon Sum Rule - Derivation

−N1/2

[
R

4π
β0

∞∑
`=0

g`
Γ(1 + b̂1 − `)

Γ(1 + b̂1)
(1− 2u)−1−b̂1+`

]
+2R

∞∑
`=0

g`Q`(u)

N1/2 = β0 Γ(1 + b̂1)
2π

∞∑
k=0

Sk

Γ(1 + b̂1 + k)

I First term:
I Non analytic - leads to renormalon ambiguity.
I Provides analytic expression of normalization N1/2 of

non-analytic term → O(ΛQCD) Renormalon Sum Rule.
I Second term:

I Purely polynomial in u. Contributions from original series that
go beyond pure renormalon corrections.
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O(ΛQCD) Renormalon Sum Rule - Properties

N1/2 = β0 Γ(1 + b̂1)
2π

∞∑
k=0

Sk

Γ(1 + b̂1 + k)

I Sum rule can be applied to any perturbative series to probe for
an O(ΛQCD) renormalon.

I Note: No rigorous proof of (non-)existence of renormalon - in
practice applied to truncated series.

I Projection of known terms onto renormalon behavior.
I Rigorous proof would need all-order studies.
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Applications - Pole Mass Renormalon

I First application: Estimation of N1/2 for pole mass.
I Use recent multi-loop results for terms up to k = 3:
I 4-loop MS coefficients,
I 5-loop β-function.

I Note on error estimation: Implement renormalization scale
variations by rewriting R→ Rλ in original series and expand in
αs(R).

I Sum rule invariant under variations of λ in the asymptotic limit
(R-independence of asymptotic behavior).
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Applications - Pole Mass Renormalon
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Natural

Practical

N1/2(n` = 3) = 0.526± 0.012 ,
N1/2(n` = 4) = 0.492± 0.016 ,
N1/2(n` = 5) = 0.446± 0.024 .

[Beneke et al., 1605.03609], [Ayala et al., 1407.2128]:

N1/2(n` = 5) = 0.4616+0.027
−0.070 ± 0.002.

I Good convergence.
I Result fully compatible with previous ones.

I Method: Compare explicit loop calculation with pure
asymptotic behavior numerically.
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Applications - Estimating Higher Order Coefficients

I Invert line of arguments: Use sum rule to estimate coefficients.
I Estimated 4-loop coefficient (based on consistancy with lower

orders) compatible with recently computed result:

aMS
4 (n` = 4, 1) = 230192± 14747 [Our estimate, 1704.01580],

aMS
4 (n` = 4, 1) = 211807± 5504 [Marquard et al., 1502.01030],

aMS
4 (n` = 4, 1) = 214828± 422 [Marquard et al., 1606.06754].
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Applications - Estimating Higher Order Coefficients

n` aMS
5 × 10−7 aMS

6 × 10−9 aMS
7 × 10−11 aMS

8 × 10−13

3 3.400± 0.077 3.315± 0.075 3.824± 0.087 5.099± 0.116
4 2.254± 0.075 2.023± 0.067 2.151± 0.072 2.644± 0.088
5 1.382± 0.074 1.130± 0.060 1.097± 0.059 1.233± 0.066

I Possible to estimate higher order coefficients:
I Manipulate solution of R-evolution equation to get

an = (2β0)n
n−1∑
k=0

Sk

n−1−k∑
`=0

g`

(
1 + b̂1 + k

)
n−1−`−k

.

(b)n = Γ(b + n)/Γ(b)

I Separation of coefficients of the original series into leading
and subleading contribution to asymptotic high order
behavior.

I Truncation in k, l (limited knowledge of βn>4, an>4) still
provides correct asymptotic behavior (Pochhammer
symbol suppresses higher order terms).
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Other Applications of the Sum Rule

I Can also test sum rule by applying it to series known not to
have an O(ΛQCD) renormalon. Examples:

I β-function:
Nβ

1/2 = (0.829± 0.497,−0.004± 0.272, 0.065± 0.092, 0.038± 0.032) .

I Hadronic R-ratio:
NR

1/2 = (0.398±0.239,−0.003±0.1311,−0.071±0.105,−0.009±0.029) .

I All orders (beyond first) compatible with zero as expected.
I Remember: Sum rule not sensitive to higher order renormalons.
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Summary and Conclusions

I Aim of introduction: Build awareness of the renormalon
problem in QCD.

I Relevant in determinations of heavy quark masses.
I Detailed presentation of the MSR mass:

I Low scale short distance mass with freely adjustable scale R.
I Natural generalization of MS for µ� mQ.
I IR-RGE (R-evolution equation) to relate MSR masses at

arbitrary scales - resums logs and asymptotic renormalon series.
I Analytic solution of R-evolution equation provides reordering of

terms regarding leading and subleading contributions to
asymptotic behavior.

I Can be used to analyze ambiguity - analytic expression for
normalization of O(ΛQCD) renormalon ambiguity.

I Can be applied to any perturbative series - many applications.
I Thank you for your attention.
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