Massive and supermassive neutrinos as dark matter

Patrick Otto Ludl

University of Southampton

Vienna, 25/10/2016

neutrinos, dark matter & dark energy physics

Talk based on:

P. Di Bari, P.O.L. and S. Palomares-Ruiz (IFIC Valencia): 1606.06238

- I. Neutrinos as dark matter?
- II. The cold DM right-handed neutrino mixing scenario
- III. Dark matter decays
- IV. Leptogenesis
- V. Possible signatures at IceCube
- VI. Summary and conclusions

I. Neutrinos as dark matter?

Energy content of the Universe

Before Planck After Planck

(Copyright: ESA and the Planck Collaboration.)

\rightarrow **26.8%** dark matter.

Patrick Ludl (University of Southampton) Massive and supermassive neutrinos as DM

What do we know about dark matter?

Dark matter particles must be

- 'dark': electrically neutral (or extremely weakly charged),
- 'cold' or 'warm': non-relativistic (or not ultrarelativistic) at freeze-out \rightarrow masses either $\gtrsim keV$ or non-thermal production (e.g. axions: can be almost massless, but still cold),
- **stable at cosmological timescales**: decay is allowed, but lifetime must be long,
- produced in the early Universe with the correct abundance.

Neutrinos as dark matter?

Light active neutrinos as dark matter?

- ✓ 'dark': Have only weak interactions,
- $\pmb{\times}$ 'cold' or 'warm': eV-scale neutrinos are **hot** at freeze-out \rightarrow can only be a small part of dark matter,
- ✓ stable at cosmological timescales: All light neutrinos are stable at cosmological time scales. Lightest neutrino is absolutely stable.
- X produced in the early Universe with the correct abundance: Abundance too small.

 \rightarrow Light ($\lesssim {\rm eV})$ neutrinos are excluded as main component of dark matter.

But still, neutrinos are a (small) part of dark matter. \rightarrow How much?

Contribution of light (thermal) neutrinos to dark matter

$$\Omega_{\nu}h_0^2 \approx \frac{\sum_{\nu}m_{\nu}}{94\,\mathrm{eV}}$$

Bounds from cosmology: Bounds on the sum of the three active neutrino masses:

$$\sum m_{\nu} < 0.72 \text{ eV} \quad Planck \text{ TT+lowP},$$

$$\sum m_{\nu} < 0.21 \text{ eV} \quad Planck \text{ TT+lowP+BAO},$$

$$\sum m_{\nu} < 0.49 \text{ eV} \quad Planck \text{ TT}, \text{TE}, \text{EE+lowP},$$

$$\sum m_{\nu} < 0.17 \text{ eV} \quad Planck \text{ TT}, \text{TE}, \text{EE+lowP+BAO}.$$

(Planck Collaboration [1502.01589]). (Copyright: ESA. Illustration by Medialab.)

Dependent on which data taken into account. In any case bound stronger

than current direct neutrino mass bounds.

$$ightarrow \sum_{
u} m_{
u} \lesssim \mathcal{O}(ext{eV}) \Rightarrow \Omega_{
u} h_0^2 \lesssim 0.01 < rac{1}{10} \Omega_{ ext{DM}} h_0^2.$$

Light neutrinos comprise less than 10% of dark matter!

What about heavier neutrinos as dark matter?

Most prominent model: ν MSM (Asaka, Blanchet, Shaposhnikov)¹

- SM + three right-handed neutrinos, type-I seesaw mechanism for neutrino masses,
- heavy neutrino mass spectrum: one keV neutrino, two $\lesssim 100 \, \mathrm{GeV}$ neutrinos, main decay mode of keV neutrino: decay into three light neutrinos: strong phase space suppression \rightarrow long lifetime \rightarrow warm dark matter,
- baryogenesis via leptogenesis (requires $M_{2,3} \lesssim 100 \, {\rm GeV}$), Dirac neutrino Yukawa couplings are small,

$$m_
u \sim rac{m_D^2}{M_R} = rac{y^2 v^2}{M_R} \Rightarrow y \sim rac{\sqrt{m_
u M_R}}{v} \sim rac{\sqrt{0.1\,\mathrm{eV} imes 100\,\mathrm{GeV}}}{100\,\mathrm{GeV}} = 10^{-6}.$$

• dark energy = cosmological constant.

→ Consistent with all observations!

¹hep-ph/0503065, hep-ph/0505013.

Patrick Ludl (University of Southampton) Massive and supermassive neutrinos as DM

New neutrino physics? - High energy neutrinos at IceCube

(Graphics: IceCube Collaboration.)

New neutrino physics? - High energy neutrinos at IceCube

Three events with energy deposited in the detector of >1 PeV.

Of astrophysical origin? Still unknown. IceCube high-energy data do not fit to a single astrophysical power-law flux.

(Graphics: IceCube Collaboration.)

IceCube high-energy signal - decaying dark matter?

Idea that a part of the high-energy neutrino spectrum recorded by IceCube originates from decaying dark matter rather than astrophysical sources $(e.g. \text{ blazars}).^2$

Can we combine such ideas also with leptogenesis?

²See *e.g.* Esmaili, Serpico 1308.1105.

Patrick Ludl (University of Southampton) Massive and supermassive neutrinos as DM

Heavy neutrinos as decaying dark matter?

Idea of Anisimov and Di Bari:³

- Type-I seesaw mechanism with one (almost) decoupled right-handed neutrino (tiny or vanishing Yukawa-coupling to Higgs).
- In contrast to ν MSM: all neutrinos are heavy (>electroweak scale).
- Production in early Universe via mixing with the other RH neutrinos (resonance conversion via MSW effect), small mixing enough to create sufficient abundance.
- Decay rate small due to extremely tiny Yukawa-coupling. \rightarrow Stable on cosmological timescales.

In our recent paper:

- Showed that this scenario is compatible with leptogenesis,
- investigated possible signatures at IceCube.

³A. Anisimov and P. Di Bari 0812.5085 [hep-ph].

II. The cold DM right-handed neutrino mixing scenario

The cold DM right-handed neutrino mixing scenario

Mass terms with three right-handed neutrinos:

$$\mathcal{L}_{M} = -\overline{\nu_{L}}m_{D}N_{R} - \frac{1}{2}\overline{N_{R}^{c}}M_{R}N_{R} + \text{H.c.}$$

Flavour basis: m_D non-diagonal, M_R diagonal.

$$m_D = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ \times & \times & 0 \end{pmatrix}, \quad M_R = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}.$$

Dark matter candidate, e.g. N_3 , decoupled (Yukawa couplings vanish). $\Rightarrow m_D$ has rank 2. $\Rightarrow m_\nu$ has rank 2. Lightest neutrino is massless!

How small must Yukawa-coupling of DM right-handed neutrino be?

Yukawa coupling to Higgs and active neutrinos:

 $-h_{\rm DM}\overline{\nu_L}\phi N_{\rm DM} + {\rm H.c.}$

Two-body decay: Lifetime

$$au_{
m DM} = rac{4\pi}{h_{
m DM}^2 M_{
m DM}} \simeq 0.87 \ h_{
m DM}^{-2} \ 10^{-23} \left(rac{
m GeV}{M_{
m DM}}
ight) \ s.$$

For cosmological stability ($\tau \gtrsim 10^{28} \, {\rm s}$):

$$h_{
m DM} \lesssim 3 imes 10^{-26} \sqrt{rac{
m GeV}{M_{
m DM}}}.$$

 \Rightarrow Yukawa coupling must be extremely tiny.

Cosmological stability of DM

 \ldots Yukawa coupling must be extremely tiny. \Rightarrow 2 problems:

- Correct abundance of dark matter can never be produced by production via the Yukawa coupling from a thermal bath in the early Universe.
- Small Yukawa coupling asks for symmetry justification.

Approach of the νMSM : Make Yukawa couplings small, but large enough to allow production of the correct abundance. If DM neutrino mass of $\mathcal{O}(\rm keV)$, the main decay mode is

$$N_{\rm DM} \rightarrow 3\nu$$
,

which has $\Gamma \propto M_{\rm DM}^5$ and therefore is strongly suppressed by the smallness of the DM neutrino mass (~keV). \Rightarrow Decay rate small, though Yukawa couplings are not tiny (but small).

Cosmological stability of DM

Alternative: Add new interactions: Dimension-5 operator

 $\frac{\lambda_{IJ}}{\Lambda}(\phi^{\dagger}\phi)\overline{N_{I}^{c}}N_{J}.$

In general non-diagonal in flavour basis. Contribution to RH-neutrino mass term negligible compared to mass term already existing (if Λ very large). Tiny mixing induced by this operator leads to

- Long (but not infinite) lifetime of dark matter neutrino,
- production in the early Universe by resonant conversion via MSW effect: Conversion of other heavy neutrinos to $N_{\rm DM}$. Turns out that conversion of only a small amount of neutrinos is sufficient to generate the correct DM abundance.

 \mathbb{Z}_2 symmetry under which all fields apart from $\textit{N}_{\rm DM}$ transform trivially:

$$\mathbb{Z}_2: \quad N_{\mathrm{DM}} \to -N_{\mathrm{DM}}.$$

 \Rightarrow $\textit{N}_{\rm DM}$ completely decoupled. No Yukawa interactions:

$$m_D = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ \times & \times & 0 \end{pmatrix}, \quad M_R = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & M_{\rm DM} \end{pmatrix}$$

Spontaneous breaking of \mathbb{Z}_2 by a heavy scalar singlet χ in

$$-\frac{1}{2}\chi \overline{N_R^c}YN_R + \text{H.c.}$$

VEV of χ at GUT-scale would lead to too large mixing, dark matter would be too unstable!

Idea for way out: Start from \mathbb{Z}_2 -symmetric scalar potential, right-handed neutrino mass term and right-handed neutrino Yukawa interactions.

Soft breaking of \mathbb{Z}_2 in the scalar sector only:

 $\mu \chi \phi^{\dagger} \phi$ ("Higgs-portal").

 \Rightarrow At dimension-4, Yukawa-interactions still \mathbb{Z}_2 -invariant. Explicit \mathbb{Z}_2 -breaking appears at dimension-5:

$$\frac{\mu}{M_{\chi}^2}\phi^{\dagger}\phi\lambda_{IJ}\overline{N_I^c}N_J.$$

If soft breaking is very weak,

$$\Lambda \equiv \frac{M_{\chi}^2}{\mu}$$

may be much larger than $M_\chi \sim m_{
m Planck}.$

 $\frac{\mu}{M_{\nu}^{2}}\phi^{\dagger}\phi\lambda_{IJ}\overline{N_{I}^{c}}N_{J}.$

Example:

$$M_{\chi} \sim m_{
m Pl}, \, \mu \sim M_{
m GUT} \Rightarrow \Lambda \sim rac{m_{
m Pl}^2}{M_{
m GUT}} \sim 10^{22}\,{
m GeV}.$$

Remark: Soft breaking also induces negligible spontaneous breaking due to

$$V(\chi, \phi = \mathbf{v}) = \frac{1}{2}M_{\chi}^{2}\chi^{2} + \mu \mathbf{v}^{2}\chi + \dots$$
$$\Rightarrow \langle \chi \rangle = -\frac{\mu \mathbf{v}^{2}}{M_{\chi}^{2}} \sim 10^{-18} \,\text{GeV}.$$

Summary:

- Exact Z₂-symmetry in RH-neutrino mass term (dim. 3) and Yukawa-interactions (dim. 4): No RH neutrino mixing, dark matter decoupled. → Exactly stable, not produced in the early Universe.
- Spontaneous breaking of \mathbb{Z}_2 in dim.-4 interactions with VEV of χ at GUT-scale: DM by far too instable.
- Way out: Explicit breaking of Z₂ in Higgs-portal interaction only ⇒ Explicit breaking at dimension 5 in Yukawa interactions. Enough to produce cosmologically stable DM in the early Universe.
- \mathbb{Z}_2 then automatically broken also spontaneously at negligible scale.

Estimation of $N_{\rm DM}$ abundance

For simplicity: Consider mixing of $N_{\rm DM}$ with only one other right-handed neutrino, which we call N_S (source RH neutrino). Has Yukawa-coupling to leptons

$$-\overline{\nu_{\alpha L}}h_{\alpha S}\phi(N_S)_R + \mathrm{H.c.}$$

'Total coupling'

$$h_S^2 \equiv \sum_{\alpha} |h_{\alpha S}|^2.$$

Hamiltonian in early Universe (at temperature T, $\tilde{\Lambda} = \frac{\Lambda}{\lambda_{DM,S}}$):

$$H = \begin{pmatrix} E_{\rm DM} & \frac{T^2}{12\tilde{\Lambda}} \\ \frac{T^2}{12\tilde{\Lambda}} & E_S + \frac{T^2}{8E_S}h_S^2 \end{pmatrix}$$

18 / 44

Estimation of $N_{\rm DM}$ abundance

 \rightarrow MSW resonance at resonance temperature

$$T_{
m res} = rac{2\sqrt{M_{
m DM}^2 - M_S^2}}{h_S}$$

Resonance occurs only for $M_{\rm DM} > M_{\rm S}$. At $T_{\rm res}$ a small fraction of $N_{\rm S}$ is (highly) non-adiabatically converted into $N_{\rm DM}$.

Adiabaticity parameter at resonance temperature:

$$\begin{split} \gamma_{\rm res} &\simeq 0.4 \frac{m_{\rm Pl}}{\tilde{\Lambda}^2} \frac{\sqrt{M_{\rm DM}^2 - M_{\rm S}^2}}{\sqrt{g_{\rm res}^*} h_{\rm S}^3}.\\ & \frac{N_{N_{\rm DM}}}{N_{N_S}} \Big|_{\rm res} \approx \frac{\pi}{2} \gamma_{\rm res},\\ & \underbrace{\Omega_{\rm DM} h^2}_{0.1193 \pm 0.0014} \simeq 1.7 \times 10^6 \gamma_{\rm res} \left(\frac{M_{\rm DM}}{\rm GeV}\right) \end{split}$$

III. Dark matter decays

Dark matter decays

Mixing of N_S and $N_{\rm DM}$ via

$$rac{\lambda_{IJ}}{\Lambda} (\phi^{\dagger}\phi) \overline{N_{I}^{c}} N_{J}$$

is the source of $N_{\rm DM}$ -decay:

Three decay modes:

- 2-body decay,
- 3-body decay,
- 4-body decay.

Dark matter decays: Two-body decay

Dark matter decays: Two-body decay

(A = H, Z.)

$$\tau_{\rm DM \rightarrow S \rightarrow A + \nu_S} \propto M_{\rm DM}^3. \label{eq:total_def}$$

IceCube: $\tau_{\rm DM} \gtrsim 10^{28} \, {\rm s} \Rightarrow$ Lower bound on $M_{\rm DM}$.

Dark matter decays: Four-body decay

$$\begin{split} (A &= H, Z.) \\ \tau_{\rm DM \to 3 \, A + \nu_S} \simeq \frac{0.1 \, \rm s}{\alpha_{\rm S}} \, \left(\frac{\rm GeV}{M_{\rm DM}} \right)^4 \, \left(\frac{M_{\rm DM}}{M_{\rm S}} \right) \, \left(\frac{\tilde{\Lambda}}{\rm GeV} \right)^2 \propto M_{\rm DM}^{-4}. \\ \alpha_S &= v^2 h_S^2 / (M_S \sqrt{\Delta m_{\rm sol}^2}). \end{split}$$

Dark matter decays: Four-body decay

(A=H,Z.)

$$au_{\mathrm{DM}
ightarrow 3 \, A +
u_{\mathrm{S}}} \propto M_{\mathrm{DM}}^{-4}.$$

IceCube: $\tau_{\rm DM} \gtrsim 10^{28} \, {\rm s} \Rightarrow$ Upper bound on $M_{\rm DM}$.

Dark matter decays: Three-body decay

Estimate decay rate of three-body decay: 4-body \rightarrow 3-body:

$$|\mathcal{M}|^2_{\text{3-body}} = (2v)^2 |\mathcal{M}|^2_{\text{4-body}}$$

Phase space integral:

$$\int d\phi_n \to \int d\phi_{n+1} = \int d\phi_n \int \underbrace{\frac{d^3 p'}{(2\pi)^3 2E'}}_{\frac{1}{16\pi^3} \times 4\pi \int \frac{dp \cdot p^2}{E}} \sim \frac{M_{\rm DM}^2}{4\pi^2} \int d\phi_n.$$

Dark matter decays: Three-body decay

Estimate decay rate of three-body decay:

$$\begin{split} |\mathcal{M}|_{3\text{-body}}^2 &= (2\nu)^2 |\mathcal{M}|_{4\text{-body}}^2\\ \int d\phi_4 &\sim \frac{M_{\rm DM}^2}{4\pi^2} \int d\phi_3.\\ \Rightarrow \frac{\Gamma_4}{\Gamma_3} &= \frac{\int d\phi_4 |\mathcal{M}|_{4\text{-body}}^2}{\int d\phi_3 |\mathcal{M}|_{3\text{-body}}^2} \sim \frac{1}{16\pi^2} \frac{M_{\rm DM}^2}{\nu^2} = \left(\frac{M_{\rm DM}}{4\pi\nu}\right)^2. \end{split}$$

 \Rightarrow 4-body decay dominates if $M_{\rm DM} \gg 4\pi \nu \approx 2 \, {\rm TeV}$.

Bounds on DM lifetime ightarrow Windows for $M_{ m DM}$

- 2-body decay: Lower bound on $M_{\rm DM}$.
- 4-body decay: Upper bound on $M_{\rm DM}$.

⇒ for given $M_{\rm DM}/M_S$, Λ chosen such that DM abundance correct: Window of allowed values for $M_{\rm DM}$. Example: Initial vanishing $N_{\rm S}$ abundance: No N_S after inflation, all N_S produced by Yukawa-interactions from thermal bath. Most interesting case: At resonance N_S not yet in thermal equilibrium.

 \rightarrow Window opens up for $\mathit{M}_{\rm DM}\gtrsim9.3\,{\rm TeV}.$

Bounds on DM lifetime \rightarrow Windows for $M_{\rm DM}$

IV. Leptogenesis

Leptogenesis

Dark matter production: Need MSW effect: Leads to requirement

 $M_{\rm DM} > M_S$.

Dark matter stability constraints lead to

$$\delta_{\rm DM} \equiv \frac{M_{\rm DM} - M_S}{M_S} > 10^{-2}$$

Numerically checked that leptogenesis works for

$$\delta_{
m lep} \equiv rac{M_2-M_1}{M_1} \lesssim 10^{-5}.$$

 \Rightarrow Dark matter neutrino is the **heaviest neutrino**. The other two neutrinos enable leptogenesis.

$$M_{S} < M_{\rm DM} < O(1 - 1000 \,{\rm TeV}).$$

 \Rightarrow Leptogenesis happens at the TeV to PeV scale!

V. Possible signatures at IceCube

Possible signatures at IceCube

Dark matter neutrino instable: Signatures from neutrino decays.

- Flavour ratio at source determined by model \rightarrow Constraints on flavour ratios of high-energy neutrinos in IceCube.
- Flux of neutrinos from dark matter decays contributes to IceCube high-energy neutrino spectrum.

Hard and soft neutrinos from dark matter decays

Hardest component of neutrinos from two-body decays: Through mixing with N_S . Energy up to $M_{\rm DM}/2$.

Neutrinos: hard or soft.

•
$$N_{\rm DM} \rightarrow N_{\rm S} \rightarrow \ell^{\pm} W^{\mp} \rightarrow \ell^{\pm} \ell^{\mp} \nu$$

- $N_{\rm DM} \rightarrow N_{\rm S} \rightarrow Z \nu \rightarrow \nu \nu \nu$
- $N_{\rm DM}
 ightarrow N_{
 m S}
 ightarrow H
 u
 ightarrow ar{b} b
 u
 ightarrow \dots
 u
 u$

Hard neutrinos come directly from the vertex with the $N_{S.} \Rightarrow$ Contribute to the high-energy end of the spectrum, preserve information about the flavour structure of the interaction (*i.e. Dirac mass matrix*). Extremely challenging to measure!

Depending on the type of interaction (CC, NC) and on the flavour of the incoming neutrino, the **deposited energy in the detector might be quite different from the actual** ν **energy.**

Only highest-energy neutrinos preserve information about the flavour structure. \rightarrow Huge statistics needed to identify flavour composition experimentally!

Extremely challenging, but nevertheless interesting, since IceCube observations could easily rule out our model.

Flavour ratio at the source

Two-body decay proceeds via mixing with N_S .

$$\Rightarrow \Gamma_{\rm DM} \propto \Gamma_{\rm N_S} \propto (m_D^{\dagger} m_D)_{ii}.$$

 $(i = index of N_S.)$

 \Rightarrow Flavour ratio at source:

$$f_{\alpha,S} = \frac{|m_{D_{\alpha i}}|^2}{\sum_{\beta} |m_{D\beta i}|^2}$$

One can show that in our model, irrespective of the neutrino masses,

$$f_{\alpha,S} \leq 1 - |U_{\alpha 1}|^2.$$

Flavour ratio at the source

Flavour composition at Earth

Coherence length of neutrinos is **smaller** than galactic scales.

 \Rightarrow Neutrino states which arrive at Earth from distant galactic or even extragalactic sources are

incoherent superpositions of mass eigenstates.

 \Rightarrow Probability to find a neutrino of flavour α at Earth if flavour β was produced at a distant source:

$$\mathcal{P}_{lphaeta} = \sum_{j} |U_{lpha j}|^2 |U_{eta j}|^2.$$

 \Rightarrow Flavour composition at Earth:

$$f_{\alpha,\oplus} = \sum_{\beta} P_{\alpha\beta} f_{\beta,S}.$$

Flavour composition at Earth

$$f_{lpha,\oplus} = \sum_{eta} P_{lphaeta} f_{eta,S}.$$

Strong constraint only for normal hierarchy and only in the electron component:

$$f_{e,\oplus} pprox rac{1}{5} + rac{f_{e,S}}{3}.$$

Compare this with expected signal for

- pion decay: $f_{e,S}: f_{\mu,S}: f_{\tau,S} = 1:2:0$,
- muon only: $f_{e,S} : f_{\mu,S} : f_{\tau,S} = 0 : 1 : 0$,
- neutron decay: $f_{e,S}: f_{\mu,S}: f_{\tau,S} = 1:0:0$,
- electron + muon: $f_{e,S}: f_{\mu,S}: f_{\tau,S} = 1:1:0.$

Flavour ratio at Earth

Dark matter flux and event spectrum

For 2 representative cases for DM mass and lifetime: Computed flux and event spectrum from 2-body decays.

DM signal alone does not provide good fit to entire IceCube datasample.

 \Rightarrow Also consider an astrophysical contribution with a power-law flux.

Flux from DM decays has two contributions: galactic and extragalactic.

- Extragalactic flux: Nearly isotropic flux of neutrinos and antineutrinos.
- Galactic flux: Not isotropic because sun not in center of galaxy.

Ingredients for flux computation:

- Energy spectrum $\frac{dN_{\nu}}{dE_{\nu}}$: From literature (results up to 200 TeV scaled up to PeV scale).⁴
- Dark matter profile of the galaxy: Assume generalized Navarro-Frenk-White profile $\rho(r)$. Estimated flux less sensitive to particular form of $\rho(r)$ than in case of dark matter annihilations (there flux $\propto \rho^2$).

⁴See Cirelli et *al.*, 1012.4515.

Neutrino flux for $M_{\rm DM}=300\,{\rm TeV}$ and $M_{\rm DM}=8\,{\rm PeV}$

DM signal alone does not provide good fit to entire IceCube datasample. \Rightarrow Also consider an astrophysical contribution with a power-law flux (assumed flavour ratio at Earth 1:1:1).

$$\frac{d\Phi_{a}}{dE_{\nu}} = \phi \left(\frac{E_{\nu}}{100 \,\mathrm{TeV}}\right)^{-\gamma}$$

 $\phi = {\rm flux}$ normalization in units of $10^{-18}\,{\rm GeV}\,{\rm cm}^{-2}\,{\rm s}^{-1}\,{\rm sr}^{-1}.$

IceCube event spectrum for $M_{\rm DM}=300\,{\rm TeV}$

IceCube event spectrum for $M_{\rm DM}=8\,{ m PeV}$

VI. Summary and Conclusions

Summary

- Light (keV), heavy (TeV) and superheavy (PeV) neutrinos can be good candidates for dark matter.
- Tried to build a model like the νMSM with heavier neutrinos (to potentially explain a part of the IceCube high-energy neutrino spectrum).
- Main concept: Type-I seesaw with one decoupled right-handed neutrino.
- Production of dark matter: Mixing with source right-handed neutrino (MSW resonance).
- Yukawa-couplings tiny: Dark matter stable at cosmological scales.
- Small enough Yukawas justifiable in a framework with soft breaking of a \mathbb{Z}_2 in Higgs portal interactions.

Conclusions

- Dark matter right-handed neutrino almost decoupled ⇒ Lightest neutrino almost massless.
- Two main decay modes: 2-body decay (lower bound on $M_{\rm DM}$) and 4-body decay (upper bound on $M_{\rm DM}$).
- \bullet Allowed window for ${\it M}_{\rm DM}$ in the TeV to PeV range.
- Successful leptogenesis possible, if dark matter is the heaviest neutrino. The other two must be degenerate to degree $\delta_{\rm lep} \lesssim 10^{-5}$.
- Signatures at IceCube:
 - Flavour ratios at Earth. Hard neutrinos keep information on Dirac Yukawa structure. Challenging to measure, but the signature of our model $f_{e,\oplus} < 1/3$ (for NO) is an interesting prediction.
 - Event energy spectrum: Additional component to (necessary) astrophysical flux. Can fit IceCube data with "Dark matter decay + astrophysical power-law flux." Examples: Either ~ 100 TeV dark matter + power-law $\gamma = 2$ or PeV dark matter + power-law $\gamma = 3$.
- Main interesting feature of our model: Only one new interaction (Higgs portal) responsible for dark matter production and decay.

Thank you for your attention!

Backup slides

Hard and soft components of the neutrino flux

