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● Why it can matter beyond the standard 
model

● How this can be treated
● Introducing gauge-invariant perturbation 

theory
● Checking its validity
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● Strong interactions are non-perturbative
● Like QCD
● But not always: Asymptotic freedom

● Weak interactions can be non-perturbative
● QED is weakly interacting, but has non-

perturbative features like atoms, molecules, 
matter with phase structure,...

● Bound states, phase transitions,...
● Are there (relevant) non-perturbative effects 

in the weak interactions and the Higgs?
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Or: What states can be gauge-invariant
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The Problem

● Consider the Higgs sector of the standard model
● The Higgs sector is a gauge theory

● Local SU(2) gauge symmetry

● Global SU(2) Higgs custodial (flavor) symmetry
● Acts as right-transformation on the Higgs field only

W 

a
W 

a
b

a
∂−g f bc

a W 

c


b hi hig ta
ij


a h j

Wμ
a
→W μ

a hi →hi+ aij h j+ bij h j
∗

L=−
1
4

W μ ν
a W a

μ ν+(Dμ
ij h j) + Dik

μ hk+λ(ha ha
+ −v2)2

W μ ν
a =∂μ W ν

a−∂νW μ
a+gf bc

a W μ
b W ν

c

Dμ
ij=δij ∂μ−igW μ

a ta
ij



Standard approach

● Minimize action classically
● Yields              - Higgs vev
● Assume quantum corrections to this are 

small

hh  =v2

[Bohm et al. 2001]



Standard approach

● Minimize action classically
● Yields              - Higgs vev
● Assume quantum corrections to this are 

small
● Perform global gauge transformation 

such that

●   mass depends at tree-level on

h(x)=v+η(x)= ( φ1(x)+i φ2(x)

v+ω(x)+i φ3(x)) ⇒⟨h⟩=(0v )

hh + =v2

v

[Bohm et al. 2001]





Standard approach

● Minimize action classically
● Yields              - Higgs vev
● Assume quantum corrections to this are 

small
● Perform global gauge transformation 

such that

●   mass depends at tree-level on
● Perform perturbation theory 

h(x)=v+η(x)= ( φ1(x)+i φ2(x)

v+ω(x)+i φ3(x)) ⇒⟨h⟩=(0v )

hh  =v2

 v

[Bohm et al. 2001]
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● Not all charge directions equal
● This is not physical, but merely a choice of gauge
● “Spontaneous gauge symmetry breaking”

● Broken by the transformation, not by the dynamics
● Dynamics only affect the length of the Higgs field
● Local symmetry intact and cannot be broken    

[Elitzur'75]

● There are gauges where the vev always vanishes 
[Maas'13]

● Perturbation theory not sensible [Lee et al.'72]

● Consequence: Symmetry in charge space not 
manifest (hidden)

● Symmetry expressed in STIs/WTIs
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Physical states

● Physical spectrum: Observable particles
● Experiments measure peaks in cross-sections

● Elementary fields depend on the gauge
● Cannot be observable

● Gauge-invariant states are composite
● Not asymptotic states in perturbation theory
● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Why does perturbation theory work?
● Mass spectrum?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]
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standard model

Introducing gauge-invariant perturbation theory
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Masses from propagators

● Masses are determined by poles of 
propagators

● 2 propagators
● W/Z

● Degenerate without QED
● Scalar

● (Tree-level/perturbative) poles of Higgs and W
● But only in a fixed gauge
● Elementary fields are gauge-dependent
● Without gauge fixing propagators are

● Gauge-invariant: Non-perturbative method  
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Lattice calculations

● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic 

lattice
● Calculate observables using path integral

● Can be done numerically
● Uses Monte-Carlo methods

● Artifacts
● Finite volume/discretization
● Masses vs. wave-lengths
● Euclidean formulation

L

a
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Masses from Euclidean propagators

● Masses can be inferred from propagators
● Long-time behavior relevant

● No exact results on time-like momenta

D(p)=〈O +
( p)O(−p)〉∼∑

ai

p2+ mi
2

C (t )=〈O +
(x)O( y)〉∼∑ ai exp(−mi Δ t)

∑ ai=1∧m0< m1< ...
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV
● Scheme exists to shift Higgs mass always to 120 GeV

● Coincidence? No.
● Duality between elementary states and bound states 

[Fröhlich et al.'80]

● Same poles to leading order
● Fröhlich-Morchio-Strocchi (FMS) mechanism
● Deeply-bound relativistic state

● Mass defect~constituent mass
● Cannot describe with quantum mechanics
● Very different from QCD bound states

[Fröhlich et al.'80
 Maas'12, Maas & Mufti'13]
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Isovector-vector state

● Vector state 1- with operator
● Only in a Higgs phase close to a simple particle
● Custodial triplet, instead of gauge triplet
● Mass about 80 GeV
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h

√h + h

[Maas et al. '13]
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Mass relation - W

● Vector state: 80 GeV
● W at tree-level: 80 GeV

● W not scale or scheme dependent
● Same mechanism

● Same poles at leading order
● Remains true beyond leading order
● Exchanges a gauge for a custodial triplet

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩

h=v+η
≈

∂ v=0
const .+⟨W μ(x)W μ( y)⟩+O (η3)

[Fröhlich et al.'80
 Maas'12]
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What about the rest?

● Quarks and gluons
● Anyhow bound by confinement in bound states

● Top subtle, but same principle
● But open flavor needs a Higgs - qqqh

● Leptons
● Actually Higgs-lepton bound-states

● Enormous mass defects
● Requires confirmation
● Except for right-handed (Dirac) neutrino

● Photons
● QED similar but simpler

[Fröhlich et al.'80,
 Egger et al., unpublished]
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Collision of bound states - 'constituent' particles
● Higgs partners just spectators

● Similar to pp collisions
● Sub-leading contributions

● Ordinary ones: Large and detected
● New ones: Small, require more sensitivity

[Maas'12]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact?
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? Gauge-invariant perturbation 
theory!
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--H bound stateμ

+-H bound stateμ

● Description of impact? Gauge-invariant perturbation 
theory!

● Ordinary contribution
● Modification of ordinary contribution
● Higgs as initial state
● More contributions...
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? Gauge-invariant perturbation 
theory!

● Ordinary contribution
● Modification of ordinary contribution
● Higgs as initial state
● More contributions...complicated

[Maas'12,
 Egger et al., unpublished]

⟨hehe∣hμ hμ⟩=⟨ee∣μμ⟩+⟨ηη⟩⟨ee∣μμ⟩+⟨ee⟩ ⟨ηη∣μμ⟩+...
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? PDF-type language!
● Interacting particles either electrons or Higgs
● Fragmentation 100% efficient – like for quarks

[Maas'12,
 Egger et al., unpublished]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

[Maas'12,
 Egger et al., unpublished]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

[Maas'12,
 Egger et al., unpublished]



Why it can matter beyond the 
standard model

And when this can be dealt with using
gauge-invariant perturbation theory
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● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it
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Lines of constant physics

● Lattice simulations have an 
intrinsic cutoff – the lattice 
spacing a

● Full theory reached at zero 
lattice spacing

● If it exists: Triviality problem
● Masses, couplings, and actions 

are specified at this scale
● Numerical procedure: 

Calculate for several a with all 
independent observables fixed 
- “Lines of constant physics”

● Different starting points yield 
different physics

Mass(es)
C

o
u

p
lin

g
(s

)

Full
theory

a decreases



Phase diagram

● (Lattice-regularized) 
phase diagram
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Phase diagram

● (Lattice-regularized) 
phase diagram 
continuous

● Separation only in 
fixed gauges

● Same asymptotic 
states in 
confinement and Higgs 
pseudo-phases

● Same asymptotic states irrespective of 
coupling strengths

● Other states than 'Higgs' and 'W'?
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Elastic

Inelastic

Ground
state

Excited
state

Resonances or scattering
states

Exponential volume dependency
- if stable against decays into
other channels

● Polynominal (inverse) volume 
  dependence
● Width and nature
  from phase shifts below the
  inelastic threshold

[Luescher'85,'86,'90,'91]

Above inelastic threshold still
complicated
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Excited states on the lattice

Ground state

Elastic threshold: H->2W

Inelastic threshold: H->2H

Scattering states

[Luescher'85,'86,'90,'91]



Excited states on the lattice

Ground state

Elastic threshold: H->2W

Inelastic threshold: H->2H

Scattering states

Avoided level crossing
Identification and widths from 
phase shifts

[Luescher'85,'86,'90,'91]
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Ground state

Scattering states

Inelastic threshold

NB: weakly coupled

[Maas et al.'14]
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Typical spectra

● Generically different low-lying spectra
● 0+ lighter in QCD-like region
● 1- lighter in Higgs-like region
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Typical spectra

● Generically different low-lying spectra
● 0+ lighter in QCD-like region
● 1- lighter in Higgs-like region

● Coincides with gauge-dependent definitions

[Maas, Mufti '13,'14,
 Evertz et al.'86, Langguth et al.'85,'86]

Reversed order
[N=24, κ=0.2939, β=2.4492, λ=1.036][N=24, κ=0.2954, β=2.7984, λ=1.317]
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Limits
FMS prediction

Too low: Finite volume effect

Elastic decay threshold
Higgs as resonance
Expensive, signal very bad

Higgs and W mass agrees
FMS stops working
So does Brout-Englert-Higgs!

[Maas & Mufti'14]
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QCD-like
Confinement

Higgs-like
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Limits

QCD-like
Confinement

Higgs-like
Higgs condensate

Does not coincide with weak/strong coupling transitions!

[Maas & Mufti'14]
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Phase diagram

QCD likeHiggs like

Critical end-line? [Bonati et al.'10]

LCP direction?

● Quantum effects remove BEH effect
● Opposite does not happen

● Interacting continuum limit? [Gies & Zambelli'15]

● LCP: 0+, 1- masses,                   (miniMOM scheme)α(200GeV )

[Maas & Mufti'15]



Higgs mass
Standard mass-cutoff plot

Elastic decay threshold

No BEH effect below

No strong dependence of mass range on cutoff - expected

[Maas & Mufti'15]
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Perturbative predictivity: Coupling

QCD-like

Higgs-like

Large cutoff, BEH: Small couplings

Large cutoff, QCD: Larger couplings

BEH/QCD at
Similar couplings

[Maas, unpublished]
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Perturbative predictivity: Mass ratios

0+/1- mass ratio

QCD-like
Elastic threshold

Tree-level perturbation theory is right

Physical ratio

[Maas, unpublished]
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Status of the standard model

● Physical states are bound states
● Observed in experiment
● Described using gauge-invariant perturbation 

theory based on the FMS mechanism
● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it
● Seen on the lattice – but SM is fine

● Local and global multiplet structure must fit
● Has to be checked for BSM theories

● Without Higgs: More subtle [Maas'15]



Example 1: 2HDM

Like the standard model
Gauge-invariant and ordinary perturbation theory 

coincide
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● Additional Higgs doublet
● Enlarged custodial group
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Implications for 2HDM

● Additional Higgs doublet
● Enlarged custodial group
● BEH Effect - FMS mechanism applicable

● In a suitable basis, all condensates 
contained in a single doublet

[Maas'15,
 Maas & Pedro'16]



Implications for 2HDM

● FMS states for maximal custodial group:
● Scalar sector Singlet
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Implications for 2HDM

● FMS states for maximal custodial group:
● Scalar sector Singlet

● Scalar Sector Quadruplet

● Splitted into 1+3 states for broken group

⟨(h + h)(x)(h + h)( y )⟩ ≈ const .+⟨ηh
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3
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Implications for 2HDM

● FMS states for maximal custodial group:
● Scalar sector Singlet

● Scalar Sector Quadruplet

● Splitted into 1+3 states for broken group
● Vector triplet

● All other states expand to scattering states

⟨(h + h)(x)(h + h)( y )⟩ ≈ const .+⟨ηh
+
(x )ηh( y )⟩+O(ηh

3
)

⟨(a +
Γa)(x )(a +

Γ a)( y )⟩ ≈ const .+⟨ηa
+
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3
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Implications for 2HDM

● FMS states for maximal custodial group:
● Scalar sector Singlet

● Scalar Sector Quadruplet

● Splitted into 1+3 states for broken group
● Vector triplet

● All other states expand to scattering states
● Validity: Requires non-perturbative check
● Discrete factor groups could yield doubling

⟨(h + h)(x)(h + h)( y )⟩ ≈ const .+⟨ηh
+
(x )ηh( y )⟩+O(ηh

3
)

⟨(a +
Γa)(x )(a +

Γ a)( y )⟩ ≈ const .+⟨ηa
+
(x)Γηa( y )⟩+O(ηa

3
)

⟨(h + Dμ h)(x )(h + Dμ h)( y)⟩ ≈ const .+⟨W μ(x)Wμ( y)⟩+O(ηh
3)

[Maas'15,
 Maas & Pedro'16]



Implications for 2HDM

● Additional Higgs doublet
● Enlarged custodial group
● BEH Effect - FMS mechanism applicable

● In a suitable basis, all condensates 
contained in a single doublet

● Yields again perturbative spectrum
● Discrete factor groups may be a problem

● Key: Global multiplet structure diverse

[Maas'15,
 Maas & Pedro'16]



Implications for 2HDM

● Additional Higgs doublet
● Enlarged custodial group
● BEH Effect - FMS mechanism applicable

● In a suitable basis, all condensates 
contained in a single doublet

● Yields again perturbative spectrum
● Discrete factor groups may be a problem

● Key: Global multiplet structure diverse
● Size of fluctuations needs to be checked 

non-perturbatively!

[Maas'15,
 Maas & Pedro'16]



Example 2: GUT-like structure

Gauge-invariant perturbation theory correct
and

different from ordinary perturbation theory



Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

[Maas'15
 Törek & Maas '15, '16]
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)
● Perturbative spectrum

● 1 massive Higgs, 3 massless and   
5 (1 (heavier) + 4 (lighter)) massive vectors
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)
● Perturbative spectrum

● 1 massive Higgs, 3 massless and   
5 (1 (heavier) + 4 (lighter)) massive vectors

● FMS spectrum
● 1 massive scalar, 1 massive vector

● Same masses as Higgs and heaviest gauge boson
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)
● Perturbative spectrum

● 1 massive Higgs, 3 massless and   
5 (1 (heavier) + 4 (lighter)) massive vectors

● FMS spectrum
● 1 massive scalar, 1 massive vector

● Same masses as Higgs and heaviest gauge boson
● ...or something else?

[Maas'15
 Törek & Maas '15, '16]



Test for GUTs

● Separation into Higgs-like and QCD-like

“Higgs”

“QCD”

[Maas & Törek'16]
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● Propagators almost tree-level
● Expected splitting in gauge boson spectrum
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Test for GUTs

● Propagators almost tree-level
● Expected splitting in gauge boson spectrum

● Physical vector: Massive, non-degenerate
● Agrees with FMS prediction

[Maas & Törek'16]



Example 3: Technicolor

No gauge-invariant perturbation theory
but

interesting implications



Implications for Technicolor

● Higgs replaced by bound state of new 
fermions (techniquarks) and new gauge 
interaction (technicolor)

[Maas,'15]
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Implications for Technicolor

● Higgs replaced by bound state of new 
fermions (techniquarks) and new gauge 
interaction (technicolor)

● No BEH effect: FMS cannot work
● Observable states must still be gauge-

invariant
● Needs to create Higgs and W/Z(!) signals 

by (new) bound states
● Vectors must be lighter

● Behavior not yet seen for strong interactions
● Usually: Scalars and pseudoscalars

[Maas,'15]



Summary

● Observable spectrum must be gauge-invariant

[Maas'12,'15
 Törek & Maas'16]
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Summary

● Observable spectrum must be gauge-invariant
● In non-Abelian gauge theories: Bound states
● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect
● Yields the same results for the standard model
● More robust
● Mostly not much more complicated
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Summary

● Observable spectrum must be gauge-invariant
● In non-Abelian gauge theories: Bound states
● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect
● Yields the same results for the standard model
● More robust
● Mostly not much more complicated

● Applicable to beyond-the standard model
● Structural requirement: Multiplets must match
● Dynamical requirement: Small fluctuations
● Verification requires non-perturbative methods

[Maas'12,'15
 Törek & Maas'16]
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