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• On-shell conditions in theories with 
flavor mixing are already an 
integral part of the 
Standard Model

• In extensions of the SM, mixing for 
fermions and scalars are likely to 
occur 

‣ Want a proper foundation for the 
definition of these conditions

INTRODUCTION
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INTRODUCTION
• On-shell conditions already derived by  

Aoki et. al., Progr. Theor. Phys., No. 73 (1982)

• Renormalization of the quark mixing matrix by  
Denner & Sack, Nucl. Phys. B347 (1990)

‣ one-loop effects of the quark mixing matrix are practically negligible

�VCKM
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• Still, the derivation of on-shell 
conditions in theories with mixing 
remained a bit vague for the general 
reader of the relevant literature

• An interesting theoretical problem 
in itself

‣ Review on the derivation 
and use of on-shell conditions in 
theories with flavor mixing

INTRODUCTION
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PREREQUISITES
• All masses are different

• Conditions only usable in regions where absorptive parts are 
negligible, otherwise only use dispersive part: 
 
 
 
i.e. decompose propagator via principle value and delta function 
(origin: Sokhotski-Plemelj theorem for real line) 

‣ Corresponds to commonly used definitions renormalization 
conditions only using the real part of the self-energies

‣ Hermitian counterterms in Lagrangian (alternatively e.g. 
complex-mass scheme)

1

p2 � µ2 + i✏
= P

1

p2 � µ2
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• Commonly used on-shell condition for real scalar propagator: 
 

• Inspires the form of the condition in multi-particle case 
 

‣ On-shell condition for propagator
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• Problem: need conditions for the inverse propagator

• Reason: conditions should apply to the renormalized self energy 
(i.e. the counterterms therein)  
 
 
 
 
 
 

‣ Self-energy appears in the denominator of the two-point 
correlation function

REAL SCALAR PROPAGATOR
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• Simple to translate on-shell conditions to the self-energy in 
the case without mixing: 
 
 

• In order to define similar conditions in the multi-particle case: 
 
 
and use the inversion condition to the propagator:

REAL SCALAR PROPAGATOR
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• Yields conditions for the inverse propagator: 
 
 
and moreover for the entries on the diagonal: 

• Note that one can get even more conditions from the orthogonality, but these have 
nothing to do with the singularity structure  ➤ not part of on-shell conditions

• Due to the choice of the inverse propagator, can equivalently use: 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• Rows and columns in principle get independent conditions: 
 
 
 
 
 
 
 
 
 
 

➡ total number of conditions: 
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• First note that the propagator, as well as its inverse, are symmetric 

‣ Number of independent conditions reduced to  
 
 
 
(note that this way of counting makes more sense for the fermions)

• Field strength renormalization constants form a general real matrix

‣                   degrees of freedom

• Mass counterterms using a diagonal mass matrix:

‣              degrees of freedom

➡ #renormalization condition coincides with #counterterms

PARAMETER COUNTING
# independent conditions vs. # counterterms
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• Use the Källén-Lehmann representation of the renormalized propagator to show 
that it is real and symmetric: (origin:                                                )  
 
 
 

• Next invoke CPT invariance, which holds in any local, Lorentz-invariant theory:

PROPAGATOR SYMMETRY
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• Inserting this into the spectral density, we find: 
 
 
 
 
 

• With the spectral density being real and symmetric, we see 
that the same holds for the propagator (also the inverse):

PROPAGATOR SYMMETRY

�ij(p
2) = �⇤

ij(p
2) = �ji(p

2)

⇢ij(q
2)⇥(q0) ⌘ (2⇡)3

X

n

�(4)(q � pn)h0|'i(0)|nihn|'j(0)|0i

= (2⇡)3
X

n0

�(4)(q � pn)h0|'i(0) |n0i⇤hn0|'j(0)|0i⇤

=
�
⇢ij(q

2)
�⇤

= ⇢ji(q
2)

13



Seminar on Particle Physics
18 October 2016

Maximilian Löschner
On-shell conditions in theories with flavor mixing

• Choose condition for 
propagator similar to 
scalar case:

• Ansatz for propagator:

• Find proper choice for 
expansion via: 
 

➡ Leads to general form 
of the propagator: 

CONDITIONS FOR FERMIONS
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• Choice for the inverse propagator:

• Choice for expansion of inverse propagator non-singular again:  

• Use inversion relation to find: 
 
 

• Inserting expansions for prop. and inverse prop. yields final conditions:
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INDEPENDENT CONDITIONS II
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• Symmetry relation for the fermionic propagator: 

‣ Can again be derived from Källén-Lehmann representation

• Using this reduces the #independent renormalization conditions again: 
 
 
 
 

• First relation is complex and not symmetric in i,j

‣ #independent conditions:
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• Renormalized self-energy can be written as: 
 

‣ Phase freedom in the complex field strength renormalization 
constants reduces #parameters to fulfill renorm. conditions: 

• Then, #independent parameters is: 
 

‣ Coincides again with the #independent conditions

PARAMETER COUNTING II
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• Can alternatively define:

• Note that 

• Then, one arrives at 
completely equivalent 
conditions:

ALTERNATIVE FORMAL DERIVATION
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• Choices for propagator and inverse prop. similar to P-conserving case: 
 

• Expansions of propagator constituents works just as before

• Inversion relation looks similar too, but: 
left- and right-chiral parts mix:

FERMIONS W/O P-CONSERVATION
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• Final conditions after invoking propagator symmetry: 
 
 
 
 

• Counting more subtle here. Know from propagator symmetry:  
 

• Inserting this into conditions leaves as independent ones (for i=j): 

‣ #independent conditions:

FERMIONS W/O CP-CONSERVATION
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• Self-energy for fermions w/o CP-conservation: 
 
 

‣ Again diagonal phase freedom, but the same for L/R:

‣ Of course, #free parameters coincides with #conditions: 
 
 

PARAMETER COUNTING III
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• Majorana fields are equal to their charge conjugate: 
 
 

• Use these equalities in the identity  

• In the end this yields an additional propagator symmetry: 

‣ Inverse Majorana propagator has even less degrees of freedom:

MAJORANAS
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• Remaining independent renormalization conditions: 
 
 
 
(+ condition containing the derivatives) 
which means we have as the #independent conditions: 

• Loose freedom of rephasing due to relation between L/R-parts 
 
 
 
(not to be confused with Majorana phases in mixing matrix)

•  Again equals #counterterms (one general complex FSRC + mass 
counterterms)

MAJORANAS
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• On-shell renormalization conditions in theories with mixing already known, 
but still unclear in some specifics

• These conditions play an important role in extensions of the Standard Model 
in the fermion and scalar sector (with potentially strong mixing)

• Pains have been taken to dispel any unclear point in the derivation

• For more extras (e.g. explicit expressions for counterterms) and calculational 
details, see Int. J. Mod. Phys. A 31, 1630038 (2016)

CONCLUSIONS
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THANKS!
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BACKUP SLIDES
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• Attempt to describe/explain structure of 
UPMNS via symmetries of the mass matrix

• Use combination of discrete symmetries to 
approximate UPMNS, e.g. 𝜇-𝜏 symmetry  
[Phys. Lett. B 579 (2004), 113-122]  
 
 
 
 
 
 

FLAVOR SYMMETRIES
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