Parton showers and resummation for bottom-quark fragmentation in top decays

Gennaro Corcella

INFN - Laboratori Nazionali di Frascati

- 1. Introduction
- 2. *b*-quark fragmentation in top decays at NLO
- 3. Collinear and soft resummations
- 4. Monte Carlo generators showers and hadronization
- **5.** *B*-hadron spectrum in top decay
- 6. Impact on the top mass reconstruction
- 7. Conclusions

Work by G.C., F.Mescia, V.Drollinger, A.Mitov, M. Cacciari, LEP/SLD/ATLAS/CMS heavy-quark/top working groups

Heavy-quark (c, b, t) production interesting from theoretical and experimental viewpoints Tests of QCD, electroweak interactions and parton model Investigation of power corrections and hadronization to predict heavy-hadron spectra $m \gg \Lambda_{\rm QCD} \sim \mathcal{O}(100 \text{ MeV})$: perturbative QCD can work Asymptotic freedom allows perturbative expansion at large energies:

$$\sigma(Q) = c_0 + c_1 \alpha_S(Q) + c_2 \alpha_S^2(Q) + \dots \text{ (LO, NLO, etc.)}$$

$$\alpha_S(Q) = \frac{1}{\beta_0 \ln \frac{Q^2}{\Lambda^2}} \left\{ 1 - \frac{\beta_1 \ln[\ln(Q^2/\Lambda^2)]}{\beta_0^2 \ln(Q^2/\Lambda^2)} \right\} \text{ (MS ren. scheme)}$$
Eived-order calculations reliable for total cross sections

 $\frac{10}{10} \frac{0}{0} \frac{100}{0} \frac{100}{0}$

Differential distributions $\sim \alpha_S^n L^m$, (soft/collinear emission): all-order resummation

 $E_g \rightarrow 0$: soft radiation $\theta \rightarrow 0$: collinear radiation ($\ln(m/Q)$ for heavy quarks)

The top quark was discovered in 1995 by CDF and D0 experiments at Tevatron (FNAL)

 $Q = (2/3) \ e, \ T_3 = +1/2$, phenomenology driven by its large mass: $m_t \simeq 173 \text{ GeV}$ Large width $\Gamma_t \simeq 1.35 \text{ GeV} \Rightarrow \tau_t \simeq 0.5 \times 10^{-24} \text{ s} \text{ (PDG'14)}$ The top quark decays before forming any *T*-hadron or $t\bar{t}$ resonance Being $m_t \sim m_H$, the top Yukawa coupling is the only of order 1 Processes with top quarks are background for many New Physics searches

The top quark plays a crucial role in electroweak symmetry breaking

Stability of the SM vacuum depends on top and Higgs masses (Degrassi et al, JHEP'12)

Stability: $V_{\text{eff}}(v) < V_{\text{eff}}(v')$; Instability: $V_{\text{eff}}(v) > V_{\text{eff}}(v')$; Metastability: $\tau > T_U$

Theoretical uncertainties on the top mass measurement

Monte Carlo systematics (MC); modelling QCD radiation effects (Rad); colour reconnection (CR); parton distribution functions (PDF)

All values in GeV	CDF	D0	ATLAS	CMS	Tevatron	LHC	WA
m _{top}	173.19	174.85	172.65	173.58	173.58	173.28	173.34
Stat	0.52	0.78	0.31	0.29	0.44	0.22	0.27
iJES	0.44	0.48	0.41	0.28	0.36	0.26	0.24
stdJES	0.30	0.62	0.78	0.33	0.27	0.31	0.20
flavourJES	0.08	0.27	0.21	0.19	0.09	0.16	0.12
bJES	0.15	0.08	0.35	0.57	0.13	0.44	0.25
MC	0.56	0.62	0.48	0.19	0.57	0.25	0.38
Rad	0.09	0.26	0.42	0.28	0.13	0.32	0.21
\Longrightarrow CR	0.21	0.31	0.31	0.48	0.23	0.43	0.31
PDF	0.09	0.22	0.15	0.07	0.12	0.09	0.09
DetMod	< 0.01	0.37	0.22	0.25	0.09	0.20	0.10
b-tag	0.04	0.09	0.66	0.11	0.04	0.22	0.11
LepPt	< 0.01	0.20	0.07	< 0.01	0.05	0.01	0.02
BGMC	0.10	0.16	0.06	0.11	0.11	0.08	0.10
BGData	0.15	0.19	0.06	0.03	0.12	0.04	0.07
Meth	0.07	0.15	0.08	0.07	0.06	0.06	0.05
MHI	0.08	0.05	0.02	0.06	0.06	0.05	0.04
Total Syst	0.85	1.25	1.40	0.99	0.82	0.92	0.71
Total	1.00	1.48	1.44	1.03	0.94	0.94	0.76
χ^2/ndf	1.09/3	0.13 / 1	0.34 / 1	1.15/2	2.45/5	1.81/4	4.33 / 10
χ^2 probability [%]	78	72	56	56	78	77	93

Overall theory error on world average mass: $\Delta m_t \simeq 0.54 \text{ GeV}$

Bottom-quark fragmentation in top decays is fundamental to perform trustworthy measurements of top properties, e.g. m_t

Monte Carlo event generators (HERWIG/PYTHIA) widely used to simulate top production and decay and b hadronization

Novel top-mass reconstruction strategies crucially depend on $b\to B$ transition: J/ψ and $m_{b\ell}$ methods

 $t \to bW$; $b \to B \to J/\psi X$; $J/\psi \to \mu^+\mu^-$; $W \to \ell\nu_\ell$

Clean signal (666 events at 8 TeV and $\mathcal{L} = 20 \text{ fb}^{-1}$), albeit $BR(B \to J/\psi) \simeq 3 \times 10^{-4}$; $m_{J/\psi\ell}$ correlated with m_t

 $\Delta m_t({
m syst}) \simeq 900$ MeV, with $\Delta m_t(b{-}{
m frag}) \simeq 300$ MeV

Invariant mass b-jet+lepton in dilepton channel - jets defined through anti- k_T algorithm, with R=0.5, $|\eta| < 2.4$, $p_T > 30$ GeV

 $\Delta m_t({
m syst}) \simeq 1.8$ GeV, with $\Delta m_t(b{-}{
m frag}) \simeq 0.6$ GeV

Several calculations and tools available for b-fragmentation in top decays, but not unique strategy for the systematic error: comparing two tuned codes/computations, one program varying fragmentation parameters, etc.

Top production and decays at hadron colliders, e.g. in $q\bar{q}$ annihilation

Perturbative QCD allows one to calculate the parton-level (*b*-quark) spectrum Phenomenological hadronization models are usually given in terms of non-perturbative fragmentation functions

$$\sigma(t \to WB) = \sigma(t \to Wb) \otimes D_{np}(b \to B)$$

 $D_{np}(b \rightarrow B)$ contains parameters to be fitted to experimental data Narrow-width approximation:

$$\frac{d\sigma_{\text{had}}}{dx_B}(t \to B) \simeq \frac{d\Gamma_{\text{had}}}{dx_B}(t \to B) \quad ; \quad \frac{d\Gamma_{\text{had}}}{dx_B}(t \to B) = \frac{d\Gamma_{\text{part}}}{dx_b}(t \to b) \otimes D_{np}(b \to B)$$

Top decays at NLO (neglecting interference)

$$\frac{1}{\Gamma_0}\frac{d\Gamma}{dx_b} = \delta(1-x_b) + \frac{\alpha_S(\mu)}{2\pi} \left[P_{qq}(x_b) \ln \frac{m_t^2}{m_b^2} + A(x_b) \right] + \mathcal{O}\left[\left(\frac{m_b}{m_t}\right)^p \right]$$

$$P_{qq}(x_b) = C_F \left(\frac{1+x_b^2}{1-x_b}\right)_+ \; ; \; \int_0^1 dx_b f(x_b) [g(x_b)]_+ = \int_0^1 dx_b [f(x_b) - f(1)] g(x_b)$$

Large mass logarithms need to be resummed

Perturbative fragmentation functions

B. Mele and P. Nason, NPB 361 (1991) 626

$$\frac{1}{\Gamma_0}\frac{d\Gamma}{dx_b}(x_b, m_b \neq 0) = \frac{1}{\Gamma_0}\sum_i \int_{x_b}^1 \frac{dz}{z}\frac{d\hat{\Gamma}_i}{dz}(z, m_i = 0, \mu_F)D_i\left(\frac{x_b}{z}, \mu_F, m_b\right) + \mathcal{O}\left[\left(\frac{m_b}{m_t}\right)^p\right]$$

 $D_i(x_b, \mu_F, m_b)$: perturbative fragmentation function (PFF)

$$\frac{1}{\Gamma_0}\frac{d\hat{\Gamma}_b}{dz} = \delta(1-z) + \frac{\alpha_S(\mu)}{2\pi} \left[P_{qq}(z) \left(-\frac{1}{\epsilon} + \gamma_E - \ln 4\pi \right) + \hat{A}(z) \right]$$

 $\overline{\mathrm{MS}}$ coefficient function:

$$\left(\frac{1}{\Gamma_0}\frac{d\hat{\Gamma}_b}{dz}\right)^{\rm MS} = \delta(1-z) + \frac{\alpha_S(\mu)}{2\pi}\hat{A}(z)$$

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dx_b}(m_b) = \left(\frac{1}{\Gamma_0} \frac{d\hat{\Gamma}_b}{dx_b}(m_b = 0)\right)^{\overline{\mathrm{MS}}} \otimes D_b^{\overline{\mathrm{MS}}}(m_b)$$

DGLAP equations for PFF's:

$$\frac{d}{d\ln\mu_F^2}D_i(x_b,\mu_F,m_b) = \sum_j \int_{x_b}^1 \frac{dz}{z} P_{ij}\left(\frac{x_b}{z},\alpha_S(\mu_F)\right) D_j(z,\mu_F,m_b)$$

Initial condition $D(x_b, \mu_{0F})$ is process-independent - at NLO:

$$D_b(x_b, \mu_{0F}, m_b) = \delta(1 - x_b) + \frac{\alpha_S(\mu_0)C_F}{2\pi} \left[\frac{1 + x_b^2}{1 - x_b} \left(\ln \frac{\mu_{0F}^2}{m_b^2} - 2\ln(1 - x_b) - 1 \right) \right]_+$$

$$\frac{dD_N(\mu_F, m_b)}{d\ln\mu_F^2} = \frac{\alpha_S(\mu_F)}{2\pi} \left[P_N^{(0)} + \frac{\alpha_S(\mu_F)}{2\pi} P_N^{(1)} \right] D_N(\mu_F, m_b)$$
$$D_N(\mu_F, m_b) = D_N(\mu_{0F}, m_b) \exp\left\{ \frac{P_N^{(0)}}{2\pi b_0} \ln \frac{\alpha_S(\mu_{0F})}{\alpha_S(\mu_F)} + \frac{\alpha_S(\mu_{0F}) - \alpha_S(\mu_F)}{4\pi^2 b_0} \left[P_N^{(1)} - \frac{2\pi b_1}{b_0} P_N^{(0)} \right] \right\}$$

$$D_N(\mu_F, m_b) = D_N(\mu_{0F}, m_b) \exp\left\{C_{1,0}\alpha_S(\mu_F) + C_{1,1}\alpha_S(\mu_F)\ln(\mu_F^2/\mu_{0F}^2) \dots + C_{n,n-1}\alpha_S^n(\mu_F)\ln^{n-1}(\mu_F^2/\mu_{0F}^2) + C_{n,n}\alpha_S^n(\mu_F)\ln^n(\mu_F^2/\mu_{0F}^2) + \dots\right\}$$

Resummation of LLs $\alpha_S^n \ln^n(\mu_F^2/\mu_{0F}^2)$ and NLLs $\alpha_S^n \ln^{n-1}(\mu_F^2/\mu_{0F}^2)$

 $\mu_{0F} \simeq m_b$ and $\mu_F \simeq m_t$: resummation of NLL $\ln(m_t^2/m_b^2)$ (collinear resummation)

Soft-gluon resummation $(x_b \rightarrow 1)$

$$t \to Wb \ g_1 \ g_2 \ \dots g_n \ ; \ 1 - z_i \to 0 \ ; \ z = \prod_i z_i$$

$$\underbrace{1 - z_1}_{0} \left(z_1 - z_2) \right)_{1 - z_1} \left(z_1 - z_2) \right)_{1$$

Factorization soft matrix element

$$\mathcal{M}^{\mu,a}(t \to bWg) \simeq g_s T^a \left(\frac{p_t^{\mu}}{p_t \cdot p_g} - \frac{p_b^{\mu}}{p_b \cdot p_g} \right) \mathcal{M}_0(t \to bW) \; ; \; \left| \mathcal{M}(z_1, \dots, z_n) \right|^2 = \frac{1}{n!} \Pi_i \left| \mathcal{M}(z_i) \right|^2$$

If one also has: $\Phi_n(z, z_1, \dots z_n) = \prod_i \Phi(z, z_i)$

$$\frac{d\sigma^R}{dz} = \sigma_0 \left\{ \delta(1-z) + \sum_{n=1}^{\infty} \frac{1}{n!} \left[\int_0^1 dz_i \, |\mathcal{M}(z_i)|^2 \, \Phi(z, z_i) \right]^n \right\} = \sigma_0 \exp\left\{ \int_0^1 dz_1 \, |\mathcal{M}(z_1)|^2 \, \Phi(z, z_1) \right\}$$

Virtual contributions from unitarity

$$\frac{d\sigma^V}{dz} = \sigma_0 \left\{ 1 - \int dx \frac{d\sigma^R}{dx} \right\} \delta(1-z)$$

Example of phase space factorization: $\int dz z^{N-1} \delta(z - z_1 z_2 \dots z_n) = z_1^{N-1} z_2^{N-1} \dots z_n^{N-1}$

Large-x radiation in top decays

Region $x_b \rightarrow 1$ corresponds to soft-gluon radiation

Bottom quark spectrum presents terms $1/(1-x_b)_+$ and $[\ln(1-x_b)/(1-x_b)]_+$

$$\frac{1}{(1-x_b)_+} \to \ln N \qquad \left[\frac{1}{1-x_b}\ln(1-x_b)\right]_+ \to \ln^2 N$$

$$\hat{\Gamma}_N(m_t,\mu,\mu_F) = 1 + \frac{\alpha_S(\mu)C_F}{2\pi} \left\{ 2\ln^2 N + \left[4\gamma + 2 - 4\ln(1-w) - 2\ln\frac{m_t^2}{\mu_F^2} \right] \ln N + K(m_t,\mu_F) + \mathcal{O}\left(\frac{1}{N}\right) \right\}$$

$$z = 1 - x_b$$
, $k^2 = (p_b + p_g)^2 (1 - z) = 2E_g^2 (1 - \cos \theta_{bg}) \simeq E_g^2 \sin^2 \theta_{bg}$

$$\Delta_N = \exp\left\{\int_0^1 dz \frac{z^{N-1}-1}{1-z} \int_{\mu_F^2}^{m_t^2(1-w)^2(1-z)^2} \left[\frac{dk^2}{k^2} A\left[\alpha_S(k^2)\right] + S\left[\alpha_S\left(m_t^2(1-w)^2(1-z)^2\right)\right]\right]\right\}$$

 $= \exp\left[\ln Ng_1 + g_2\right]$

$$A(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A^{(n)} \; ; \; S(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n S^{(n)}$$

 $g_1 \ln N \text{ resums LL } A^{(1)} : \alpha_S \ln^2 N, \alpha_S^2 \ln^4 N \dots \alpha_S^n \ln^{n+1} N$ $g_2 \text{ resums NLL } A^{(2)}, S^{(1)} : \alpha_S \ln N, \alpha_S^2 \ln^2 N \dots \alpha_S^n \ln^n N$

b-quark energy spectrum in top decay

 m_t =175 GeV, m_b =5 GeV, m_W =80.4 GeV ; $\mu_F=\mu=m_t$, $\mu_0=\mu_{0F}=m_b$; $\Lambda_{\overline{
m MS}}$ =200 GeV

Solid: soft and collinear resummation Dashes: only collinear resummation Dots: massive NLO without resummation Left: logarithmic scale; right: linear scale

Standard Monte Carlo generators for high-energy colliders

Figure by Frank Krauss

Hard $2 \rightarrow 2$ subprocess: leading-order (LO) matrix element Parton showers in the soft or collinear approximation Matrix-element corrections for hard and large-angle parton radiation Models for hadronization and underlying event POWHEG and MC@NLO: NLO $t\bar{t}$ production - approximations for NLO top decays

Parton shower algorithms

Multiple radiation in the soft or collinear approximation

$$p(E) \xrightarrow{f} p_{2}(E_{2}), z = \omega/E \qquad \qquad dP = \frac{\alpha_{S}}{2\pi} \hat{P}(z) dz \frac{dQ^{2}}{Q^{2}} \Delta_{S}(Q_{\max}^{2}, Q^{2})$$

$$Q^{2}: \text{ ordering variable}$$

 $\Delta_S(Q^2_{\max},Q^2)$ Sudakov form factor: no radiation in $[Q^2,Q^2_{\max}]$

$$\Delta_S(Q_{\max}^2, Q^2) = \exp\left[-\frac{\alpha_S}{2\pi} \int_{Q^2}^{Q_{\max}^2} \frac{dQ'^2}{Q'^2} \int_{z_{\min}}^{z_{\max}} dz \hat{P}(z)\right]$$

HERWIG : $Q^2 = E^2(1 - \cos \theta) \simeq E^2 \theta^2/2$ Soft approximation: angular ordering PYTHIA (up to 6.2 version): $Q^2 = p^2$ It includes angular ordering only by an additional veto

PYTHIA 6.3 and 8: $Q^2 = k_T^2$

Hard and large-angle radiation: matrix-element corrections Implemented for top decay, not for top production

Three-jet events at CDF:

 $E_{T1,2} > 100 \,\, {
m GeV} \,\,$; $E_{T,3} > 10 \,\, {
m GeV}$

Figure 10:

(Old-fashioned) matrix-element corrections for hard/large-angle radiation: implemented for top decay $t \rightarrow bW$, but not for production

HW: exact amplitude in the dead zone (t rest frame)

PY: exact matrix element corrects first emission

Still LO total cross section

Background: matching for W/Z+1 jet, crucial to agree with data(G.C. and M.H.Seymour)

Processes in MC@NLO or POWHEG: total cross section is NLO

Parton showers and resummation: iterating dP for multiple radiation:

$$dP_{1} = \frac{\alpha_{S}}{2\pi} dz_{1} \hat{P}(z_{1}) \frac{dQ_{1}^{2}}{Q_{1}^{2}}, \ dP_{2} = \frac{\alpha_{S}}{2\pi} dz_{2} \hat{P}(z_{2}) \frac{dQ_{2}^{2}}{Q_{2}^{2}} dP_{1}, \dots,$$

$$dP_{n} = dP_{n-1} \frac{\alpha_{S}}{2\pi} dz_{n} \hat{P}(z_{n}) \frac{dQ_{n}^{2}}{Q_{n}^{2}}$$

$$P_n \sim \alpha_S^n \int_{Q_0^2}^{Q^2} \frac{dQ_1^2}{Q_1^2} \int_{Q_0^2}^{Q_1^2} \frac{dQ_2^2}{Q_2^2} \dots \int_{\epsilon_1}^{1-\epsilon_1} dz_1 \hat{P}(z_1) \int_{\epsilon_2}^{1-\epsilon_2} dz_2 \hat{P}(z_2) \dots$$

Example: all $q \to qg$, $z \to 0$, $Q^2 \propto \theta^2 \to 0$

$$\hat{P}(z) = C_F \frac{1 + (1 - z)^2}{z} \simeq \frac{2C_F}{z}$$

Soft and collinear limit: resummation of double logarithms $\sim \alpha_S^n L^{2n}$

Soft or collinear limit: resummation of single logarithms $\sim \alpha_S^n L^n$

S. Catani, G. Marchesini and B.R. Webber, NPB 349 (1991) 635: HERWIG is equivalent to LL resummation, with the inclusion of some NLLs $(\Lambda_{\overline{\text{MS}}} \rightarrow \Lambda_{\text{MC}} = \Lambda_{\overline{\text{MS}}} \exp(4K\beta_0))$ Soft gluons off heavy quarks: dead-cone approximation $t(p_t) \rightarrow W(p_W)b(p_b)g(p_g)$ Eikonal factor after azimuthal average:

$$W_{tb} = \left(\frac{p_t}{p_t \cdot p_g} - \frac{p_b}{p_b \cdot p_g}\right)^2 \rightarrow \langle W_t \rangle \Theta(R_t) + \langle W_b \rangle \Theta(R_b) \quad ; \quad W_i = \frac{1}{2} - \frac{m_i^2}{2\xi_i^2 E_i^2} + \frac{\xi_{ij} - \xi_i}{2\xi_i \xi_j}$$

$$\xi_{tb} = \frac{p_t \cdot p_b}{E_t E_b} = 1 - v_t \cos \theta_{tb} \; ; \; \xi_t = \frac{p_t \cdot p_g}{E_t E_g} = 1 - v_t \cos \theta_t \; ; \; \xi_b = \frac{p_b \cdot p_g}{E_b E_g} = 1 - v_b \cos \theta_b$$

Dominant phase space: $v_b \cos \theta_{tb} < \cos \theta_t < v_t$ (R_t); $v_t \cos \theta_{tb} < v_b \cos \theta_b < 1$ (R_b)

Dead cone for $\theta < m_t/E_t \approx 15^\circ$

Hadronization: NP fragmentation functions and Monte Carlo models

 $D_{\rm K}(x,\alpha) = (1+\alpha)(2+\alpha)x(1-x)^{\alpha} \quad ; \quad D_{\rm P}(x,\epsilon) = \frac{N_P}{x\left[1 - \frac{1}{x - \epsilon}/(1-x)\right]}$

HERWIG: cluster model Perturbative evolution ends at $Q^2 = Q_0^2$ Angular ordering \Rightarrow colour preconfinement Forced gluon splitting $(g \rightarrow q\bar{q})$ Colour-singlet clusters decay into the observed hadrons

PYTHIA: string model

q and \bar{q} move in opposite direction

The colour field collapses into a string with uniform energy density

 $q\bar{q}$ pairs are produced

The string breaks into the observed hadrons

Possible interface with NP fragmentation functions

Tuning hadronic and perturbative parameters (Q₀, Λ_{MC} , m_q , ...) to e^+e^- data *b*-fragmentation is process independent, but pp is different from e^+e^- , because of ISR, pdfs, colour reconnection, etc.

Hadronization: hadrons can be formed via 'even' or 'odd' clusters: effects already studied at LEP for $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets M.L.Mangano, talk at TOP2013

 $m_t = (p_W + p_{b-jet})^2$: the *b*-jet may come from either an even or an odd cluster Colour reconnection can be investigated by varying relevant parameters in HERWIG and PYTHIA (so-called Perugia tunings) and affects the top mass about $\Delta m_t \leq 1$ GeV

Bottom-quark fragmentation at the Z^0 pole

LEP tuning of PYTHIA+Peterson used in $J/\psi + \ell$ analysis

Best-fit parameters not the same, e.g. $\epsilon_b = 0.0033$ (ALEPH), 0.0055 (SLD); $\alpha_K = 11.9$ (OPAL), 13.7 (ALEPH), 10.0 (SLD)

Monte Carlo tuning:
$$e^+e^- \to Z^0 \to b\bar{b} \to BX_{\bar{b}}$$
 $x_B = \frac{2p_B \cdot p_Z}{m_Z^2} = \frac{2E_B}{m_Z}$

(G. C. and V. Drollinger)

HERWIG	PYTHIA
CLSMR(1) = 0.4 (0.0)	
CLSMR(2) = 0.3 (0.0)	PARJ(41) = 0.85 (0.30)
DECWT = $0.7 (1.0)$	PARJ(42) = 1.03 (0.58)
CLPOW = 2.1 (2.0)	PARJ(46) = 0.85 (1.00)
$PSPLT(2) = 0.33 \ (1.00)$	
$\chi^2/{ m dof} = 222.4/61$ (739.4/61)	$\chi^2/{ m dof} =$ 45.7/61 (467.9/61)

Lund/Bowler fragmentation function : f_B

$$g(z) \propto rac{1}{z^{1+brm_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

Comparing tuned HERWIG and PYTHIA and resummed calculations

NLO+NLL+Kart.: M.Cacciari and S.Catani, NPB617 (2001) 253-290

Best fit $(0.18 \le x_B \le 0.94)$: $\alpha = 17.178 \pm 0.303$, $\chi^2/dof = 46.2/53$ Reliability of perturbative calculation: $x_b < 1 - \Lambda/m_b \simeq 0.95$

B-hadron spectrum in top decays:

Mild dependence on the top mass in both HERWIG and PYTHIA:

Discussion with CMS/ATLAS folks: x_B hard to measure experimentally

B-lepton invariant mass according to tuned HERWIG and PYTHIA (G.C. and F. Mescia)

Linear fits to extract m_t from $m_{B\ell}$

 HERWIG: $\langle m_{B\ell} \rangle_{\rm H} \simeq -25.31 \text{ GeV} + 0.61 m_t$; $\delta = 0.043 \text{ GeV}$

 PYTHIA: $\langle m_{B\ell} \rangle_{\rm P} \simeq -24.11 \text{ GeV} + 0.59 m_t$; $\delta = 0.022 \text{ GeV}$

 NLO: $\langle m_{B\ell} \rangle_{\rm NLO} \simeq -26.7 \text{ GeV} + 0.60 m_t$; $\delta = 0.004 \text{ GeV}$

S.Biswas, K.Melnikov and M.Schulze, JHEP 1008 (2010): $m_{B\ell}$ at NLO using NLO+(N)LL fit (G.C. and A.Mitov)

 $\Delta \langle m_{B\ell} \rangle_{\rm H,P} \simeq 1.2 \text{ GeV}$; $\Delta \langle m_{B\ell} \rangle_{\rm H,NLO} \simeq 2.2 \text{ GeV}$; $\Delta \langle m_{B\ell} \rangle_{\rm P,NLO} \simeq 1.1 \text{ GeV}$ NLO+showers for top decays or C++ codes may shed light on this discrepancy

Results in moment space

$$\Gamma_N = \int_0^1 dz \ z^{N-1} \frac{1}{\Gamma} \frac{d\Gamma}{dz}(z)$$

 e^+e^- annihilation $\sigma^B_N=\sigma^b_N D^{np}_N$

 σ^B_N measured ; σ^b_N calculated ; D^{np}_N fitted

top decay: $\Gamma^B_N = \Gamma^b_N D^{np}_N = \Gamma^b_N \sigma^B_N / \sigma^b_N$

Fits [·]	to	DELPHI	data	in	moment	space
-------------------	----	--------	------	----	--------	-------

	$\langle x \rangle$	$\langle x^2 \rangle$	$\langle x^3 \rangle$	$\langle x^4 \rangle$
e^+e^- data σ^B_N	0.7153±0.0052	$0.5401 {\pm} 0.0064$	$0.4236 {\pm} 0.0065$	0.3406 ± 0.0064
e^+e^- NLL σ^b_N	0.7801	0.6436	0.5479	0.4755
D_N^{np}	0.9169	0.8392	0.7731	0.7163
e^+e^- HW σ^B_N	0.7113	0.5354	0.4181	0.3353
e^+e^- PY σ^B_N	0.7162	0.5412	0.4237	0.3400
t -dec. NLL Γ^b_N	0.7883	0.6615	0.5735	0.5071
t -dec. NLL $\Gamma^B_N = \Gamma^b_N D^{ m np}_N$	0.7228	0.5551	0.4434	0.3632
t -dec. HW Γ^B_N	0.7325	0.5703	0.4606	0.3814
t -dec. PY Γ^B_N	0.7225	0.5588	0.4486	0.3688

Invariant mass $m_{b\ell}$ using MadGraph+PYTHIA (LO) and MCFM (LO or NLO)

B branching fractions

Color reconnection

Underlying event

scale_{NNLO normalization}

PDF_{NNLO normalization}

 $\alpha_S(M_Z)$ variation

Total uncertainty

 m_h variation

PDF_{MC}

scale_{MCFM}

PDF_{MCFM}

ME generator

 $^{+0.07}_{-0.02}$

-0.73 + 0.73

 $^{+0.22}_{-0.22}$

-0.10

+0.21

+0.20

-0.08

+0.85

-0.88 +0.66

-0.67

+1.85

-1.83

-0.05

+0.05

-1.16

+1.16

+0.19

-0.19

-0.14

+0.14

+0.25

-0.15

+1.65 -1.71

+1.27

-1.30

+3.45

-3.43

+0.20

-0.10

-0.19

+0.19

+0.12

-0.12

-0.24

+0.14

+0.20

-0.06

< 0.01

< 0.01

+1.29

-1.33

+0.18

-0.10

-0.10

+0.10

+0.12

-0.12

-0.24

+0.14

+0.09

-0.02

+0.05

-0.03

-0.02

+0.03

< 0.01

< 0.01

+1.04

-1.08

+0.17

-0.10

-0.08

+0.08

+0.12

-0.12

-0.24

+0.14

+0.04

-0.03

+0.04

-0.09

-0.01

+0.01

< 0.01

< 0.01

+1.02

-1.11

Methods on the top mass reconstruction relying on *b*-quark fragmentation Final states with leptons and J/ψ : invariant mass $\ell + J/\psi$ yields m_t

Fragmentation uncertainty: PYTHIA tunings vs. $\langle p_T(B) \rangle / \langle p_T(b-jet) \rangle$

 $\Delta m_t(b-\text{frag}) \simeq 300 \text{ MeV}$; $\Delta m_t(\text{col.rec.}) \simeq 120 \text{ MeV}$; $\Delta m_t(\text{UE}) \simeq 130 \text{ MeV}$

C++ generators for *b*-quark fragmentation in e^+e^- annihilation (mcplots.cern.ch)

Discrepancies call for tuning hadronization models

Other attempts to address *b*-fragmentation: run HERWIG with top-hadron states

Pretend that top quarks hadronize and decay via the spectator model

Study the same observable R with T-hadrons and standard top samples and, e.g., compare the extracted masses : $m_{t,T}^{MC} = m_t^{MC} + \Delta m_{t,T}$

In the hadronized samples, the Monte Carlo mass can be related to the T-meson mass M_T and ultimately to the pole or $\overline{\text{MS}}$ top-quark masses by using lattice, potential models, NRQCD, etc.

Spectator model decays: $T^- \to (\bar{b}d)\ell^- \bar{\nu}_\ell + X \dots p_T^2 = (p_{\bar{b}} + p_W + p_q + p_X)^2$

Spectator does not radiate, few events where the b quark does not emit

 \overline{b} tends to form clusters with spectator quarks with invariant mass closer to $(p_T - p_W)^2$ with respect to standard top decays

pp collisions at $\sqrt{s} = 8$ TeV, dilepton channel, k_T algorithm, R = 0.7, $p_{T,j} > 30$ GeV, $p_{T,\ell} > 20$ GeV, MET> 20 GeV, $|\eta_{j,\ell,\nu}| < 2.5$ (HERWIG 6.510, preliminary)

In progress: relate $\langle \Delta m_{jl,Bl} \rangle$ with $\Delta m_{t,T}$ and using PYTHIA

 ${\sf Perspectives} \ in \ {\sf NLO+shower} \ codes$

POWHEG: top production in pp collisions at NLO, $e^+e^- \rightarrow q\bar{q}$ (fundamental to tune hadronization) implemented, not yet public

NLO corrections to top decays in POWHEG are available, with approximate treatment of top width, but turned off in default version (work in progress)

Off-shell effects: 1) Breit–Wigner reweighting; 2) reweighting by the ratio of doubleresonant (DR) and LO amplitude; 3) DR method and reweighting by ratio of full off-shell/on-shell Born matrix elements

aMC@NLO: NLO e^+e^- and hadronic top production for stable top quarks

No full NLO corrections to top decays, but finite-width effects available, for single-top production including both resonant and non-resonant (non-top) diagrams

Off-shellness impact competitive with NLO corrections to top decays

Code for $pp \rightarrow b\bar{b}\ell^+\nu_\ell\ell^-\bar{\nu}_\ell$ including resonant and non-resonant (non-top) diagrams soon available

Interest by the authors of NNLO exclusive top decays (J.Gao et al.'12, F.Caola et al.'12) to include *b*-fragmentation at NNLO, but not straightforward (NNLO perturbative fragmentation functions available in the $\overline{\text{MS}}$ factorization scheme)

Conclusions and outlook

Bottom fragmentation in top decays as a source of uncertainty in the measurement of the top properties in inclusive and exclusive analyses $(J/\psi + \ell, m_{b\ell}, ...)$

LO+shower codes and NLO+NLL calculations for $b\mbox{-}fragmentation,$ tuning hadronization models to e^+e^- data

Predictions for top decays yielded by the different codes exhibit some discrepancies, mostly driven by unsatisfactory tunings

Preliminary results with object-oriented codes exhibit better description of b-fragmentation in e^+e^- collisions after the tuning

Comparison with resummed calculations, matched with fixed order, can be useful to validate event generation

Precise computations for top production and decay are increasingly necessary in view of LHC Run II

Simulation of fictitious top-hadron states may represent a useful benchmark to address the uncertainty on the top mass (MC vs pole mass) and bottom fragmentation