Fun with Renormalization and Regularization

Dominik Stöckinger

TU Dresden

Seminar, Vienna, May 2016

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

 DREG, FDH and DRED: Consistency, UV and IR properties

[Gnendiger, Signer, DS; Broggio, Gnendiger, Signer, DS, Visconti;

DS, Unger (preliminary)]

Renormalization of VEVs [Sperling, DS, Voigt]

< ロ > < 同 > < 回 > < 回 >

Outline

- Precise definitions of all schemes possible
- puzzles can be resolved
- Simple point of view for DRED understand IR structure
- Is DRED supersymmetric???

2 Renormalization of VEVs

3 Conclusions

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ DREG $\int_{|p| < \Lambda} d^4 p$ $\mu^{4-D} \int d^D p$

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ $\int_{|p|<\Lambda} d^4p$

• Choice of regularization is unphysical

- ₹ 3 →

< 17 ▶

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ $\int_{|p|<\Lambda} d^4p$

• Choice of regularization is unphysical

Unitarity/causality determine physics

• e.g. anomaly/breaking of scale invariance

DREG $\mu^{4-D} \int d^D p$

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ $\int_{|p|<\Lambda} d^4p$

• Choice of regularization is unphysical

- Unitarity/causality determine physics
- e.g. anomaly/breaking of scale invariance
- regularization must be consistent with unitarity/causality (proven for DREG: [Speer '74][Breitenlohner, Maison '77], equivalence of DRED, no inconsistency: [Jack, Jones, Roberts '94][DS '05])

DREG $\mu^{4-D} \int d^D p$

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ DREG $\int_{|p| < \Lambda} d^4 p$ $\mu^{4-D} \int d^D p$

History: puzzles, problems

- DREG breaks SUSY
- "DRED is mathematically inconsistent [Siegel '80]"
- "DRED has IR factorization problem [van Neerven, Smith, et al '88 and '05][Zerwas et al]
- "No DRED IR factorization problem found [Kunszt, Signer, Trocsanyi '94; Catani et al '97]"
- "DRED violates unitarity ['t Hooft, van Damme '84]"
- "Some published results therefore wrong [Harlander, Kant, Mihaila, Steinhauser '06; Kilgore '11]"

ロト (得) (ヨト (ヨト

Regularization necessary to define QFT at the quantum level

cutoff-scale Λ $\int_{|p|<\Lambda} d^4p$

$$\mu^{4-D} \int d^D p$$

・ロト ・同ト ・ヨト ・ヨト

Aims:

- resolve inconsistencies, study symmetry properties of schemes
- today: consistent definitions of DREG, DRED, FDH; IR relations; SUSY breaking of DRED(?)

Definitions/explicit construction

- <u>4S:</u> ordinary 4-dimensional Minkowski/momentum space, metric $ar{g}^{\mu
 u}$
- <u>QDS:</u> "*D*-dimensional space" [Wilson'73],[Collins] := truly ∞ -dimensional space with some *D*-dim characteristics:
 - *D*-dimensional Integral = linear mapping $\int d^D k e^{-k^2} = \pi^{D/2}$ • $g^{\mu\nu}_{(D)}$: bilinear form $\mu = 0, 1, 2, \dots \infty, \quad g_{(D)}{}^{\mu}{}_{\mu} = D$
 - γ -matrices similar

$Q2\epsilon S$: " 2ϵ -dimensional space" analogous

<u>Q4S:</u> "quasi-4-dimensional space" Q4S := QDS \oplus Q2 ϵ S

hierarchy of spaces $4S \subset QDS \subset Q4S$ [DS '05]

although $\mu = 0, 1, 2, \dots \infty$, useful relations hold, e.g.

$$g^{\mu
u} = g^{\mu
u}_{(D)} + g^{\mu
u}_{(2\epsilon)}, \qquad g^{\mu}{}_{\mu} = 4, \qquad g^{\mu
u} k_{(D)
u} = k^{\mu}_{(D)}$$

How does Q4S avoid Siegel's inconsistency? Siegel: "With

$$\epsilon^{(4)}_{\mu_1\mu_2\mu_3\mu_4}\epsilon^{(4)}_{\nu_1\nu_2\nu_3\nu_4}\propto \det((g^{(4)}_{\mu_i\nu_j}))$$

calculate

$$\epsilon^{(D)\mu\nu\rho\sigma} \epsilon^{(\epsilon)}{}_{\alpha\beta\gamma\delta} \epsilon^{(D)}{}_{\mu\nu\rho\sigma} \epsilon^{(\epsilon)\alpha\beta\gamma\delta}$$

in two different ways

$$\Rightarrow 0 = D(D-1)^2(D-2)^2(D-3)^2(D-4)$$

different calculational steps lead to different results,

mathematical inconsistency!!!"

[Siegel'80]

< ロ > < 同 > < 三 > < 三 >

Don't allow explicit index counting (step one) any more, because $g^{(4)}{}_{\mu
u}\in$ quasi-4-dim space!

Define four commonly used schemes [Signer, DS '08]

Q4S=QDS \oplus Q2 ϵ S, $g^{\mu\nu} = \hat{g}^{\mu\nu} + \tilde{g}^{\mu\nu}$

• difference: internal and/or external gauge fields

Define four commonly used schemes [Signer, DS 108]

Q4S=QDS
$$\oplus$$
Q2 ϵ S, $g^{\mu\nu} = \hat{g}^{\mu\nu} + \tilde{g}^{\mu\nu}$

- difference: internal and/or external gauge fields
- Note: van Neerven, Smith, Zerwas et al used DRED, Kunszt, Signer, Trocsanyi, Catani et al used DR=FDH⇒ resolves half of factorization problem

Define four commonly used schemes [Signer, DS '08]

Q4S=QDS
$$\oplus$$
Q2 ϵ S, $g^{\mu
u}=\hat{g}^{\mu
u}+\tilde{g}^{\mu
u}$

- difference: internal and/or external gauge fields
- Note: van Neerven, Smith, Zerwas et al used DRED, Kunszt, Signer, Trocsanyi, Catani et al used DR=FDH⇒ resolves half of factorization problem
- focus first on UV: CDR=HV \equiv DREG, FDH=DRED

Dim. Regularization (DREG) D dimensions D Gluon/photon-components 4 Gluino/photino-components

$$\hat{\gamma}^{\mu}\hat{\gamma}^{
ho}\boldsymbol{p}_{
ho}\hat{\gamma}_{\mu}=(2-D)\hat{\gamma}^{
ho}\boldsymbol{p}_{
ho}$$

Dim. Regularization (DREG) D dimensions D Gluon/photon-components 4 Gluino/photino-components

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

$$\hat{\gamma}^{\mu}\hat{\gamma}^{
ho}\boldsymbol{p}_{
ho}\hat{\gamma}_{\mu}=(\mathbf{2}-\mathbf{D})\hat{\gamma}^{
ho}\boldsymbol{p}_{
ho}$$

Dim. Regularization (DREG)

- D dimensions
- D Gluon/photon-components
- 4 Gluino/photino-components

SUSY broken, need SUSY-restoring counterterms

$$ar{\gamma}^{\mu}\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}ar{\gamma}_{\mu}=2ar{\gamma}^{
ho}oldsymbol{p}_{
ho}-4\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}$$

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

$$\begin{array}{c}
\hat{g} + \tilde{g} \quad \hat{g} + \tilde{g} \\
\hat{g} + \tilde{g} \\
\hat{g} + \tilde{g} \\
\text{DRED}
\end{array}$$

$$ar{\gamma}^{\mu}\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}ar{\gamma}_{\mu}=2ar{\gamma}^{
ho}oldsymbol{p}_{
ho}-4\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}$$

complicated; no D-dim. gauge covariant derivative possible

$$ar\gamma^\mu \hat\gamma^
ho p_
ho ar\gamma_\mu = 2 ar\gamma^
ho p_
ho - 4 \hat\gamma^
ho p_
ho$$

complicated; no *D*-dim. gauge covariant derivative possible sometimes used in literature, e.g. for chiral anomaly [Anselmi '14]

FDH/DRED (use Q4S)

D dimensions

- 4 Gluon/photon-components
- 4 Gluino/photino-components

 $+ \tilde{a}$

$$\gamma^{\mu}\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}\gamma_{\mu}=(2-4)\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}$$

FDH/DRED (use Q4S) D dimensions

- D ulliterisions A Gluon/photon-compo
- 4 Gluon/photon-components
- 4 Gluino/photino-components

$$\gamma^{\mu}\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}\gamma_{\mu}=(2-4)\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}$$

FDH/DRED (use Q4S)

- D dimensions
- 4 Gluon/photon-components
- 4 Gluino/photino-components

simple; D-dim gauge invariance holds

$$\gamma^{\mu}\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}\gamma_{\mu}=(2-4)\hat{\gamma}^{
ho}oldsymbol{p}_{
ho}$$

FDH/DRED (use Q4S)

- **D** dimensions
- 4 Gluon/photon-components
- 4 Gluino/photino-components

simple; *D*-dim gauge invariance holds Lorentz invariance only in *D*-dim; not in full Q4S

Summary regarding UV regularization:

- CDR and HV only need QDS, simpler but break SUSY
- FDH and DRED require Q4S to preserve gauge invariance

Common formulation of FDH (Bern, Dixon, Freitas; Kilgore, ...):

• " $4 < D < N_s$, internal gluons are N_s -dim.; at the end $N_s = 4$ "

Important complication: Renormalization in FDH/DRED

• ϵ -scalars not "protected" by gauge invariance

$$D^{\mu} = \hat{\partial}^{\mu} + igA^{\mu} = \hat{\partial}^{\mu} + ig\hat{A}^{\mu} + ig\tilde{A}^{\mu}$$
4-component Gluon in DRED $g = D$ -component gauge field \hat{g} + ϵ -scalars \tilde{g}

 α_s
 α_s
 α_s
 α_s
 α_{ϵ}

Different couplings,
especially $\delta\alpha_s \neq \delta\alpha_e, \beta^s \neq \beta^e, \dots$
Distinction required, otherwise
divergent/non-unitary results
Jack, Jones, Roberts '94|[Harlander, Kant, Mihaila, Steinhauser

'06][Kilgore '11]

FDH or DRED

$$\updownarrow$$

HV or CDR of theory with new, ϵ -scalar of
multiplicity $N_{\epsilon} = 2\epsilon$ with independent couplings

This point of view also allows to understand IR structure in these schemes

(ロ) (四) (三) (三)

1-loop CDR | 1-loop FDH,DRED

2-loop CDR 2-loop FDH, DRED

soft/soft-collinear:

$$\propto \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left(\frac{\gamma^{\mathsf{cusp}}}{4\epsilon^{2}} + \frac{\gamma^{\mathsf{cusp}}}{2\epsilon} \frac{1}{2} \ln \frac{\mu^{2}}{-s_{ij}} \right)$$

< 🗇 🕨

< ∃ >

collinear:

 $\propto rac{1}{2\epsilon}$

A >

-∃= >⊧

soft/soft-collinear:

$$\propto \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left(\frac{\gamma^{\mathsf{cusp}}}{4\epsilon^{2}} + \frac{\gamma^{\mathsf{cusp}}}{2\epsilon} \frac{1}{2} \ln \frac{\mu^{2}}{-s_{ij}} \right)$$

$$\propto \mathbf{T}_{j} \cdot \mathbf{T}_{j} \left(\frac{\gamma}{4\epsilon^{2}} + \frac{\gamma}{2\epsilon} \frac{1}{2} \ln \frac{\mu}{-s_{ij}} \right) \qquad \qquad \propto \frac{\gamma}{2\epsilon}$$

CDR: Three constants describe all IR divergences $\gamma_{cusp}^{CDR} = \frac{\alpha_s}{4\pi} (4) \qquad \gamma_q^{CDR} = \frac{\alpha_s}{4\pi} (-3 C_F) \qquad \gamma_g^{CDR} = \frac{\alpha_s}{4\pi} \left[-\frac{11}{3} C_A + \frac{2}{3} N_F \right]$

・ロト ・同ト ・ヨト ・ヨト

Side remark about real corrections

< A

FDH: Three constants γ_{cusp} , γ_q , γ_g describe all IR divergencesadditional virtual state \tilde{g} : values of γ 's change[Kunszt, Signer, Trocsanyi '94][Catani, Seymour, Trocsanyi '97]

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

split $g = \hat{g} + \tilde{g}$ required to understand factorization (solves "problem" of [Beenakker, Kuijf, v Neerven, Smith '88][v Neerven, Smith '04])

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

Apply in practice to calculation of \mathcal{M}^{1-loop}

understand IR structure:

< 同 > < 三 > < 三 >
Apply in practice to calculation of \mathcal{M}^{1-loop}

understand IR structure:

< 同 > < 三 > < 三 >

 \downarrow

Apply in practice to calculation of \mathcal{M}^{1-loop}

Apply in practice to calculation of $\mathcal{M}^{1-\text{loop}}$

"Factorization problem" of van Neerven, Smith, et al was: expected r.h.s.= $\ldots + \frac{\gamma_g^{\text{DRED}}}{2\epsilon} \mathcal{M}_{\text{tree}}^{\text{DRED}}(\ldots g \ldots)$

< 同 > < 回 > < 回 > -

Apply in practice to calculation of $\mathcal{M}^{1-\text{loop}}$

Remainder: finite, regularization-independent \mathcal{M}_{fin} \Rightarrow can simply translate between schemes

4 E 5 4 E 5

1-loop CDR1-loop FDH,DRED2-loop CDR2-loop FDH,DRED

It works similarly

- PhD theses C. Gnendiger, A. Visconti
- [Gnendiger, Signer, DS '14][Broggio, Gnendiger, Signer, DS, Visconti PLB '15, JHEP '15]

< ロ > < 同 > < 回 > < 回 >

Key insight: All IR divs \longrightarrow factor **Z**, **Z**⁻¹ $|A\rangle$ =fin.

[Gardi, Magnea '09] [Becher, Neubert '09]

イロト イポト イラト イラト

2nd insight [valid at least up to 2-loop order]

$$\Gamma = \sum_{(ij)} \frac{\mathbf{T}_i \cdot \mathbf{T}_j}{2} \gamma^{\text{cusp}} \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i$$

Changes in FDH and DRED: Same structure ... but the γ 's change and everything depends on α_s , α_e , $\alpha_{4\epsilon}$

Is DRED supersymmetric???

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

(ロ) (四) (三) (三)

Slavnov-Taylor id. and Quantum Action Principle

Slavnov-Taylor identities: desired identities for Green functions

$$\mathbf{0} = \delta_{\rm sym} \langle T\phi_1 \dots \phi_n \rangle = \langle T(\delta_{\rm sym}\phi_1) \dots \phi_n \rangle + \dots$$

Regularized Quantum Action Principle

$$i \,\delta_{\mathrm{sym}} \langle T\phi_1 \dots \phi_n \rangle^{\mathrm{reg}} = \langle T\phi_1 \dots \phi_n \Delta \rangle^{\mathrm{reg}}, \quad \Delta = \int d^D x \delta_{\mathrm{sym}} \mathcal{L}^{\mathrm{reg}}$$

•

э

Proofs for particular regularizations:

 BPHZ
 [Lowenstein et al '71]

 DREG
 [Breitenlohner, Maison '77]

 DRED
 [DS '05]

\rightsquigarrow can check whether STI is valid on regularized level

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

Further explicit checks of SUSY in DRED?

Status: many SUSY identities checked in DRED:

[Capper,Jones,van Nieuvenhuizen'80] [Martin, Vaughn '93] [Jack, Jones, North '96] [Beenakker,Höpker,Zerwas'96] [Hollik,Kraus,DS'99] [Hollik,DS'01] [Fischer,Hollik,Roth,DS'03] [Harlander,Kant,Mihaila,Steinhauser'07]

- sufficient for many SUSY processes
 ⇒ multiplicative renormalization o.k.
 ⇒ no SUSY-restoring counterterms
- but not all identities have been checked e.g. two-loop Higgs mass calculations:
 ⇒ SUSY-restoring counterterms required?

Higgs boson mass and quartic coupling

Higgs mass

- *M_h* governed by quartic Higgs self coupling λ
- $\lambda \propto g^2$ in MSSM

 $0 \stackrel{?}{=} \delta_{SUSY} \langle hhh\tilde{H} \rangle$

Dominik Stöckinger Renormalization of VEVs. IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

• expresses $\lambda \propto g^2$ Needs to be verified

< A >

- H - N

•

explicit:
$$0 = \frac{\delta^5 S(\Gamma)}{\delta \phi_a \delta \phi_b \delta \phi_c \delta \tilde{H} \delta \bar{\epsilon}} = \Gamma_{\tilde{H}Y_{\phi_i} \bar{\epsilon}} \Gamma_{\phi_a \phi_b \phi_c \phi_i} + \Gamma_{\phi_a \phi_b Y_\lambda \epsilon} \Gamma_{\phi_c \tilde{H} \lambda} + \dots$$

< A >

$$0\stackrel{?}{=}\delta_{SUSY}\langle hhh ilde{H}
angle$$

Slavnov-Taylor identity

- expresses $\lambda \propto g^2$
- Needs to be verified

If verified:

- Usual, multiplicative renormalization o.k.
- otherwise, SUSY-restoring counterterms would have to be added

Slavnov-Taylor identity

- expresses $\lambda \propto g^2$
- Needs to be verified

Strategy:

• Use quantum action principle in DRED [DS '05]

 $0 \stackrel{?}{=} \delta_{\rm SUSY} \langle hhh \tilde{H} \rangle \equiv \langle \Delta hhh \tilde{H} \rangle$

Slavnov-Taylor identity

- expresses $\lambda \propto g^2$
- Needs to be verified

Strategy:

- Use quantum action principle in DRED [DS '05]
- $\delta_{SUSY} \langle hhh\tilde{H} \rangle = \langle \Delta hhh\tilde{H} \rangle$ where $\Delta = \delta_{SUSY} \int d^D x \mathcal{L}$

 $0 \stackrel{?}{=} \delta_{\rm SUSY} \langle hhh \tilde{H} \rangle \equiv \langle \Delta hhh \tilde{H} \rangle$

 Old check: STI at 2-loop $\mathcal{O}(\alpha_{t,b}^2, \alpha_{t,b}\alpha_s)$ [Hollik, DS '05] $\langle \Delta hhh\tilde{H} \rangle = 0 \Leftrightarrow$

Ingredients:

- structure of possible SUSY-restoring c.t. \Rightarrow can set $p_{h_i} = 0$
- can simplify closed fermion loop to at most three γ -matrices
- recipe of [DS '05] then proves result

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH Regularization: DREG, FDH, DRED: UV, IR

Outlook:

- check complete two-loop, three-loop (?)
- check further, relevant STIs

Outline

Regularization: DREG, FDH, DRED: UV, IR

Renormalization of VEVs

- Why interesting? Definitions of VEV
- Essential point: relation to gauge fixing
- Investigate in detail: extended BRS/STI
- Results and insights

3 Conclusions

Renormalization: which counterterms are necessary?

Other questions: physical meaning of renormalized theory, unitarity/symmetries of physical S-matrix, absense of anomalies...

Renormalization of VEVs, IR structure in FDH

Dominik Stöckinger

Renormalization of VEVs

< 同 > < 三 > < 三

Higgs vacuum

What is the VEV v and its physical properties?

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Renormalization of VEVs

★ ∃ >

Renormalization of VEVs

Higgs/spontaneously broken gauge invariance:

$$\phi \rightarrow \phi + \mathbf{V}$$

such that $\langle \phi \rangle = 0$, i.e. tadpoles vanish Need to renormalize:

$$\phi \rightarrow \sqrt{Z}\phi, \quad \mathbf{v} \rightarrow \mathbf{v} + \delta \mathbf{v}$$

Renormalization of VEVs, IR structure in FDH

- E - N

 δv appears in/is needed for:

• δv in loop calculations:

$$M_{W} = gv/2, \qquad \rightarrow \delta M_{W} = \delta gv/2 + g\delta v/2,$$

$$\tan \beta = \frac{v_{u}}{v_{d}}, \qquad \rightarrow \delta \tan \beta = \left(\frac{\delta v_{u}}{v_{u}} - \frac{\delta v_{d}}{v_{d}}\right) \tan \beta$$

• β_{v} , $\beta_{\tan\beta}$ in spectrum generators (Softsusy, SPheno, FlexibleSUSY, Sarah)

Aim: better understanding of δv , general computation

Could get δv from e.g. $\delta M_W \rightarrow$ no insight.

< 🗇 > < 🖻 > <

Details and questions

Most generic renormalization transformation:

$$(\phi + \mathbf{v}) \rightarrow \sqrt{Z}\phi + \mathbf{v} + \delta\mathbf{v}$$

or $(\phi + \mathbf{v}) \rightarrow \sqrt{Z}(\phi + \mathbf{v} + \delta\bar{\mathbf{v}})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{v}$ characterizes to what extent v renormalizes differently from ϕ .

- A - De - N-

Details and questions

Most generic renormalization transformation:

$$(\phi + \mathbf{v}) \rightarrow \sqrt{Z}\phi + \mathbf{v} + \delta\mathbf{v}$$

or $(\phi + \mathbf{v}) \rightarrow \sqrt{Z}(\phi + \mathbf{v} + \delta\bar{\mathbf{v}})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{v}$ characterizes to what extent v renormalizes differently from ϕ .

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- \Im_{β_v} and applications.

Details and questions

Most generic renormalization transformation:

$$(\phi + \mathbf{v}) \rightarrow \sqrt{Z}\phi + \mathbf{v} + \delta\mathbf{v}$$

or $(\phi + \mathbf{v}) \rightarrow \sqrt{Z}(\phi + \mathbf{v} + \delta\bar{\mathbf{v}})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{v}$ characterizes to what extent v renormalizes differently from ϕ .

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- \Im_{β_v} and applications.

Idea:

- $\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$
- compute $\delta \hat{Z}$ (using STI)

Current status for RGE coefficients

needed by SUSY spectrum generators (Spheno, Softsusy, SuseFlav, FlexibleSUSY, Sarah)

	Model	β (phys. parameter)	γ (fields)	
	\forall gauge theory \forall SUSY model	 ✓ [Machacek, Vaughn '83, Luo et al '03] ✓ [Martin, Vaughn; Jack, Jones; Yamada '93] 	✓ ✓ partially	
Note ir	ר SUSY: $\gamma($ scalar in WZ	Zgauge+Landau or R $_{\xi}$ gauge $) eq\gamma($ superfield	d) $\stackrel{?}{=} \gamma($ light cone gaug	Je)

Model	$\beta_{V}^{(1)}$	$\beta_v^{(2)}$
MSSM	[Chankowski Nucl.Phys. B423]	🖌 [Yamada 94] $O(g^2Y^2)$
E ₆ SSM	[Athron, DS, Voigt '12]	×
\forall gauge theory	?	×
∀ SUSY model	?	×

(3)

Here: fill the gaps

Meaning of running v, alternative treatment

- Fix renormalization scale μ , renormalize in $\overline{\text{MS}}/\overline{\text{DR}}$ -scheme
- adjust v such that tadpoles $\langle \phi \rangle = 0$

 \Rightarrow v= minimum of renormalized effective scalar potential at scale μ

- Change μ
- change parameters, including v, according to β functions
- all Green functions unchanged, including $\langle \phi
 angle = 0$

 \Rightarrow Minimum v of renormalized effective scalar potential is μ -dependent and gauge dependent \Rightarrow not an observable

< 回 > < 三 > < 三 >

Meaning of running v, alternative treatment

- Fix renormalization scale μ , renormalize in $\overline{\text{MS}}/\overline{\text{DR}}$ -scheme
- adjust v such that tadpoles $\langle \phi \rangle = 0$

 \Rightarrow v= minimum of renormalized effective scalar potential at scale μ

- Change μ
- change parameters, including v, according to β functions
- all Green functions unchanged, including $\langle \phi
 angle = 0$

 \Rightarrow Minimum v of renormalized effective scalar potential is μ -dependent and gauge dependent \Rightarrow not an observable

Very different treatment of v possible,

e.g. [Jegerlehner, Kalmykov, Kniehl '13][Bednyakov, Pikelner, Velizhanin '13]

- always define v_{bare} = Minimum of bare scalar potential
- then *v*_{bare}=abbreviation of combination of bare parameters
- In this scheme, δν, δM_W, δ tan β=gauge independent, but tadpoles are divergent (physical quantities unchanged)

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- (a) β_v and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{Z}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- \bigcirc β_v and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

2001: A: "MSSM:
$$\frac{\delta \overline{v}_d}{v_u} - \frac{\delta \overline{v}_d}{v_d}$$
 =finite!"
B: "Why?"
A: ???

- E - N

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- $\Im_{\beta_{v}}$ and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

2001: A: "MSSM:
$$\frac{\delta \bar{v}_u}{v_u} - \frac{\delta \bar{v}_d}{v_d}$$
 =finite!"
B: "Why?"
A: ???

SUSY non-renormalization theorems? only at one-loop? Later: also true at $\mathcal{O}(\alpha_{\rm s}\alpha_{\rm top})$ $_{\rm [Rzehak]}$

Questions:

- When/why $\delta \bar{v} \neq 0$?
- **2** Properties of $\delta \bar{v}$?
- \bigcirc β_v and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

2011: A: " Also true in 2HDM!"

Questions:

- When/why $\delta \bar{v} \neq 0$?
- 2 Properties of $\delta \bar{v}$?
- (a) β_v and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

2011: C: "Why $\delta \bar{v} \neq 0$ at all?"

Questions:

- When/why $\delta \bar{v} \neq 0$?
- 2 Properties of $\delta \bar{v}$?
- $\Im_{\beta_{v}}$ and applications.

Idea:

•
$$\delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$$

• compute $\delta \hat{Z}$ (using STI)

Personal motivation/more detailed questions:

2011: C: "Why $\delta \bar{\nu} \neq 0$ at all?" Answer: global gauge invariance broken by R_{ξ} gauge

 \rightarrow idea: take this seriously!

Idea as usual:

get most general possible divergence from Slavnov-Taylor identity

use BRS invariance

• Trick: extend BRS invariance for additional insight

Dominik Stöckinger Renormalization of VEVs, IR structure in FDH

Renormalization of VEVs
QCD running in 5 loops

Konstantin Chetyrkin (KIT)

in collaboration to

 $\beta_{\rm QCD}$ is expressed completely through Z-factors appearing in the (renormalized) QCD Lagrangian

$$\mathcal{L}_{R}^{QCD} = -\frac{1}{4} Z_{3} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}\right)^{2} - \frac{1}{2} g Z_{1}^{3g} \left(\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a}\right) \left(A_{\mu} \times A_{\nu}\right)^{a} - \frac{1}{4} g^{2} Z_{1}^{4g} \left(A_{\mu} \times A_{\nu}\right)^{2}$$
$$+ Z_{3}^{c} \partial_{\nu} \bar{c} \left(\partial_{\nu} c\right) + g Z_{1}^{ccg} \partial^{\mu} \bar{c} \left(A_{\mu} \times c\right) + Z_{2} \bar{\psi} i \vartheta \psi - Z_{\bar{\psi}\psi} m_{f} \bar{\psi} \psi + g Z_{1}^{\psi\psig} \bar{\psi} A \psi$$

Minimal (and simplest) set of Z-factors to compute β : Z_3, Z_3^c, Z_1^{ccg} used STI Let us concentrate on Z_1^{ccg} and consider vertex function

Abelian Higgs model = ϕ^4 + QED

$$egin{aligned} \mathcal{L} &= |D^{\mu}\phi|^2 - m^2 |\phi + v|^2 - \lambda |\phi + v|^4 - rac{1}{4}F^{\mu
u}F_{\mu
u} + \mathcal{L}_{ ext{fix,gh}} \ \\ \mathcal{L}_{ ext{fix}} &= -rac{1}{2\xi}F^2 \ F &= \partial^{\mu}A_{\mu} - \xi ev(2\, ext{Im}\phi) \end{aligned}$$

global transformation:

but

$$\delta_{\mathsf{rigid}} \phi(\mathbf{x}) = i lpha(\phi(\mathbf{x}) + \mathbf{v}), \ \delta_{\mathsf{rigid}} \mathcal{L}
eq \mathbf{0}$$

Symmetry broken by \mathcal{L}_{fix} , cannot conclude $\delta_{rigid} \mathcal{L}_{bare} = 0$, hence

$$\phi + \mathbf{v} \rightarrow \sqrt{Z_{\phi}}(\phi + \mathbf{v} + \delta \bar{\mathbf{v}})$$

is allowed and expected to be required!

Dominik Stöckinger

A D A A B A B A B A

Influence of global gauge invariance in a nutshell

When does $\delta \bar{v}$ appear?

global gauge invariance \Rightarrow $\delta \bar{v} = 0$ no global gauge invariance \Rightarrow $\delta \bar{v} \neq 0$

 R_{ξ} gauge fixing:

$$F = \partial^{\mu} A_{\mu} - \xi ev(2 \operatorname{Im} \phi)$$

 R_{ξ} breaks global gauge invariance for $\xi \neq 0 \Rightarrow \delta \bar{\nu} \neq 0$.

Investigation of δv in a nutshell

Problem: R_{ξ} breaks global gauge invariance for $\xi \neq 0 \Rightarrow \delta \bar{\nu} \neq 0$.

Trick: Keep global gauge invariance in intermediate steps! [Kraus,Sibold 95] also [Kraus '97] [Hollik,Kraus,Roth,Rupp,Sibold,DS '02]

Introduce background field $\hat{\phi}(x)$, only at the end: $\hat{\phi}(x) = \hat{v} = \text{const}$

$$\phi \to \phi_{\mathsf{eff}} := \phi + \hat{\phi}$$

where $\hat{\phi}$ has same gauge transformation as ϕ . Modified R_{ξ} gauge fixing:

$${m F}=\partial^\mu {m A}_\mu+{\it ie}\xi(\hat\phi^\dagger\phi-\phi^\dagger\hat\phi)$$

- global gauge invariance! $\Rightarrow \delta \bar{\nu} = 0$
- renormalization $\phi_{\text{eff}} \rightarrow \sqrt{Z}(\phi + \sqrt{\hat{Z}}\hat{\phi})$
- $\delta \bar{\mathbf{v}}_{\text{eff}} = \hat{\mathbf{v}} \delta \hat{\mathbf{Z}}$, easy to compute using STI

Abelian Higgs model with background field $\phi_{\text{eff}} = \phi + \hat{\phi}$

$$\mathcal{L} = |\mathcal{D}^{\mu}\phi_{\mathsf{eff}}|^2 - m^2 |\phi_{\mathsf{eff}}|^2 - \lambda |\phi_{\mathsf{eff}}|^4 - \frac{1}{4} \mathcal{F}^{\mu\nu} \mathcal{F}_{\mu\nu} + \mathcal{L}_{\mathsf{fix,gh}} + \mathcal{L}_{\mathsf{ext}}$$

$$egin{split} \mathcal{L}_{\mathsf{fix},\mathsf{gh}} &= oldsymbol{s} \left[ar{oldsymbol{c}} \left(rac{\xi}{2} oldsymbol{B} + oldsymbol{F}
ight)
ight], \quad oldsymbol{s}ar{oldsymbol{c}} &= oldsymbol{B}, oldsymbol{s}oldsymbol{B} = oldsymbol{0} \ oldsymbol{F} &= \partial^{\mu}oldsymbol{A}_{\mu} + oldsymbol{i}oldsymbol{e}_{\zeta}(\hat{\phi}^{\dagger}\phi - \phi^{\dagger}\hat{\phi}) \ oldsymbol{\mathcal{L}}_{\mathsf{ext}} &= oldsymbol{K}_{\phi}oldsymbol{s}\phi + oldsymbol{K}_{\phi^{\dagger}}oldsymbol{s}\phi^{\dagger}, \end{split}$$

This \mathcal{L} reproduces standard- \mathcal{L} for $\hat{\phi} = \hat{v}$, $\hat{q} = 0$ and is invariant under:

Renormalization of VEVs, IR structure in FDH

Abelian Higgs model with background field $\phi_{\mathsf{eff}} = \phi + \hat{\phi}$

$$\mathcal{L} = |\mathcal{D}^{\mu}\phi_{\mathsf{eff}}|^2 - m^2 |\phi_{\mathsf{eff}}|^2 - \lambda |\phi_{\mathsf{eff}}|^4 - \frac{1}{4} \mathcal{F}^{\mu\nu} \mathcal{F}_{\mu\nu} + \mathcal{L}_{\mathsf{fix,gh}} + \mathcal{L}_{\mathsf{ext}}$$

$$egin{aligned} \mathcal{L}_{\mathsf{fix},\mathsf{gh}} &= s\left[ar{c}\left(rac{\xi}{2}B+F
ight)
ight], \quad sar{c}=B, sB=0\ &F=\partial^{\mu}A_{\mu}+ie\xi(\hat{\phi}^{\dagger}\phi-\phi^{\dagger}\hat{\phi})\ &\mathcal{L}_{\mathsf{ext}}=K_{\phi}s\phi+K_{\phi^{\dagger}}s\phi^{\dagger}, \end{aligned}$$

This \mathcal{L} reproduces standard- \mathcal{L} for $\hat{\phi} = \hat{v}$, $\hat{q} = 0$ and is invariant under:

global symmetry: $\delta_{\text{rigid}}\phi = i\alpha\phi$ $\delta_{\text{rigid}}\hat{\phi} = i\alpha\hat{\phi}$

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Abelian Higgs model with background field $\phi_{\text{eff}} = \phi + \hat{\phi}$

$$\mathcal{L} = |\mathcal{D}^{\mu}\phi_{\mathsf{eff}}|^2 - m^2 |\phi_{\mathsf{eff}}|^2 - \lambda |\phi_{\mathsf{eff}}|^4 - \frac{1}{4} \mathcal{F}^{\mu\nu} \mathcal{F}_{\mu\nu} + \mathcal{L}_{\mathsf{fix,gh}} + \mathcal{L}_{\mathsf{ext}}$$

$$egin{aligned} \mathcal{L}_{\mathsf{fix},\mathsf{gh}} &= s\left[ar{c}\left(rac{\xi}{2}B+F
ight)
ight], \quad sar{c}=B, sB=0\ &F=\partial^{\mu}A_{\mu}+ie\xi(\hat{\phi}^{\dagger}\phi-\phi^{\dagger}\hat{\phi})\ &\mathcal{L}_{\mathsf{ext}}=K_{\phi}s\phi+K_{\phi^{\dagger}}s\phi^{\dagger}, \end{aligned}$$

This \mathcal{L} reproduces standard- \mathcal{L} for $\hat{\phi} = \hat{v}$, $\hat{q} = 0$ and is invariant under:

BRS invariance:
$$s\phi_{
m eff}=c\delta_{
m gauge}\phi_{
m eff}=-iec\phi_{
m eff}$$

 $s{
m Rest}={
m standard}$
 $s^2=0$

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Abelian Higgs model with background field

Secondary trick: BRS transformation \rightarrow control $\hat{\phi}$

$$s\hat{\phi}=\hat{q},s\hat{q}=0$$

this means that

$$s\phi_{\rm eff} = -iec\phi_{\rm eff}$$

requires:

$$m{s}\phi = -m{i}m{e}m{c}\phi_{ ext{eff}} - \hat{m{q}}$$

hence:

$$\mathcal{L}_{\mathsf{ext}} = \ldots + \mathit{K}_{\phi} \left(-\mathit{iec}(\phi + \hat{\phi}) - \hat{q}
ight)$$

< ∃ >

Abelian Higgs model with background field

As before: most general divergence structure, most general $\mathcal{L}_{\text{bare}}$ from

$$\delta_{\text{rigid}} \mathcal{L} = \mathbf{0} \qquad \Rightarrow \qquad \delta_{\text{rigid}} \mathcal{L}_{\text{ bare}} = \mathbf{0}$$
 $s\mathcal{L} = \mathbf{0} \qquad \Rightarrow \qquad \int \frac{\delta\Gamma_{\text{ bare}}}{\delta K_{\varphi}} \frac{\delta\Gamma_{\text{ bare}}}{\delta \varphi} = \mathbf{0}$

Result: $\mathcal{L}_{\text{bare}}$ generated by the renormalization transformation

$$egin{aligned} \phi_{\mathsf{eff}} &= \phi + \hat{\phi} o \sqrt{Z} \left(\phi + \sqrt{\hat{Z}} \hat{\phi}
ight) \ \hat{q} & o \sqrt{Z} \sqrt{\hat{Z}} \hat{q} \end{aligned}$$

Crucial: $\mathcal{L}_{\text{bare}} = \ldots + K_{\phi} \left(-ie_{\text{bare}} c_{\text{bare}} (\phi + \sqrt{\hat{Z}} \hat{\phi}) - \sqrt{\hat{Z}} \hat{q} \right)$

$$\hat{q}_a \qquad K_{\phi_b} = -\frac{i}{2}\delta\hat{Z}$$

Abelian Higgs model with background field Compare with standard approach:

$$\phi + \mathbf{v} \rightarrow \sqrt{Z}(\phi + \mathbf{v} + \delta \bar{\mathbf{v}})$$

Here, for $\hat{\phi} = \hat{\pmb{\nu}}$, $\phi_{\text{eff}} = \phi + \hat{\pmb{\nu}} \Rightarrow$

$$\phi + \hat{\pmb{v}} \rightarrow \sqrt{Z}(\phi + \sqrt{\hat{Z}}\hat{\pmb{v}})$$

hence

$$\left. \mathbf{v} + \delta \bar{\mathbf{v}} \right|_{\text{standard}} = \left. \sqrt{\hat{Z}} \hat{\mathbf{v}} \right|_{\text{here}}$$

What have we gained?

- $\delta \bar{v} \leftrightarrow \text{dimensionless field renormalization constant}$
- \hat{Z} can be directly obtained from ===== \hat{X}

Understanding of $\delta \bar{v}$ from ==== \hat{k}_{ϕ_b} $= -\frac{i}{2}\delta \hat{Z}$ Very few Feynman rules for \hat{q}_a with well-defined origin

 $\mathcal{L}_{\mathsf{ext}} = K_{\phi} \ s\phi + \cdots$

Renormalization of VEVs, IR structure in FDH

 $= K_{\phi} (-iec(\phi + \hat{\phi})) - K_{\phi} \hat{g} + \cdots$

Understanding of $\delta \bar{v}$ from ===Very few Feynman rules for \hat{q}_a with well-defined origin $F = \partial^{\mu} A_{\mu} + ie\xi(\hat{\phi}^{\dagger}\phi - \phi^{\dagger}\hat{\phi})$ $\mathcal{L}_{\text{fix,gh}} = s \left[\bar{c} \left(F + \xi B / 2 \right) \right]$ $=-\bar{c}ie\xi(\hat{a}^{\dagger}\phi-\phi^{\dagger}\hat{a})+\ldots$ \hat{q}_a

Renormalization of VEVs, IR structure in FDH

Understanding of $\delta \bar{v}$ from === \hat{k}_{ϕ_b} $= -\frac{i}{2}\delta \hat{Z}$ Very few Feynman rules for = \hat{q}_a with well-defined origin

Feynman rules $\propto \hat{q}$ only from $\hat{\phi}$ in gauge fixing, vanish for $\xi = 0$, can depend only on gauge couplings (also in general models!)

Renormalization of VEVs, IR structure in FDH

General model

Scalar, spinor, vector fields ϕ_a , ψ_p , V^A with Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{inv}}|_{\phi \rightarrow \phi_{\mathsf{eff}}} + \mathcal{L}_{\mathsf{fix},\mathsf{gh}} + \mathcal{L}_{\mathsf{ext}}$$

with

$$\begin{split} \mathcal{L}_{\text{inv}} &= -\frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} + \frac{1}{2} \left(D_{\mu} \phi \right)_{a} \left(D^{\mu} \phi \right)_{a} + i \psi^{\alpha}_{p} \sigma^{\mu}_{\alpha \dot{\alpha}} \left(D^{\dagger}_{\mu} \bar{\psi}^{\dot{\alpha}} \right)_{p} \\ &- \frac{1}{2!} m^{2}_{ab} \phi_{a} \phi_{b} - \frac{1}{3!} h_{abc} \phi_{a} \phi_{b} \phi_{c} - \frac{1}{4!} \lambda_{abcd} \phi_{a} \phi_{b} \phi_{c} \phi_{d} \\ &- \frac{1}{2} \left[(m_{f})_{pq} \psi^{\alpha}_{p} \psi_{q\alpha} + \text{h.c.} \right] - \frac{1}{2} \left[Y^{a}_{pq} \psi^{\alpha}_{p} \psi_{q\alpha} \phi_{a} + \text{h.c.} \right] \\ \mathcal{L}_{\text{fix,gh}} &= s \left[\bar{c}^{A} \left(F^{A} + \xi B^{A} / 2 \right) \right] \\ \mathcal{L}_{\text{ext}} &= K_{\phi_{a}} s \phi_{a} + K_{V^{A}_{\mu}} s V^{A}_{\mu} + K_{c^{A}} s c^{A} + \left[K_{\psi_{p}} s \psi_{p} + \text{h.c.} \right] \end{split}$$

General, modified R_{ξ} gauge fixing:

$$F^{A} = \partial^{\mu} V^{A}_{\mu} + ig\xi(\hat{\phi})_{a}T^{A}_{ab}\phi_{b}$$

・ 同 ト ・ ヨ ト ・ ヨ

Calculation of $\delta \hat{Z} - 1$ Loop

vanishes for $\xi = 0$, only depends on squared gauge couplings

Dominik Stöckinger

 \Rightarrow

Renormalization of VEVs, IR structure in FDH

Calculation of $\delta \hat{Z} - 2$ Loop

no Y^4 , no λ terms (in contrast to δZ)

Dominik Stöckinger

 \Rightarrow

Renormalization of VEVs, IR structure in FDH

Calculation of $\delta \hat{Z} - 2$ Loop

$$(4\pi)^4\delta \hat{Z}^{(2)}=g^2\xi C^2(\mathsf{S})Y^2(\mathsf{S})\left(rac{1}{\epsilon^2}-rac{1}{\epsilon}
ight)+O(g^4)$$

no Y^4 , no λ terms (in contrast to δZ)

Note alternative:

$$\frac{\delta m_t}{m_t} = \frac{\delta_t}{\delta_t} + \frac{\delta Z}{2} + \frac{\delta Z}{2}$$

 \Rightarrow

Renormalization of VEVs, IR structure in FDH

Results – β_v

$$egin{aligned} & m{v}+\deltaar{m{v}}=\sqrt{\hat{Z}}\hat{m{v}}&& o\hat{\gamma}(m{S})\ & m{v}+\deltam{v}=\sqrt{Z}\sqrt{\hat{Z}}\hat{m{v}}&& o\gamma(m{S})+\hat{\gamma}(m{S}) \end{aligned}$$

$$\begin{split} \beta_{v} &= \left[\gamma(S) + \hat{\gamma}(S)\right] v\\ \hat{\gamma}^{(1)}(S) &= \frac{\xi}{(4\pi)^{2}} 2g^{2}C^{2}(S)\\ \hat{\gamma}^{(2)}(S) &= \frac{\xi}{(4\pi)^{4}} \left\{ g^{4} \left[2\left(1 + \xi\right)C^{2}(S)C^{2}(S) + \frac{7 - \xi}{2}C_{2}(G)C^{2}(S) \right] - 2g^{2}C^{2}(S)Y^{2}(S) \right\} \end{split}$$

can now be implemented into spectrum generator (generators) Sarah [Staub], FlexibleSUSY

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Results – $\beta_{\tan\beta}$ in the MSSM

$$\tan \beta = \frac{v_u}{v_d} \quad \Rightarrow \quad \frac{\beta_{\tan \beta}}{\tan \beta} = \gamma_u - \gamma_d + \hat{\gamma}_u - \hat{\gamma}_d$$

$$\frac{\beta_{\tan\beta}^{(1)}}{\tan\beta} = \gamma_{uu}^{(1)} - \gamma_{dd}^{(1)} \quad \leftarrow \text{cancellation of } \hat{\gamma} \text{ terms}$$

$$\frac{\beta_{\tan\beta}^{(2)}}{\tan\beta} = \gamma_{uu}^{(2)} - \gamma_{dd}^{(2)} + \frac{\xi}{(4\pi)^2} \left(\frac{3}{10}g_1^2 + \frac{3}{2}g_2^2\right) \frac{\beta_{\tan\beta}^{(1)}}{\tan\beta} \quad \text{[Yamada 02]}$$

Understanding:

MSSM:

•
$$\frac{\delta \bar{v}_u}{v_u} - \frac{\delta \bar{v}_d}{v_d} =$$
finite $\Leftrightarrow \hat{\gamma}_u - \hat{\gamma}_d = 0$

Only true at one-loop because squared gauge couplings are equal

similar in 2HDM, NMSSM

Dominik Stöckinger

Results – $\beta_{\tan\beta}$ in the E₆SSM

E₆SSM: extra $U(1)_N$ gauge symmetry

$$\frac{\beta_{\tan\beta}^{(1)}}{\tan\beta} = \gamma_{uu}^{(1)} - \gamma_{dd}^{(1)} + \frac{\xi}{(4\pi)^2} 2g_N^2 \left[\left(\frac{N_{H_u}}{2}\right)^2 - \left(\frac{N_{H_d}}{2}\right)^2 \right] \text{[Athron, DS, Voigt `12]}$$

•
$$\frac{\delta \bar{v}_u}{v_u} - \frac{\delta \bar{v}_d}{v_d} = \text{divergent} \Leftrightarrow \hat{\gamma}_u = \hat{\gamma}_d \neq 0$$

Already one-loop difference due to different U(1)_N-charges

General method of extended BRS/STI

Here: used $\hat{\phi}$, $s\hat{\phi} = \hat{q}$ to obtain information on $\delta \bar{v}$

Other possibilities

- $s\xi \neq 0 \Rightarrow \partial_{\xi}(...)$ calculable [Kraus,Häussling '95][Grassi,Gambino '00][Freitas, DS '02]
- $se
 eq 0 \Rightarrow \delta e^{\mathrm{div}}$ calculable [Flume,Kraus; Kraus; Kraus, DS '01]

Outline

Regularization: DREG, FDH, DRED: UV, IR

2 Renormalization of VEVs

3 Conclusions

Renormalization of VEVs, IR structure in FDH

A (1) > A (1) > A

Conclusions

DREG, HV, FDH, DRED: all consistent schemes

- old puzzles resolved
- DRED, FDH = DREG with additional ϵ -scalar parton
- IR structure and renormalization in FDH, DRED understood
- practical transition rules
- DRED supersymmetric in many (not all?) important cases

Divergence structure of δv (example of extended BRS/STI)

- if tadpoles=0: VEV is gauge- and μ-depedent quantity
- $\deltaar{m{v}}$ from gauge fixing, \propto squared gauge couplings and $\propto\xi$
- $\rightarrow \delta \hat{Z}_{H_u} \delta \hat{Z}_{H_d}$ =finite in MSSM at 1-loop accidentally
- 2-loop β functions, γ^{SUSY} complete

< ロ > < 同 > < 回 > < 回 >

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Backup

・ 同 ト ・ ヨ ト ・ ヨ

Key insight: All IR divs \longrightarrow factor $\mathbf{Z}, \mathbf{Z}^{-1} | \mathcal{A} \rangle = fin.$

[Gardi, Magnea '09] [Becher, Neubert '09]

$$\frac{\mathsf{d}}{\mathsf{d}\ln\mu}\mathbf{Z} = -\Gamma\mathbf{Z}$$

2nd insight [valid at least up to 2-loop order]

Renormalization of VEVs, IR structure in FDH

Backup

- (B

→ ∃ →

< A >

Key insight: All IR divs \longrightarrow factor Z, $Z^{-1}|A\rangle =$ fin.

[Gardi, Magnea '09] [Becher, Neubert '09]

$$\frac{\mathsf{d}}{\mathsf{d}\ln\mu}\mathbf{Z} = -\Gamma\mathbf{Z}$$

2nd insight [valid at least up to 2-loop order] μ -dependence of Γ in α_s and $\ln \mu$:

$$\Gamma = \left(\frac{\alpha_s}{4\pi}\right)^n \quad \begin{array}{c} \Gamma_n \\ \uparrow \\ \gamma^{\text{cusp}}, \gamma^i \end{array} = \left(\frac{\alpha_s}{4\pi}\right)^n \begin{bmatrix} \Gamma'_n & \ln \mu + \Gamma''_n \end{bmatrix}$$

• Integrate $\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$, use $\frac{d}{d \ln \mu^2} \alpha_s(\mu) = -\epsilon \alpha_s(\mu) + \beta_{20}^s \frac{\alpha_s^2}{4\pi} + \dots$

Renormalization of VEVs, IR structure in FDH

Backup

э

< 同 > < 三 > < 三 >

• Integrate
$$\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$$
, use $\frac{d}{d \ln \mu^2} \alpha_s(\mu) = -\epsilon \alpha_s(\mu) + \beta_{20}^s \frac{\alpha_s^2}{4\pi} + \dots$
Result:

$$\ln \mathbf{Z} = \left(\frac{\alpha_s}{4\pi}\right) \left(\frac{\Gamma_1'}{4\epsilon^2} + \frac{\Gamma_1}{2\epsilon}\right) + \left(\frac{\alpha_s}{4\pi}\right)^2 \left(-\frac{3\beta_{20}\Gamma_1'}{16\epsilon^3} + \frac{\Gamma_2' - 4\beta_{20}\Gamma_1}{16\epsilon^2} + \frac{\Gamma_2}{4\epsilon}\right) + \dots$$

Same three constants γ^{cusp} , γ^{q} , γ^{g} describe all IR divergences 1-loop agrees with previous result, at 2-loop also β needed

Renormalization of VEVs, IR structure in FDH

Backup

Changes in FDH and DRED: Same structure ...

$$\frac{\mathsf{d}}{\mathsf{d}\ln\mu}\mathbf{Z} = -\Gamma\mathbf{Z}$$

... but the γ 's change and everything depends on α_s , α_e , $\alpha_{4\epsilon}$

$$\Gamma = \sum_{(ij)} \frac{\mathbf{T}_i \cdot \mathbf{T}_j}{2} \gamma^{\text{cusp}} \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i$$

• Integrate $\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$, use β^s , β^e , etc

$$\begin{split} \ln \mathbf{Z}_{2\text{-loop}}^{\text{FDH}} &= \left(\frac{\alpha_s}{4\pi}\right)^2 \left(-\frac{3\beta_{20}\Gamma'_{10}}{16\epsilon^3} + \frac{\Gamma'_{20} - 4\beta_{20}\Gamma_{10}}{16\epsilon^2} + \frac{\Gamma_{20}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_s}{4\pi}\right) \left(\frac{\alpha_e}{4\pi}\right) \left(-\frac{3\beta_{11}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{11} - 4\beta_{11}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{11}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_e}{4\pi}\right)^2 \left(-\frac{3\beta_{02}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{02} - 4\beta_{02}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{02}}{4\epsilon}\right) + \mathcal{O}(\alpha_{4\epsilon}, \alpha^3). \end{split}$$

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Backup

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Integrate
$$\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$$
, use β^s , β^e , etc

$$\begin{split} \ln \mathbf{Z}_{2\text{-loop}}^{\text{FDH}} &= \left(\frac{\alpha_s}{4\pi}\right)^2 \left(-\frac{3\beta_{20}\Gamma'_{10}}{16\epsilon^3} + \frac{\Gamma'_{20} - 4\beta_{20}\Gamma_{10}}{16\epsilon^2} + \frac{\Gamma_{20}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_s}{4\pi}\right) \left(\frac{\alpha_e}{4\pi}\right) \left(-\frac{3\beta_{11}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{11} - 4\beta_{11}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{11}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_e}{4\pi}\right)^2 \left(-\frac{3\beta_{02}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{02} - 4\beta_{02}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{02}}{4\epsilon}\right) + \mathcal{O}(\alpha_{4\epsilon}, \alpha^3). \end{split}$$

FDH: three constants γ^{cusp} , γ^{q} , γ^{g} = CDR-values + $\mathcal{O}(N_{\epsilon})$

- need β^{e} , α_{e} -dependence separately
- Leads to translation rules between CDR, HV, FDH

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Backup

4 A D 4 D 5 4 D 5

• Integrate $\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$, use β^s , β^e , etc

$$\begin{split} \ln \mathbf{Z}_{2\text{-loop}}^{\text{FDH}} &= \left(\frac{\alpha_s}{4\pi}\right)^2 \left(-\frac{3\beta_{20}\Gamma'_{10}}{16\epsilon^3} + \frac{\Gamma'_{20} - 4\beta_{20}\Gamma_{10}}{16\epsilon^2} + \frac{\Gamma_{20}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_s}{4\pi}\right) \left(\frac{\alpha_e}{4\pi}\right) \left(-\frac{3\beta_{11}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{11} - 4\beta_{11}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{11}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_e}{4\pi}\right)^2 \left(-\frac{3\beta_{02}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{02} - 4\beta_{02}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{02}}{4\epsilon}\right) + \mathcal{O}(\alpha_{4\epsilon}, \alpha^3). \end{split}$$

FDH: three constants γ^{cusp} , γ^{q} , γ^{g} = CDR-values + $\mathcal{O}(N_{\epsilon})$

- Logic and result fully compatible with [Kilgore '12]
- Differences to [Kilgore '12]: slightly different γⁱ, other sample processes

• Integrate $\frac{d}{d \ln \mu} \mathbf{Z} = -\Gamma \mathbf{Z}$, use β^s , β^e , etc

$$\begin{split} \ln \mathbf{Z}_{2\text{-loop}}^{\text{FDH}} &= \left(\frac{\alpha_s}{4\pi}\right)^2 \left(-\frac{3\beta_{20}\Gamma'_{10}}{16\epsilon^3} + \frac{\Gamma'_{20} - 4\beta_{20}\Gamma_{10}}{16\epsilon^2} + \frac{\Gamma_{20}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_s}{4\pi}\right) \left(\frac{\alpha_e}{4\pi}\right) \left(-\frac{3\beta_{11}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{11} - 4\beta_{11}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{11}}{4\epsilon}\right) \\ &+ \left(\frac{\alpha_e}{4\pi}\right)^2 \left(-\frac{3\beta_{02}^e\Gamma'_{01}}{16\epsilon^3} + \frac{\Gamma'_{02} - 4\beta_{02}^e\Gamma_{01}}{16\epsilon^2} + \frac{\Gamma_{02}}{4\epsilon}\right) + \mathcal{O}(\alpha_{4\epsilon}, \alpha^3). \end{split}$$

DRED: again same structure but four constants γ^{cusp} , γ^{q} , $\gamma^{\hat{g}}$, $\gamma^{\hat{g}}$ • turns out to depend even on $\alpha_{4\epsilon}$

Backup

A (B) > A (B) > A (B) >

IR structure in all four schemes \$ \$ \$ common structure, depends on anomalous dimensions γ and β functions of all couplings

Allows transition rules between schemes, once all γ 's are known

Dominik Stöckinger

Renormalization of VEVs, IR structure in FDH

Backup

Two simple processes/form factors

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

・ 同 ト ・ ヨ ト ・ ヨ

- IR structure, transition rules
- determine γ 's
- study concrete calculation/renormalization

(4) (20) (4)

Simple kinematics

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

< 同 > < 三 > < 三 >

Simple kinematics

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

< 回 > < 三 > < 三

Simple colour/IR structure:

$$egin{aligned} \Gamma' &= -2 \mathcal{C}_{\mathcal{F},\mathcal{A}} \gamma^{\mathsf{cusp}} \ \Gamma &= 2 \gamma^i (i = q, g, \hat{g}, \tilde{g}) \end{aligned}$$

• • • • • • • •

Simple colour/IR structure:

$$egin{aligned} \Gamma' &= -2 \mathcal{C}_{\mathcal{F},\mathcal{A}} \gamma^{\mathsf{cusp}} \ \Gamma &= 2 \gamma^i (i = q, g, \hat{g}, ilde{g}) \end{aligned}$$

 $\mathbf{Z}^{-1}F = \text{fin.}$ $\ln F - \ln \mathbf{Z} = \text{fin.}$ $\left[F^{2L} - \frac{1}{2}(F^{1L})^2\right] - \ln \mathbf{Z}|^{2L} = \text{fin.}$

< 同 > < 三 > < 三 >

Example: Hgg in FDH/DRED. Starting point: gauge invariant \mathcal{L}_{eff}

$$\mathcal{L}_{eff} = \lambda HO_1 + \lambda_{\epsilon} H\tilde{O}_1 + \dots$$

with

$$O_1=-rac{1}{4}\hat{F}^{\mu
u}\hat{F}_{\mu
u}, \qquad \qquad ilde{O}_1=-rac{1}{2}(\hat{D}^{\mu}\tilde{A}^{
u})\Big(\hat{D}_{\mu}\tilde{A}_{
u}\Big).$$

Need two-loop diagrams and counterterm diagrams such as

- all couplings λ , λ_{ϵ} , α_s , α_e , $\alpha_{4\epsilon}$ appear
- Need also: all one-loop renormalization constants for these couplings
- Need also: two-loop $\delta \lambda$, $\delta \lambda_{\epsilon}$

Need two-loop diagrams and counterterm diagrams such as

• all couplings λ , λ_{ϵ} , α_s , α_e , $\alpha_{4\epsilon}$ appear

- Need also: all one-loop renormalization constants for these couplings
- Need also: two-loop $\delta \lambda$, $\delta \lambda_{\epsilon}$

Situation in CDR, HV:

•
$$\frac{\lambda + \delta \lambda}{\lambda} = 1 + \alpha_s \frac{\partial}{\partial \alpha_s} \ln Z_{\alpha_s}$$
 [Spiridonov '84, Chetyrkin, Kniehl, Steinhauser '97]

• known from literature, no dedicated computation required

Situation in FDH, DRED:

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

< 同 > < 三 > < 三 >

Situation in CDR, HV:

•
$$\frac{\lambda+\delta\lambda}{\lambda}=1+lpha_srac{\partial}{\partiallpha_s}\ln Z_{lpha_s}$$
 [Spiridonov '84, Chetyrkin, Kniehl, Steinhauser '97]

- known from literature, no dedicated computation required
- Reason: full basis of local operators $O_{1...5}$ can all be written as $\frac{\partial}{\partial fields, parameters} \mathcal{L}_{QCD}$

Situation in FDH, DRED:

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

周 ト イ ヨ ト イ ヨ ト

Situation in CDR, HV:

•
$$\frac{\lambda+\delta\lambda}{\lambda}=1+lpha_{s}rac{\partial}{\partiallpha_{s}}\ln Z_{lpha_{s}}$$
 [Spiridonov '84, Chetyrkin, Kniehl, Steinhauser '97]

- known from literature, no dedicated computation required
- Reason: full basis of local operators $O_{1...5}$ can all be written as $\frac{\partial}{\partial fields, parameters} \mathcal{L}_{QCD}$

Situation in FDH, DRED:

- e.g. $\Box \tilde{A}^{\mu} \tilde{A}_{\mu}$ exists in operator basis
- has no counterpart in $\mathcal{L}_{\text{QCD}} \Rightarrow$ Spiridonov's method fails

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

A > A > A > A

Situation in CDR, HV:

•
$$\frac{\lambda+\delta\lambda}{\lambda}=1+lpha_{s}rac{\partial}{\partiallpha_{s}}\ln Z_{lpha_{s}}$$
 [Spiridonov '84, Chetyrkin, Kniehl, Steinhauser '97]

- known from literature, no dedicated computation required
- Reason: full basis of local operators $O_{1...5}$ can all be written as $\frac{\partial}{\partial fields, parameters} \mathcal{L}_{QCD}$

Situation in FDH, DRED:

- e.g. $\Box \tilde{A}^{\mu} \tilde{A}_{\mu}$ exists in operator basis
- has no counterpart in $\mathcal{L}_{\text{QCD}} \Rightarrow$ Spiridonov's method fails
- way out: determine operator mixing renormalization constants from explicit off-shell calculations (one- and two-loop)
- off-shell means: non-gauge invariant operators also needed

Hgg in FDH: Sample results

[Spiridonov '84] applicable, but mixing occurs

explicit calculation

Dominik Stöckinger Renormalization of VEVs, IR structure in FDHExplicit computation and renormalization at the two-loop level

< 同 > < 三 > < 三 >

Hgg in FDH: Result for $\overline{G}^{(2)} = F^{g,2L} - \frac{1}{2}(F^{g,1L})^2$ $\overline{G}^{(2)}(\alpha_s, \alpha_{\theta}) = G^{(2),CDR}(\alpha_s) + (\frac{\alpha_s}{4\pi})^2 N_{\epsilon} \left\{ C_A^2 \left[-\frac{1}{4\epsilon^3} + \frac{-\frac{7}{18} + \frac{N_{\epsilon}}{2}}{\epsilon^2} + \frac{\frac{49}{27} - \frac{\pi^2}{72}}{\epsilon} \right] + C_A N_F \frac{1}{9\epsilon^2} \right\}$ $+ (\frac{\alpha_s}{4\pi}) \left(\frac{\alpha_{\theta}}{4\pi} \right) N_{\epsilon} \left\{ - \frac{C_F N_F}{2\epsilon} \right\} + \mathcal{O} \left(N_{\epsilon} \epsilon^0 \right).$

• IR prediction was: $[G^{(2)} - \ln \mathbf{Z}]^{2L}]$ =fin. for both FDH and CDR

Hgg in FDH: Result for $\overline{G}^{(2)} = F^{g,2L} - \frac{1}{2}(F^{g,1L})^2$

$$\begin{split} \bar{G}^{(2)}(\alpha_{s},\alpha_{\theta}) &= G^{(2),\mathsf{CDR}}(\alpha_{s}) + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} N_{\epsilon} \left\{ C_{A}^{2} \left[-\frac{1}{4\epsilon^{3}} + \frac{-\frac{7}{18} + \frac{N_{\epsilon}}{22}}{\epsilon^{2}} + \frac{\frac{49}{27} - \frac{\pi^{2}}{72}}{\epsilon} \right] + C_{A} N_{F} \frac{1}{9\epsilon^{2}} \right\} \\ &+ \left(\frac{\alpha_{s}}{4\pi}\right) \left(\frac{\alpha_{\theta}}{4\pi}\right) N_{\epsilon} \left\{ -\frac{C_{F} N_{F}}{2\epsilon} \right\} + \mathcal{O}\left(N_{\epsilon}\epsilon^{0}\right). \end{split}$$

- IR prediction was: $[G^{(2)} \ln \mathbf{Z}]^{2L}]$ =fin. for both FDH and CDR
- This is valid!
- can read off e.g. $\bar{\gamma}_{20}^g = \gamma_{20}^g + N_\epsilon \left(\frac{98}{27} \frac{\pi^2}{36}\right) C_A^2$

イベン イラン イラン

∃ na

Hgg in FDH: Result for $\overline{G}^{(2)} = F^{g,2L} - \frac{1}{2}(F^{g,1L})^2$

$$\begin{split} \bar{G}^{(2)}(\alpha_{s},\alpha_{e}) &= G^{(2),\mathsf{CDR}}(\alpha_{s}) + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} N_{\epsilon} \left\{ C_{A}^{2} \left[-\frac{1}{4\epsilon^{3}} + \frac{-\frac{7}{18} + \frac{N_{\epsilon}}{22}}{\epsilon^{2}} + \frac{\frac{49}{27} - \frac{\pi^{2}}{72}}{\epsilon} \right] + C_{A} N_{F} \frac{1}{9\epsilon^{2}} \right\} \\ &+ \left(\frac{\alpha_{s}}{4\pi}\right) \left(\frac{\alpha_{e}}{4\pi}\right) N_{\epsilon} \left\{ -\frac{C_{F} N_{F}}{2\epsilon} \right\} + \mathcal{O}\left(N_{\epsilon}\epsilon^{0}\right). \end{split}$$

- IR prediction was: $[G^{(2)} \ln \mathbf{Z}]^{2L}]$ =fin. for both FDH and CDR
- This is valid!
- can read off e.g. $\bar{\gamma}_{20}^g = \gamma_{20}^g + N_{\epsilon} \left(\frac{98}{27} \frac{\pi^2}{36} \right) C_A^2$
- after subtracting IR divs, the difference is $\mathcal{O}\left(\textit{N}_{\epsilon}\epsilon^{0}
 ight)$
- \Rightarrow translation rules

< 同 > < 三 > < 三 > -

Hgg in FDH: Result for $\overline{G}^{(2)} = F^{g,2L} - \frac{1}{2}(F^{g,1L})^2$

$$\begin{split} \bar{G}^{(2)}(\alpha_{s},\alpha_{\theta}) &= G^{(2),\mathsf{CDR}}(\alpha_{s}) + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} N_{\epsilon} \left\{ C_{\mathsf{A}}^{2} \left[-\frac{1}{4\epsilon^{3}} + \frac{-\frac{7}{18} + \frac{N_{\epsilon}}{22}}{\epsilon^{2}} + \frac{\frac{49}{27} - \frac{\pi^{2}}{72}}{\epsilon} \right] + C_{\mathsf{A}} N_{\mathsf{F}} \frac{1}{9\epsilon^{2}} \right\} \\ &+ \left(\frac{\alpha_{s}}{4\pi}\right) \left(\frac{\alpha_{\theta}}{4\pi}\right) N_{\epsilon} \left\{ -\frac{C_{\mathsf{F}} N_{\mathsf{F}}}{2\epsilon} \right\} + \mathcal{O}\left(N_{\epsilon}\epsilon^{0}\right). \end{split}$$

- IR prediction was: $[G^{(2)} \ln \mathbf{Z}]^{2L}]$ =fin. for both FDH and CDR
- This is valid!
- can read off e.g. $\bar{\gamma}_{20}^g = \gamma_{20}^g + N_{\epsilon} \left(\frac{98}{27} \frac{\pi^2}{36} \right) C_A^2$
- after subtracting IR divs, the difference is $\mathcal{O}\left(\textit{N}_{\epsilon}\epsilon^{0}
 ight)$
- \Rightarrow translation rules
- Similarly, obtain all two-loop F^q , F^g , γ 's in all schemes

 $\gamma_{\text{cusp}}^{\text{FDH,DRED}}, \gamma_{q}^{\text{FDH,DRED}}, \gamma_{g}^{\text{FDH}}, \gamma_{\hat{g}}^{\text{DRED}}, \gamma_{\tilde{g}}^{\text{DRED}}$