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Jet Cross Sections



NLO result for total hadronic cross section
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Real and virtual corrections suffer from soft and collinear
infrared divergences, e.g.
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in d=4-2¢. Divergences cancel in the sum!




Sterman-Weinberg jets 77
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Original definition of a two-jet cross section in e*e™ collisions
with cms energy Q. Two parameters

e Cone angle parameter &
e Energy fraction outside the cone 3

Infrared safe: o(d, B) includes for soft and collinear radiation.



NLO result for jet cross section
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Sterman & Weinberg ‘77

IR finite, but problems for small 3 and/or &:

1) Large logarithms can compensate as suppression:
fixed-order perturbation theory becomes unreliable.

2)Valueof u?2u=Q,QBE,A6,QAL57?



Why narrow |ets”

Analysis of jet substructure can provide important
information.

Low top pt High top pt

Jet substructure studies are currently based on parton
shower. Would be important to be able to obtain
systematically improvable predictions

¢ Need higher-log resummation for narrow jets. (For LL
results, see Dasgupta et al. '15, "106)



An EFT for jet processes

In the following, we will describe an eftective theory which

e separates the contributions associated with different
scales (“factorization”)

e allows one to resum large logarithms of scale ratios
(“resummation”)

Despite the fact that jet cross sections are the most
important class of collider observables, factorization and
resummation beyond the leading logarithms has not been
achieved earlier.

e Higher-log resummation was available only for global
variables such as thrust, broadening, C-parameter, ...



Soft-collinear factorization



QCD made simple(r)

There are two limits where the perturbative expressions for
the scattering of quarks and gluons simplify considerably

e (Collinear limit, where multiple particles move in a
similar direction.

e Soft limit, in which particles with small energy and
momentum are emitted.

At the same time the cross sections are enhanced in these
regions.

e |arge logarithms In(3) and In(d) in SW cross
section arise from soft and collinear emissions!



Soft limit

When particles with small energy and momentum
are emitted, the amplitudes simplify:

g gt
»k > %p.g(k,)\)_
i::zp‘F p o u(p) ...

Soft emission factors from the rest of the amplitude.

Denominator p - k = F'w (1 — cosf) leads to

logarithmic enhancements at small energy and small
angle.



Wilson lines

Multiple emissions can be obtained from

1

S; = Pexp ig/ dsn; - A% (sn;) T
0

n#=pME 1S a vector in the direction of the energetic
particle, and T# is its color charge. P indicates that
the color matrices are path ordered.

Emissions are only sensitive to the total charge T of
the object they radiate off. Also, the emission of soft
guarks is suppressed compared to gluon emission.



Wilson line and eikonal interaction

Consider one-gluon matrix element of Wilson line

(kA b S; |0) = ig, T / ds (k, A, bln; - A%(sn:)[0) + O(g?)
0

= 1G4 Ta/ ds e K (kX bln; - A7(0)]0)
0

need small imaginary
isng -k > 7 patn-k=n-k+ie

e
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0

pi- k

eikonal interaction



Soft emissions in process with m energetic particles
are obtained from the matrix elements of the operator

S1(n1) Sa(n2) - .. Sm(nm)Mm({p}))

soft Wilson lines along the directions hard scattering amplitude
of the energetic particles / jets with m particles
(color matrices) (vector in color space)

If one considers a jet of several (nearly) collinear
energetic particles, their soft radiation is described
by a single Wilson line with the total color charge.



Collinear factorization

In the limit § — 0, where the partons become
collinear, the n-parton amplitude factorizes into a
product of an (n-1)-parton amplitude times a splitting
amplitude Sp . Similarly for several collinear partons.

Leading contribution to the squared amplitude does
not involve interference with the other particles!

...but see Aimelid, Duhr, Gardi 1507.0004 /!
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Soft-Collinear Factorization: 2-jet case

0
le ‘é?‘ @650%%]\@

For M~ M> «Q the cross section factorizes:

hard fugction
H(Q", 1)

J(M7, ) 2
jet function

soft function s Q2



Soft-Collinear Effective Theory

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; ...
In collider processes, we have an interplay of three

momentum regions
Hard } high-energy
Collinear

} low-ener art
Soft s/ P

Correspondingly, EFT for such processes has two low-
energy modes:

collinear fields describing the energetic partons propagating
in each direction of large energy, and

soft flelds which mediate long range interactions among
them.



Diagrammatic Factorization

The simple structure of soft and collinear
emissions forms the basis of the classic
factorization proofs, which were obtained by
analyzing Feynman diagrams.

Collins, Soper, Sterman 80’s ...

Advantages of the the SCET approach:

Simpler to exploit gauge invariance on the
Lagrangian level

Operator definitions for the soft and collinear
contributions

Resummation with renormalization group

Can include power corrections

Collins and Soper ‘81




Lecture Notes in Physics 896

Thomas Becher
Alessandro Broggio
Andrea Ferroglia

Introduction to
Soft-Collinear

Effective Theory

@ Springer

arxXiv:1410.1892

See also lain Stewart’s edX EFT online course.



Resummation for Thrust

D |pi -1
Z ’Pz‘

T = max

e The perturbative result for the thrust distribution contains
logarithms o™ In*" 7, where T = 1-T.

e Near the end-point T = 0O the logarithmic terms dominate.

e Using SCET one can derive the factorization theorem

1 do
0o dr

M12+M22,u)
Q

H(Qp) [av? [ b3 TR JOB. ) Sr(r Q -

Q? » M2~ M2~1Q%2 » 127

hard collinear Soft




Resummation by

RG evolution

Evaluate each part at its characteristic scale, evolve to

common reference scale |

A

Q° +H(Q* u})

Each contribution is evaluated at its natural scale. No large

perturbative logarithms.

—NB3LL resummation for thrust TB, Schwartz '08.
Precision determination of as Abbate et al. "11.



FI’Om SC ET tO Jet Effective Theory

factorization and resummation for jet processes

1B, Neubert, Rothen, Shao, arXiv:1508.06645



Non-global logarithms

Dasgupta, Salam ‘01
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Consider hemisphere jet masses My and Mo in ete- = 2
jets. Factorization and resummation works for

Q21 = Mo =M 1?2+ M>? or My, = max(M1, M>)
but fails for the non-global observables
M = M; or M;=min(M;, M>)

Non-global, because it only probes one hemisphere.



Jet observables are non-global because they are
iInsensitive to emissions inside the jets.

Dasgupta and Salam ‘02 extracted the leading non-

global logarithm; arises from gluons inside jet radiating
back out.

X (X?CFCATFQ In? 5]

These types of logarithms do not exponentiate.



L L resummation

* The leading logarithms arise from configurations in
which the emitted gluons are strongly ordered

E1>» Eo>» Ez>» ... » En

* Multi-gluon emission amplitudes become extremely
simple in this limit, especially at large N

MG = [(p1 - pu |V 0)]F = N g™ (Po 1)
Ma ™" = 1o pm Y5 0)] cd 2 (Pa - p1) (P1 - D2) -+ (D - Db)

perms of 1---m

* Using their structure Banfi, Marchesini, Smye '02
derived an integral equation for resummation of
leading logs at large N;: BMS equation.



Non-global logarithms

A lot of recent work on these types of logarithms

 Resummation of leading logs beyond large N, Weigert '03,
Hatta, Ueda '13 + Hagiwara '15; Caron-Huot '15.

* Fixed-order results: 2 loops for S(w,wR). Kelley, Schwartz,
Schabinger and Zhu '11; Hornig, Lee, Stewart, Walsh and
Zuberi '11; with jet-cone Kelley, Schwartz, Schabinger and Zhu
‘11; von Manteuffel, Schabinger and Zhu '13, leading non-
global log up to 5 loops by solving BMS equation Schwartz,
/hu 14, 5 loops and arbitrary N, Delenda, Khelifa-Kerfa ‘15

e Approximate resummation of such logs, based on resummation
for observables with n soft subjets. Larkoski, Moult and Neill ‘15

A systematic factorization of non-global observables was missing.



Soft factorization revisited

As discussed, large-angle soft radiation only sees total
charge. ldentical to radiation of a single particle flying in the
jet direction. Described by Wilson line along jet direction.

L

— \J D

We will now see that this picture breaks down for non-global
observables due to the relevance of small angle soft radiation!




Soft emission from a jet

Consider again the emission of single soft a gluon from
energetic particles with momenta p; inside a narrow |et:

Pi-& n-¢& |
SR Qui s

]

Approximation: p; ~ E;n"

This approximation breaks down when the soft emission
has a small angle, i.e. when k* ~ wn*!

Small region of phase space, but it turns out that it gives a
leading contribution to jet rates!



Coft factorization

TB, Neubert, Rothen, Shao,1508.06645

For cone-jet processes with narrow cones, small angle soft
radiation becomes relevant

 collinear and soft (“coft”)

e resolves individual collinear partons: operators with
multiple Wilson lines



Momentum modes for et processes

TB, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287

Region Energy Angle Inv. Mass
T r Hard Q 1 Q
S [
203 § | Collinear Q 5 Q5
8 W
7 . Soft BQ 1 BQ
new Coft BQ O B36Q

Full jet cross section is recovered after adding the contributions
from all regions (“method of regions™)

* Additional coft mode has very low characteristic scale 36Q!
Jets are less perturbative than they seem!

» Effective field theory has additional “coft” degree of freedom.



Momentum modes again (for experts)

Split momenta into light-cone components

n* n*

p =P+ +p_7 +

Scaling of the momentum components (8 ~ 6?)
(p+, p—, pL)

collinear: p.~Q( 1, 6*, &)

soft: ps~Q( B8, B, B )

coft: ptNﬁQ( 1, 52 , 0 )

Note: every component of coft mode is smaller than the

corresponding collinear one. Different than SCET, , SCET),
SCET+5s, SCET, ,SCET, , ...



Method of region expansion

To isolate the different contributions, one expands the
amplitudes as well as the phase-space constraints in each
momentum region.

* (Generic soft mode has O(1) angle: after expansion, it is
always outside the jet.

« Collinear mode has large energy E » Q. Can never go
outside the jet.

 Coft mode can be inside or outside, but its contribution to
the momentum inside the jet is negligible.

Expansion is performed on the integrand level: the full result is
obtained after combining the contributions from the different
regions.



Checks at one and two loops

2€ 2
(6) (a-t+75 )
2¢ 4 6
(&) (=+2+a)
SC 2€ 4
soft Ao, = a47rF 70 (&) (6_2 - W2)

coft Aoyp= 1. 00

collinear Aotz = o)

2
Agtot = aSCFao (—161n51n6 +12Ind + ¢o + 5% — 16)

Constant ¢, depends on definition of jet axis:
co = —3m% + 26. (Sterman-Weinberg)
co = —bm?/3+14+12In2  (thrust axis)

Have repeated the same check at two-loop order and checked
against numerical result from Event 2 generator



Sample ingredient at O(a,°)
Coft function with two Wilson lines

~ C 2 2 14 Tt
<U1(Q5T, €)> =1+ O —2eL (—— T 3 il 2)

A 2 9 3 T4 €

2
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41
with L = Q5T (t is the Laplace conjugate of ) and
2 7r2 28¢3 5
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v, — 1 l (67 N 7r_2> L1 <_211 _ lg? +3<3> 836 11397* 341G N 317t
6 18 6 /) e\ 27 36 81 108 9 90
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Can be extracted using two-loop results for hemisphere soft function
Kelley, Schwartz, Schabinger and Zhu '11; Hornig, Lee, Stewart,
Walsh and Zuberi '11: Take energy in one hemisphere to ool

Note the 1/€" divergences!



Two-loop result
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00 2T

1672
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441n* 2 42
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161 16 801 4 An?
+ CrTFEny [(— 3n5 —4) In® 6 + (—?ln2ﬁ+ gnﬁ + 10+81n2> Inéd + (—§ + %) lnﬁ+c§]

e 1/e4 1/e3, 1/e2, 1/e divergences have cancelled!

e Two-loop constants cof, co4, ¢of, unknown. (Could be
obtained from two-loop collinear result.)
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Data points from Event2 NLO generator, solid lines are our prediction.
Difference yields unknown constants

o =171830 ot = 287707 ] = 17.3703

Note: Event2 suffers from numerical instability in nschannel



—actorization for two-jet cross section

1B, Neubert, Rothen, Shao, arXiv:1508.06645

Laplace space color trace |
T f l integration over angles

l @ l 12

5(r) = 00 H(Q) S(Q7) | Y ( Tun(Q9) & U (Q07) )

| m=1 \ _
T Coft functions with
Soft function m Wilson lines

Hard function Jet functions with m partons
at fixed direction

First all-order factorization theorem for non-global
observable. Achieves full scale separation!



(72(Q0) © Uz (Qo7) ) =

integration over angles [
~ splitting functions coft Wilson lines along direction
integrated over energy, of energetic particles
partons at fixed angles (a third Wilson line, along the

direction of the second jet, is not shown)



Wilson coefficients fulfill renormalization
group (RG) equations, e.g.

dl—Jm (Q6, 1) ZJk (Q6, 1) Tiiny

1. Compute Jm at a their characteristic
high scale un,~ Qo

2. Evolve Jm to the scale of low energy
physics ui~ Qop

Avoids large logarithms a," In"(f) of scale

ratios which can spoil convergence of
perturbation theory.

Resummation by RG evolution

Q
>,

I
(Q <
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(N)LL resummation

Need tree-level matrix elements
Uy =1+0(s) - Ti=1 | Tp~am !

and one-loop anomalous dimensions
(ViR 0 0 ...\

0 Vo R, 0 ...
pJ:Z‘_S 0 0 Vs Ry ... |
™o o o0 Vv, ...

\ o )

Formal solution: Jm (1) = T m (pn) Uk (pn s 1) “WIth

Oﬁs(,uuh) FJ(Oé>
U(ph, ) = Pexp / dov
) - Pla)




Fixed-order expansion

Challenging to solve RG explicitly, but order-by-order
structure Is similar to parton shower

(XSZR1—|—‘/1,
Oé?ZRl(RQ—F‘/Q)—F‘/l(Rl—F‘/l),

Ck:;) . R1 [RQ(R;), —+ ‘/3) + ‘/Q(RQ + ‘/2)}
+Vi|Ri(R2 + Vo) + Vi(R1 + V1)) .

* Reproduces results from BMS equation in large Nc
limit

* Our RG has close connection to functional RG by
Caron-Huot ‘15



Summary and Outlook

We have, for the first time, derived a factorization
theorem for a non-global observable.

Based on an EFT, which includes a new
“coft” (collinear+soft) momentum mode.

RG evolution in this EFT can be used to systematically
resum large logarithms, also beyond LL and large N..

* Will need to develop numerical techniques to solve
the associated RG equations.

Numerous possible applications: jet structure, jet
substructure, jet vetoes, ...



