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A prelude: The Higgs boson and gauge invariance

CERN 2012: The Higgs boson has been measured!

The ‘textbook‘ Higgs is a gauge-dependent state and thus
unphysical!?!

Gauge invariance broken? No! (Elitzur‘s theorem)

The custodial (global!) SU(2) symmetry of the SM is broken:
Goldstone bosons become elements of the elementary BRST quartets!

Gauge-invariant states are necessarily composite!

Relation between gauge-invariant and gauge-dependent states:
Fröhlich, Morchia, Strocchi, PLB 97 (1980), NPB 190 (1981)
Physical H,W and Z are gauge-invariant H-H, H-W and H-Z bound
states with same mass as elementary fields in unitary gauge.
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Motivation: Why Functional Approaches to QCD?

Where to look for the nucleon in QCD?
Free propagation of lowest three-quark bound state:

Six-quark Green function!
Calculating it requires either

to employ a lattice (i.e., give up Poincaré invariance)
to use Monte-Carlo algorithms (i.e., use a statistical method)
to run programs on supercomputers

or
to fix a gauge (i.e., sacrifice gauge invariance)
to truncate equations in a way which is verified á posteriori

Method 1:
Excellent results for hadron properties & insight into hadron structure!
Method 2:
Relation of observables to confinement, DχSB, axial anomaly, . . .
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Motivation: Why Functional Approaches to QCD?

QCD correlation functions contribute to the understanding of

F confinement of gluons, quarks, and colored composites.
F DχSB, i.e., generation of quark masses and chirality-changing

quark-gluon interactions.
F UA(1) anomaly and topological properties.

Within Functional Methods
(Exact Renorm. Group, Dyson-Schwinger eqs., nPI methods, . . . ):
Input into hadron phenomenology via QCD bound state eqs..

Bethe-Salpeter equations for mesons
form factors, decays, reactions, ...

covariant Faddeev equations for baryons
nucleon form factors, Compton scattering, meson production, ...
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Motivation: Why Functional Approaches to QCD?

Functional approaches to Landau gauge QCD:

I in principle ab initio ,
I perturbation theory included ,
I some elementary Green’s functions quite well-known ,
I in other gauges complicated . . . /
I truncations for numerical solutions necessary /

State-of-the-art:
3-particle-irreducible truncation with dynamical propagators and
three-point functions for mesons.
2PI rainbow-ladder truncation (= dressed gluon exchange) with
dynamical propagators for baryons.
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Basics of Covariant Gauge Theory

Gauge theory: Unphysical degrees of freedom!

QED: Physical states obey Lorentz condition.

∂µAµ|Ψ〉 = 0 (Gupta− Bleuler).

⇒ In symmetric phase:
Two physical massless photons in physical state space.

Time-like photon (i.e. negative norm state!) cancels
longitudinal photon in S–matrix elements!

Guaranteed on an algebraic level!
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Covariant Gauge Theory

In S-Matrix

+ = 0

A AA A
T T L0

/

A
T AT

= 0

A
0

A
L
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Covariant Gauge Theory

Quantum Yang-Mills theory:
Selfinteraction of gluons:
transverse gluons scatter into longitudinal ones and vice versa!

⇒ Faddeev–Popov ghosts = anticomm. scalar fields.

Ghosts are unphysical
(anti-commuting scalar)
Yang–Mills degrees of freedom!
Important in quantum fluct., but no associated particles!

Global ghost field as ‘gauge parameter‘:
BRST symmetry of the gauge-fixed action!
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Covariant Gauge Theory

Symmetry of the gauge-fixed generating functional:
δBAa

µ = Dab
µ cb λ , δBq = −igta ca q λ ,

δBca = − g
2 f abc cbcc λ , δB c̄a = 1

ξ∂µAa
µ λ ,

Becchi–Rouet–Stora & Tyutin (BRST), 1975

• Parameter λ ∈ Grassmann algebra of the ghost fields

• λ carries ghost number NFP = −1

• Via Noether theorem: BRST charge operator QB

• generates ghost # graded algebra δBΦ = {iQB,Φ}
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Covariant Gauge Theory

BRST algebra: Q2
B = 0, [iQc ,QB] = QB,

complete in indefinite metric state space V.
generates ghost # graded δBΦ = {iQB,Φ}.
LGF = δB

(
c̄
(
∂µAµ + α

2 B
))

BRST exact.

Positive definite subspace Vpos = Ker(QB)
(i.e. all states |ψ〉 ∈ V with QB|ψ〉 = 0)
contains ImQB (i.e. all states QB|φ〉),
c.f. exterior derivative in differential geometry.

Hilbert space: cohomology H = KerQB
ImQB

' Vs BRST singlet
longitudinal & timelike gluons, ghosts : BRST quartet
(c.f. Gupta–Bleuler mechanism in QED)
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Covariant Gauge Theory

Perturbative BRST quartet of time-like gluons:

1st Parent 1stDaughter

2ndDaughter 2ndParent

BRST ChargeOperator

BRST ChargeOperator

FPOpposite

ConjugationFP Charge

|ΠN〉
neg. norm

|∆N+1〉
zero norm

|∆−N〉
zero norm neg. norm

|Π−N−1〉

〈Π−N−1|∆N+1〉 = 1〈∆−N |ΠN〉 = 1

|Π0〉 lin. combination of time-like and long. gluon
|∆1〉 ghost
|Π−1〉 antighost
|∆0〉 lin. combination of time-like and long. gluon
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Kugo–Ojima confinement

Non-perturbative BRST quartets of transverse gluons, resp., quarks:

1st Parent 1stDaughter

2ndDaughter 2ndParent

BRST ChargeOperator

BRST ChargeOperator

FPOpposite

ConjugationFP Charge

|ΠN〉
neg. norm

|∆N+1〉
zero norm

|∆−N〉
zero norm neg. norm

|Π−N−1〉

〈Π−N−1|∆N+1〉 = 1〈∆−N |ΠN〉 = 1

|Π0〉 transverse gluons quarks
|∆1〉 gluon-ghost bound states quark-ghost bound states
|Π−1〉 gluon-antighost bound states quark-antighost bound states
|∆0〉 gluon-ghost-antigh./gluonic b.s. quark-gh.-antigh./quark-gluon b.s.

N. Alkofer and R.A., Phys. Lett. B 702 (2011) 158 [arXiv:1102.2753 [hep-th]];
PoS FACESQCD (2011) 043 [arXiv:1102.3119 [hep-th]].
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Kugo–Ojima confinement criterion

⇒ Physical states are BRST singlets!
(BRST cohomology: Hilbert space H = Ker QBRST

Im QBRST
.)

Time–like and longitudinal gluons (BRST quartet) removed from
asymptotic states as in QED, but:

Transverse gluons and quarks also BRST quartets, i.e. confined,
if ghost propagator is highly infrared singular!

(⇒ Kugo–Ojima confinement criterion)
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Kugo–Ojima confinement criterion

Realization of Confinement depends on global gauge structure:
Globally conserved current (∂µJa

µ = 0)

Ja
µ = ∂νF a

µν + {QB,Dab
µ c̄b}

with charge Qa = Ga + Na.

QED: MASSLESS PHOTON states in both terms.
Two different combinations yield:
unbroken global charge Q̃a = Ga + ξNa.
spont. broken displacements (photons as Goldstone bosons).

No massless gauge bosons in ∂νF a
µν : Ga ≡ 0.

(QCD, e.w. Higgs phase, ...)
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Kugo–Ojima confinement criterion

QCD: Unbroken global charge

Qa = Na = {QB,

∫
d3xDab

0 c̄b}

well–defined in V.
With Dab

µ c̄b(x)
x0→±∞−→ (δab + uab)∂µγ̄

b + . . .

⇒ Kugo-Ojima Confinement Criterion:

uab(0) = −δab

where ∫
dxeip(x−y)〈0|T Dµca(x)g(Aν × c̄)b(y)|0〉

=: (gµν −
pµpν
p2 )uab(p2),

If fulfilled: Physical States ≡ BRST singlets ≡ color singlets!
R. Alkofer (Graz) From gauge fields to physical particles Vienna, April 12, 2016 16 / 68



Kugo–Ojima confinement criterion

In Landau gauge:

Ghost propagator more sing. than simple pole
⇓

Kugo-Ojima criterion

T. Kugo, hep-th/9511033, Int. Symp. “BRS Symmetry”, Kyoto.
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Coulomb, Confinement, & Higgs phase

Confinement vs. Higgs mechanism?
No gauge-invariant order parameter!

A possible definition of confinement in the presence of fundamental
charges†:

cf., V. Mader et al., Eur. Phys. J. C74 (2014) 2881 [arXiv:1309.0497]; and refs. therein
†Wilson loop gives only a clear criterion in the absence of quarks!

R. Alkofer (Graz) From gauge fields to physical particles Vienna, April 12, 2016 18 / 68



Confinement and Higgs mechanism

If BRST or equivariant BRST symmetry:
Infrared saturation of Quantum E.o.M. of gauge boson propagator
discriminates phases of gauge theories!

Coulomb: massless gauge boson
Confinement: unphysical current

Higgs: physical current

Saturating part of current is given by:

j̃µ(x) = jµU(1) − i∂µb linear covariant Abelian U(1) ,

j̃a
µ(x) = jLCG a

µ − is(Dµc̄)a in LCG (Kugo-Ojima scenario),

j̃a
µ(x) = jGLCG a

µ − isα(Dµc̄)a in ghost-antighost sym. GLCG ,

j̃µ(x) = jMAG
µ − i∂µb SU(2) in Maximally-Abelian Gauge ,

j̃a
k (x) = jC a

k − is(Dk c̄)a spatial components in Coulomb gauge ,

j̃a
µ(x) = jGZ a

µ − isχa
µ in Gribov-Zwanziger theory .

V. Mader et al., Eur. Phys. J. C74 (2014) 2881 [arXiv:1309.0497].
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Gluon Propagator

pure Yang-Mills, T = 0
Landau gauge Gluon Ren. Fct. Dtr

Gluon = Z(p2)/p2

A. Sternbeck et al., PoS LAT2006, 76

p/GeV
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Gluon Propagator

A. Sternbeck et al., PoS LAT2006, 76

p/GeV

— L. von Smekal, A. Hauck, R.A., Phys. Rev. Lett. 79 (1997) 3591
Dyson-Schwinger eqs. (DSEs)
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Gluon Propagator

A. Sternbeck et al., PoS LAT2006, 76

p/GeV

— L. von Smekal, A. Hauck, R.A., Phys. Rev. Lett. 79 (1997) 3591
— C. S. Fischer, R.A., Phys. Lett. B536 (2002) 177;

C. Lerche, L. von Smekal, Phys. Rev. D65 (2002) 125006.
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Gluon Propagator

A. Sternbeck et al., PoS LAT2006, 76

p/GeV

— L. von Smekal, A. Hauck, R.A., Phys. Rev. Lett. 79 (1997) 3591
— C. S. Fischer, R.A., Phys. Lett. B536 (2002) 177
— J.M.Pawlowski, D.Litim, S.Nedelko, L.v.Smekal, PRL93 (2004) 152002

Exact Renormalization Group (ERG) eqs.
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Gluon Propagator

p/GeV

— L. von Smekal, A. Hauck, R.A., Phys. Rev. Lett. 79 (1997) 3591
— C. S. Fischer, R.A., Phys. Lett. B536 (2002) 177
— J.M.Pawlowski, D.Litim, S.Nedelko, L.v.Smekal, PRL93 (2004) 152002
— C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324 (2009) 2408;

L. Fister, PhD thesis
combination of ERG,DSE & 2PI!
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Infrared Exponents for Gluons and Ghosts

Use DSEs and FRG eqs:

→ Two different towers of equations for Green functions
E.g. ghost propagator

−1 = −1 −

k ∂k −1 =

⊗
+

⊗

−1
2

⊗

+

⊗

MATHEMATICA-based derivation of functional equations:

R. A., M. Q. Huber, K. Schwenzer, Comp. Phys. Comm. 180 (2009) 965;
M. Q. Huber and J. Braun, Comp. Phys. Comm. 183 (2012) 2441 .
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Infrared Exponents for Gluons and Ghosts:

Apply asymptotic expansion to all primitively divergent Green functions,
[R. A., C. S. Fischer, F. Llanes-Estrada, Phys. Lett. B611 (2005) 279.]
use DSEs and ERGEs:
→ Two different towers of equations for Green functions

IR-Analysis of whole tower of equations⇒
Unique scaling solution
+ an one-parameter family of solutions with IR trivial Green functions.
[C.S. Fischer and J.M. Pawlowski, PRD 80 (2009) 025023]

Scaling vs. decoupling solution:
Lattice calculations for gluon propagator: decoupling solutions.
[A. Cucchieri et al., many others; but also: A. Sternbeck et al. ]
Scaling solution respects, decoupling solutions break BRST.
IR behaviour might depend on non-pert. completion of gauge.
[A. Maas, Phys. Lett. B689 (2010) 107.]
Similar (identical) analytical structure for gluon propagator.
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Scaling solution respects, decoupling solutions break BRST.
IR behaviour might depend on non-pert. completion of gauge.
[A. Maas, Phys. Lett. B689 (2010) 107.]
Similar (identical) analytical structure for gluon propagator.
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Analytical structure for gluon propagator

Gluon propagator is positivity violating, cut along time-like half-axis.
R.A., W. Detmold, C.S. Fischer and P. Maris, PRD70 (2004) 014014

Imaginary part of gluon propagator:
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S. Strauss, C. S. Fischer, C. Kellermann, Phys. Rev. Lett. 109 (2012) 252001
[arXiv:1208.6239]
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Infrared Exponents for Gluons and Ghosts

Scaling solution:
n external ghost & antighost legs and m external gluon legs
(one external scale p2; solves DSEs and STIs):

Γn,m(p2) ∼ (p2)(n−m)κ

Scaling / decoupling solution:

Ghost propagator IR divergent (Kugo-Ojima for scaling)
Gluon propagator IR suppressed (Gribov-Zwanziger)
Ghost-Gluon vertex IR finite
3- & 4- Gluon vertex IR divergent / finite

Note:
Same dichotomy of solutions in Coulomb gauge (variational / ERG)
and in maximally Abelian gauge (DSE / ERG).
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Gluon and Ghost Propagators
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Three-gluon vertex

DSE for three-gluon vertex:
[G. Eichmann, R. Williams, M. Vujinovic, RA, Phys. Rev. D89 (2014) 105014 ]
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Three-gluon vertex

DSE for three-gluon vertex (truncated):
[G. Eichmann, R. Williams, M. Vujinovic, RA, Phys. Rev. D89 (2014) 105014 ]

= − +

+ + +

14 tensor elements→ 4 fully transverse ones
apply cyclic perm. w.r.t. external legs→ bose symmetry
Is there a zero in component projected on tree-level tensor?
(cf., A. Maas)
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Three-gluon vertex

Applications:
quark-gluon vertex (and consequently unquenching)
conformal window
symmetry preserving Bethe-Salpeter kernel
irreducible three-body forces in the baryon

Kinematics:

R. Alkofer (Graz) From gauge fields to physical particles Vienna, April 12, 2016 32 / 68



Three-gluon vertex

Γ
(1)µνρ
3g,TTT

Green: zero; Orange: ghost triangle; Blue: ghost + swordfish.
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Three-gluon vertex

Running coupling:
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Coupling quarks: quark prop. and quark-gluon vertex
R.A., C.S. Fischer, F. Lllanes-Estrada, K. Schwenzer, Annals Phys. 324 (2009) 106;
C.S. Fischer and R. Williams, Phys. Rev. Lett. 103 (2009) 122001;
A. Windisch, M. Hopfer, G. Eichmann, RA, in preparation.

Chiral symmetry dynamically or explicitely broken:

quark propagator infrared finite:

S(p) =
p/ −M(p2)

p2 + M2(p2)
Zf (p2)

AND
quark-gluon vertex
incl. dynamically generated χSB tensors structures:

Γµ = ig
12∑

i=1

λiGi
µ , G1

µ = γµ , G2
µ = p̂µ , G3

µ = . . .
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Coupling quarks: quark prop. and quark-gluon vertex

DSEs for quark propagator and quark-gluon vertex via 3PI action:

= −−1 −1

= − 1
2Nc

+Nc
2

hadron physics IR behaviour
confinement
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Coupling quarks to gluons: quark propagator

Quark mass function with calculated QGV and modeled 3gV:

dIR = 0
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Coupling quarks to gluons: quark-gluon vertex

Eight transverse tensor structures,
e.g., at symm. momenta x = p2

1 = p2
2 = p2

3:

Significant IR enhancement!
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The zero in the three-gluon vertex causes zero in the tree-level
structure of quark-gluon vertex!

DχSB in QGV!!!
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Coupling quarks to gluons: quark-gluon vertex

Relative importance:

dynamically generated scalar-
type coupling important!
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Summary on Landau gauge 2- and 3-point-functions

For a small number of light flavours:∗

IR enhanced ghost propagator
IR suppressed gluon propagator
IR decoupled quark propagator & dynamically generated mass
ghost-gluon vertex close to tree-level
zero in three-gluon vertex
infrared enhanced quark-gluon vertex &
dynamically generated chirality-changing interactions

NB: Four-gluon vertex currently under investigation→
primitively divergent Landau gauge QCD Green functions known!
Higher order Green functions are finite upon upon renormalization of prim.
dvgcs. & fulfill (multi-)linear equations.

∗Increase Nf : 2nd order phase transition to conformal window! Propagators and
3-point-functions change significantly!
cf., M. Hopfer, C. Fischer, RA, JHEP 1411 (2014) 035 [arXiv:1405.7031]
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1 Motivation: Why Functional Approaches to QCD?

2 Basics of Covariant Gauge Theory

3 QCD Green functions in Landau gauge
Gluon, Ghost and Quark Propagators
Three-point vertex functions

4 Relativistic Three-Fermion Bound State Equations
Structure of Baryonic Bound State Amplitudes
Quark Propagator and Rainbow Truncation
Interaction Kernels and Rainbow-Ladder Truncation
Coupling of E.M. Current and Quark-Photon Vertex
Some Selected Results

5 Summary and Outlook

R. Alkofer (Graz) From gauge fields to physical particles Vienna, April 12, 2016 41 / 68



Relativistic Three-Fermion Bound State Equations

Dyson-Schwinger eq. for 6-point fct. =⇒ 3-body bound state eq.:

BOUND STATE:

Pole in G(3)

or (equiv.) for P2 = −M2
B

Pole in T (3)

bound state amplitudes:

covariant 3-body bound state eq. (cf., Bethe-Salpeter for 2-body BS):
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Relativistic three-fermion bound state equations

3-body bound state eq.:

NB: With 3-particle-irreducible interactions K̃ (3) neglected:
Poincaré-covariant Faddeev equation.

Elements needed for bound state equation:
Tensor structures (color, flavor, Lorentz / Dirac) of the BS ampl.
Full quark propagators for complex arguments
Interaction kernels K2,3

Needed for coupling to e.m. current:
Full quark-photon vertex
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Relativistic three-fermion bound state equations

Structure of baryonic bound state amplitudes

∼ 〈0|qαqβqγ |BI〉 ∝ ΨαβδI (with multi-indices α = {x ,D, c, f , . . .})

and I baryon (multi-)index =⇒ baryon quantum numbers

C. Carimalo, J. Math. Phys. 34 (1993) 4930.

Comparison to mesonic BS amplitudes 〈0|qαq̄β|MI〉 ∝ ΦαβI :
scalar and pseudoscalar mesons: 4 tensor structures each
vector and axialvector mesons: 12 tensor struct. each, 8 transv.
tensor and higher spin mesons: 8 transverse struct. each

C. H. Llewellyn-Smith, Annals Phys. 53 (1969) 521.
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Relativistic three-fermion bound state equations

Requirements for (baryonic) bound state amplitudes:

positive energy (for fermionic bound states)

well-defined parity
irreducible representation of the Poincaré group otherwise.

Possible and recommended:
Complete orthogonal Dirac tensor basis

s.t. partial-wave composition in rest frame.
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Relativistic three-fermion bound state equations

2.6 Hadron spectrum 47

uuu uud ddu ddd uus uds dds ssu ssd sss

S ∆++ ∆+ ∆0 ∆− Σ+ Σ0 Σ− Ξ0 Ξ− Ω−

D1 p n Σ+ Σ0 Σ− Ξ0 Ξ−

D2 Λ0

A Λ0

Table 2.3: SU(3)F flavor wave functions for baryons.

symmetric (from SS ′ or AA′) or antisymmetric (from SA). From two doublets one
can construct singlets and another doublet. Here are all the possible combinations:

S ′′ : D · D′ := aa′ + ss′ , SS ′ , AA′ ,

A′′ : D ×D′ := as′ − sa′ , SA , (2.87)

D′′ : D ∗ D′ :=

(
as′ + sa′

aa′ − ss′

)
, SD , A×D := A

(
s
−a

)
.

Here we have simply defined the operations × and ∗ to fit our purposes. You can verify
the validity of this equation by using the transformation properties of Eq. (2.86). The
M matrices are real and orthogonal, so that for example D · D′ is invariant under any
of the permutations in Eq. (2.86), hence it must be a symmetric singlet.

Flavor wave functions for baryons. [See also Edwards et al, 2011] Now, if we want
to construct the flavor wave function for a baryon with flavor content uud (such as the
proton or the ∆+), we take φ1 = φ2 = u and φ3 = d. From Eqs. (??)–(??) we get

S(uud) = 2 (uud+ udu+ duu) ,

D1(uud) = 2

(
udu− duu

− 1√
3
(udu+ duu− 2uud)

)
(2.88)

and D2(uud) = A(uud) = 0. Apart from overall normalization, S(uud) is the flavor
wave function of the ∆+ and D1(uud) is that of the proton. Had we started from ddu
instead of uud, we would have obtained the wave functions for the ∆0 and the neutron
(replace u ↔ d in the equation above). The combination uuu returns only a singlet
(∆++), and from uds we get everything: S, A and two doublets. If we take all 10
combinations with different flavor content into account (uuu, ddd, sss, uud, uus, ddu,
dds, ssu, ssd, uds), the permutation group gives us

• ten symmetric singlets, which form the flavor decuplet with ∆, Σ, Ξ and Ω,

• eight doublets that form the flavor octet, including proton, neutron, Σ, Ξ and Λ,

• and one antisymmetric singlet from uds, the flavor singlet for Λ.

This is just what Eq. (??) says; the result is collected in Table ??. Including charm as
a fourth flavor, we can immediately extend the construction to SU(4)F which would
give us 20 symmetric singlets, 20 doublets and 4 antisymmetric singlets:

4⊗ 4⊗ 4 = 20S ⊕ 20MA
⊕ 20MS

⊕ 4A . (2.89)
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M I S 1
2

+ 3
2

+ 5
2

+ 1
2

− 3
2

− 5
2

−

8 1
2

0 N(0.94) N (1.72) N (1.68) N (1.54) N (1.52) N (1.68)

N (1.44) N (1.90) N (1.65) N (1.70)

N (1.71) N (1.88)

10 3
2

0 ∆ (1.91) ∆(1.23) ∆(1.91) ∆(1.62) ∆(1.70) ∆(1.93)

∆ (1.60)

∆ (1.92)

8 0 −1 Λ(1.12) Λ (1.89) Λ(1.82) Λ(1.67) Λ(1.69) Λ(1.83)

Λ (1.60) Λ(2.11) Λ(1.80)

1 0 −1 Λ (1.81) Λ(1.41) Λ(1.52)

8 1 −1 Σ(1.19) Σ(1.92) Σ(1.75) Σ(1.67) Σ(1.78)

Σ (1.66)

10 1 −1 Σ(1.39) Σ(1.94)

8 1
2

−2 Ξ(1.31) Ξ (1.69) Ξ (1.82)

10 1
2

−2 Ξ (1.53)

10 0 −3 Ω(1.67)

Table 2.2: SU(3)F classification of known baryons in terms of JP , isospin I and strangeness
S. Only well-established states (three and four-star resonances, PDG 2012) are included, with
masses in GeV. The table includes both ground states and excitations. Similarly to the singlet-
octet mixing in the meson sector, baryons with same I and S quantum numbers can mix among
the multiplets. In these cases, the assignment above is based on quark-model expectations. The
bold entries show the s−wave ground states according to the quark model.

the fundamental triplet representation of SU(3). Product representations can again be
arranged in irreducible SU(3) representations, and also into irreducible representations
of the permutation group SN . For example, this yields for a baryon:

3⊗ 3⊗ 3 = 10S ⊕ 8MA
⊕ 8MS

⊕ 1A . (2.80)

Can be constructed according to the ..., Clebsch-Gordan coefficients. For SU(3)C only
the antisymmetric singlet is allowed since baryons are colorless. For SU(3)F , which we
are interested in here, all combinations can (and do) appear.

Permutation group. Cheng-Li p.105 for reason why this works. Suppose u, d and s
denote the three flavor vectors that transform under the fundamental representation of
SU(3). Combining three of them gives us in total 3× 3× 3 = 27 possible combinations
which can be arranged according to the permutation group S3. To this end, let us
introduce the vector φi which can stand for any member of the set {u, d, s}. Without
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Figure 2.1: SU(3)F meson singlet and octet; baryon singlet, octet and decuplet.

Green functions and Poincaré transformations. Should I include something
here? How do fields, states and GFs transform?

Bound-state poles and hadron wave functions. Hadrons defined as poles in
Green functions. Must carry the quantum numbers of the currents. Meson wave func-
tions as quark-antiquark bound states will have the same form as the currents (flavor-
octet, flavor-singlet). (Connection between fundamental and product representations
of SU(3)F ?)

Baryons: analogous, produced by baryon currents. Observable: gauge-invariant
currents, quark fields at same space-time point (or connected by link!). Baryon wave
functions from three-quark currents, invariant under color and flavor transformations,
tensor products (Cheng-Li 104, commute with permutation group).

Hadronic current matrix elements. In analogy to Eq. (??), define the Green
function

(GJ)a,αβγδ(x, x1, x2, x3, x4) := 〈0|T Ja(x)ψα(x1)ψβ(x2)ψγ(x3)ψδ(x4) |0〉 . (2.66)

If we work out all possible time orderings, retain the s−channel contribution and insert
two complete sets of states before and after the interaction with the current, we should
eventually find

(GJ)a,αβγδ(q, q
′, p, p′)

∣∣∣
s channel

=
∑

λλ′

iχb
αβ(q, p)

p2 −m2
λ + iε

〈λb| Ja(0) |λ′
c〉

iχc
δγ(q

′,−p′)

p′2 −m2
λ′ + iε

,

(2.67)
so that the residue at each bound-state pole is proportional to the hadron’s current.
Can also describe transition currents from one meson (λb) to another (λ′

c).

2.6 Hadron spectrum

So far we have only investigated the flavor structure of the QCD Lagrangian and its
group-theoretical implications for the physical spectrum. In principle we should be
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ishes at k2 = 0. The first term supplies the necessary in-
frared strength and is characterized by two parameters:
an infrared scale Λ and a dimensionless width parameter
η, cf. Fig. 3.
In combination with the interaction of Eq. (9), the RL

truncation has been extensively used in Dyson-Schwinger
studies of hadrons. Upon setting the scale Λ = 0.72 GeV
to reproduce the experimental pion decay constant, RL
provides a reasonable description of pseudoscalar-meson,
vector-meson, nucleon and ∆ ground-state properties, see
e.g. [60–63] and references therein. Moreover, these ob-
servables have turned out to be largely insensitive to the
shape of the coupling in the infrared [59, 62]; i.e., to a
variation of the parameter η around the value η ≈ 1.8.

Progress has also been made for other meson quan-
tum numbers such as axial-vector and pseudoscalar isos-
inglet mesons whose properties are subject to substan-
tial corrections beyond rainbow-ladder [64–70]. However,
such analyses typically require a significant amplification
of numerical effort which is not yet feasible for stud-
ies in the baryon sector. Important attractive contribu-
tions beyond RL come from a pseudoscalar meson-cloud
which augments the ’quark core’ of dynamically gener-
ated hadron observables in the chiral regime and van-
ishes with increasing current-quark mass. Such effects
are missing in a RL truncation. Thus, the present work
aims at investigating the electromagnetic form factors of
the nucleon’s quark core.
We note that through Eq. (9) all parameters of the

interaction α(k2), and thereby all equations that appear
in subsequent sections, are fixed by using information
from pion properties only.

B. Nucleon amplitude

Upon having determined the input of the covariant
Faddeev equation through Eqs. (6–9) one can proceed
with its solution. First results for the nucleon’s mass
and bound-state amplitude were reported in Ref. [33, 34].
While the mass can be reliably determined with rela-
tively modest numerical accuracy, the form-factor com-
putation requires a significantly higher resolution of the
Faddeev amplitude, especially at larger photon momen-
tum transfer. In the present work we use a solution tech-
nique that exploits the permutation-group properties of
the amplitude. This enables us to drastically reduce the
involved CPU times and solve the Faddeev equation with
its full momentum dependence. The method is described
in App. C.
The structure of the nucleon amplitude, together with

its basis decomposition and permutation-group proper-
ties, is discussed in detail in App. B. In the following we
will highlight some key aspects. The spin-flavor structure
of the on-shell nucleon amplitude can be expressed as

Ψ = Ψ · F =
2∑

n=1

Ψn Fn , (10)

where the Dirac amplitude Ψ and the isospin-1/2 flavor
tensor F of Eq. (B2) transform as doublets under the
permutation group S3, with mixed-antisymmetric entries
Ψ1, F1 and mixed-symmetric components Ψ2, F2, respec-
tively. The structure of Eq. (10) ensures the Pauli princi-
ple: the nucleon amplitude involving its full spin-flavor-
color structure must be antisymmetric under quark ex-
change, hence its spin-flavor part has to be symmetric.
The spinor parts Ψn involve 64 covariant, orthogonal and
momentum-dependent Dirac structures Xk,ijω,

Ψn(p, q, P ) =
∑

kijω

fn,kijω Xk,ijω , (11)

which are discussed in detail in App. B 2. The ampli-
tude dressing functions fn,kijω depend on the 5 Lorentz-
invariant momentum variables

p2 , q2 , z0 = p̂T · q̂T , z1 = p̂ · P̂ , z2 = q̂ · P̂ , (12)

where a hat denotes a normalized 4-vector and the sub-
script ’T ’ a transverse projection with respect to the nu-
cleon momentum P . The total momentum-squared is
fixed: P 2 = −M2.
The orthogonal basis elements Xk,ijω are eigenstates

of total quark spin and orbital angular momentum in
the nucleon’s rest frame; the corresponding partial-wave
decomposition is explained in App. B 3. The rest-frame
nucleon amplitude is dominated by s−wave components,
i.e. by the subset of eight relative-momentum indepen-
dent basis elements which carry total quark spin s = 1/2
and orbital angular momentum l = 0. We denote them
here by

S± := X1,11± = Λ±γ5C ⊗ Λ+ ,

V± := X1,21± = 1√
3
γα
T Λ±γ5C ⊗ γα

T Λ+ ,

P± := X2,11± = (γ5 ⊗ γ5) S± ,

A± := X2,21± = (γ5 ⊗ γ5)V± ,

(13)

where the γ−matrices γα
T are transverse with respect to

the nucleon momentum P . The remaining basis elements
are either p− or d−waves. Table I shows the s−, p− and
d− wave contributions to the nucleon’s canonical normal-
ization integral (23) at different current-quark masses.
The s−wave elements contribute roughly 2/3 to the norm
and the p−waves the remaining third. The p−wave con-
tribution decreases, albeit very slowly, with higher quark
mass which signals a substantial amount of orbital an-
gular momentum in the nucleon’s rest-frame amplitude
well beyond the strange-quark mass.
To analyze the s−wave components in the nucleon am-

plitude in more detail it is instructive to rearrange the
eight basis elements of Eq. (13) in permutation-group
multiplets. This yields the orthonormal doublets

Ψ(1) =

(
S+
A+

)
, Ψ(2) =

1√
3

(
2P+ S−
2 Ṽ − A−

)
,

Ψ(3) =
1√
3

(
S− − P+

√
3V

A− + Ṽ +
√
3 P̃

)
,

(14)
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FIG. 4: (Color online) Result for the three dominant s−wave
contributions in the nucleon’s Faddeev amplitude. The plot
shows the zeroth Legendre and Chebyshev moments (in the
variables y1, z0 and z1, z2, respectively) of the dressing func-
tions si defined via Eqs. (14) and (16).

where the upper entries are mixed-antisymmetric with
respect to the first two Dirac indices and the lower entries
mixed-symmetric, and two further singlets

ΨA =
1√
3

(
S− − P−

√
3V

)
,

ΨS =
1√
3

(
A− + Ṽ −

√
3 P̃

) (15)

which are fully antisymmetric or symmetric, respectively.

Here we defined P := (P+ + P−)/2, P̃ := (P+ − P−)/2
and accordingly for V and Ṽ.

Eqs. (14–15) imply that, without including a depen-
dence on the relative momenta, only three fully sym-
metric Dirac-flavor combinations Ψ(i) · F can arise in the
s = 1/2, l = 0 subspace. They appear in combination
with symmetric singlet dressing functions which are lin-
ear combinations of those associated with the basis ele-
ments in Eq. (13) and must depend on symmetric combi-
nations of the momentum variables in Eq. (12). Denot-
ing them by si, a fully symmetric spin/momentum-flavor
amplitude is then obtained via

Ψ =
3∑

i=1

si Ψ
(i) · F+ . . . , (16)

where the dots refer to further combinations of Eqs. (14–
15) with mixed-(anti-)symmetric dressing functions, and
also to the remaining p− and d−wave components. In
Eq. (B7) we define momentum variables that transform
as multiplets under S3, namely a symmetric singlet vari-
able

x :=
p2

4
+

q2

3
, (17)

mπ [GeV] 0.14 0.34 0.75
s−wave 0.66 0.67 0.69
p−wave 0.33 0.32 0.30
d−wave 0.01 0.01 0.01

TABLE I: s−, p− and d−wave contributions to the nucleon’s
canonical normalization at three pion masses, expressed as
fractions of 1. The first column corresponds to the physical
u/d−quark mass.

and four dimensionless angular variables y1, y2, w1, w2

which form doublets. The dressing functions si can then
only depend on the variable x and the symmetric combi-
nations y21 + y22 , w

2
1 + w2

2, and y1w1 + y2w2.

The full solution of the Faddeev equation indeed re-
veals the three singlet dressing functions si to contribute
the bulk to the s−wave fraction in the normalization.
Their angular dependence is weak, especially in the vari-
ables z2 and z0, and a corresponding polynomial expan-
sion vanishes rapidly. The zeroth angular moments of
the three si are plotted in Fig. (4) as a function of the
variable

√
x. All three dressing functions turn out to be

large; in particular, s1 and s3 are almost identical in size.

The resulting current-mass evolution of the nucleon’s
mass is displayed in Fig. 5. The pion mass was ob-
tained from its pseudoscalar-meson Bethe-Salpeter equa-
tion with the same rainbow-ladder input. The scale
Λ in Eq. (9) was fixed to reproduce the experimental
pion decay constant. In agreement with previous meson
and quark-diquark studies, the sensitivity to the infrared
shape of the effective coupling α(k2) is small; this is in-
dicated by the band which corresponds to a variation
η = 1.8 ± 0.2, cf. Fig. 3. At the physical u/d−quark
mass, our result MN = 0.94 GeV is in excellent agree-
ment with the experimental value, and its current-mass
evolution compares reasonably well with lattice data at
higher quark masses.

In connection with Fig. 5 we reiterate that contri-
butions from a pseudoscalar-meson cloud are absent
in a rainbow-ladder truncation; the current approach
can therefore be viewed to describe a hadronic quark
core. Such corrections can be estimated from chiral
effective field theory and would yield a reduction of
∼ 20 − 30% of the nucleon’s core mass in the chiral re-
gion [63]. The proximity between our calculated mass
and the experimental and lattice values therefore sug-
gests a non-perturbative cancelation mechanism beyond
rainbow-ladder. Indeed, such a behavior emerges for
the ρ−meson where attractive pion-cloud effects beyond
RL are essentially saturated by further repulsive con-
tributions from the quark-gluon vertex and the quark-
antiquark kernel [67–70]. In addition, the second type of
corrections dominates in scalar and axial-vector mesons
which explains why these quantum numbers are not
well reproduced in a RL truncation. Given the quali-
tatively quite similar behavior of the ρ−meson mass in
the present framework in comparison with lattice data, as
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TABLE I: Relations between the basis elements Ai j of Eq. (20) and {Si j, Pi j}. The corresponding relations for Vi j are obtained by interchanging
Si j ↔ Pi j. Similar dependencies hold for the Ti j, e.g.: T+11 = −2 A+11. The superscripts r = ± are not displayed for better readability.

A11 = P33 + P44 + rS22 A12 = P34 − P43 − rS21 A13 = P31 − P42 + rS24 A14 = P32 + P41 − rS23

A21 = P43 − P34 − rS12 A22 = P33 + P44 + rS11 A23 = P32 + P41 − rS14 A24 = P42 − P31 + rS13

A31 = P13 − P24 + rS42 A32 = P23 + P14 − rS41 A33 = P11 + P22 + rS44 A34 = P12 − P21 − rS43

A41 = P14 + P23 − rS32 A42 = P24 − P13 + rS31 A43 = P21 − P12 − rS34 A44 = P11 + P22 + rS33

TABLE II: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the eigen-

values of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the relation
between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for better
readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Xr
1 j,1 Xr

1 j,2 T1 j

1/2 0 S11 P11 1 ⊗ 1
1/2 1 S12 P12 1 ⊗ 1

2 [ /p, /q ]

1/2 1 S13 P13 1 ⊗ /p
1/2 1 S14 P14 1 ⊗ /q

s l
√

3 Xr
2 j,1

√
3 Xr

2 j,2

√
3 T2 j

1/2 0 V11 A11 γ
µ
T ⊗ γµT

1/2 1 V12 A12 γ
µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 V13 A13 γ
µ
T ⊗ γµT /p

1/2 1 V14 A14 γ
µ
T ⊗ γµT /q

s l
√

6 Xr
3 j,1

√
6 Xr

3 j,2

√
6 T3 j

3/2 2 3 S33 − V11 3 P33 − A11 3 /p ⊗ /p − γµT ⊗ γµT
3/2 1 3 S34 − 3 S43 − 2 V12 3 P34 − 3 P43 − 2 A12 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 S31 − V13 3 P31 − A13 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 S41 − V14 3 P41 − A14 3 /q ⊗ 1 − γµT ⊗ γµT /q

s l
√

2 Xr
4 j,1

√
2 Xr

4 j,2

√
2 T4 j

3/2 2 2 S44 + S33 − V11 2 P44 + P33 − A11 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 S34 + S43 P34 + P43 /p ⊗ /q + /q ⊗ /p
3/2 2 −2 S42 + S31 − V13 −2 P42 + P31 − A13 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 2 S32 + S41 − V14 2 P32 + P41 − A14 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]
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TABLE I: Relations between the basis elements Ai j of Eq. (20) and {Si j, Pi j}. The corresponding relations for Vi j are obtained by interchanging
Si j ↔ Pi j. Similar dependencies hold for the Ti j, e.g.: T+11 = −2 A+11. The superscripts r = ± are not displayed for better readability.

A11 = P33 + P44 + rS22 A12 = P34 − P43 − rS21 A13 = P31 − P42 + rS24 A14 = P32 + P41 − rS23

A21 = P43 − P34 − rS12 A22 = P33 + P44 + rS11 A23 = P32 + P41 − rS14 A24 = P42 − P31 + rS13

A31 = P13 − P24 + rS42 A32 = P23 + P14 − rS41 A33 = P11 + P22 + rS44 A34 = P12 − P21 − rS43

A41 = P14 + P23 − rS32 A42 = P24 − P13 + rS31 A43 = P21 − P12 − rS34 A44 = P11 + P22 + rS33

TABLE II: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the eigen-

values of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the relation
between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for better
readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Xr
1 j,1 Xr

1 j,2 T1 j

1/2 0 S11 P11 1 ⊗ 1
1/2 1 S12 P12 1 ⊗ 1

2 [ /p, /q ]

1/2 1 S13 P13 1 ⊗ /p
1/2 1 S14 P14 1 ⊗ /q

s l
√

3 Xr
2 j,1

√
3 Xr

2 j,2

√
3 T2 j

1/2 0 V11 A11 γ
µ
T ⊗ γµT

1/2 1 V12 A12 γ
µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 V13 A13 γ
µ
T ⊗ γµT /p

1/2 1 V14 A14 γ
µ
T ⊗ γµT /q

s l
√

6 Xr
3 j,1

√
6 Xr

3 j,2

√
6 T3 j

3/2 2 3 S33 − V11 3 P33 − A11 3 /p ⊗ /p − γµT ⊗ γµT
3/2 1 3 S34 − 3 S43 − 2 V12 3 P34 − 3 P43 − 2 A12 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 S31 − V13 3 P31 − A13 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 S41 − V14 3 P41 − A14 3 /q ⊗ 1 − γµT ⊗ γµT /q

s l
√

2 Xr
4 j,1

√
2 Xr

4 j,2

√
2 T4 j

3/2 2 2 S44 + S33 − V11 2 P44 + P33 − A11 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 S34 + S43 P34 + P43 /p ⊗ /q + /q ⊗ /p
3/2 2 −2 S42 + S31 − V13 −2 P42 + P31 − A13 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 2 S32 + S41 − V14 2 P32 + P41 − A14 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

〉N|)3x(ψ)2x(ψ)1x(T ψ|0〈) =3, x2, x1x(χ

) =p, q, P(χ

Flavor Color⊗ ⊗

48 Hadrons

In the SU(2)F case, on the other hand, we get four symmetric singlets (the four ∆
baryons) and two doublets (proton and neutron):

2⊗ 2⊗ 2 = 4S ⊕ 2MA
⊕ 2MS

. (2.90)

Temp-delete.

S(uud) = uud+ udu+ duu

D1(uud) =

(
udu− duu

− 1√
3
(udu+ duu− 2uud)

)

D1(ddu) =

(
dud− udd

− 1√
3
(dud+ udd− 2ddu)

)
(2.91)

∑

k

fk(p
2, q2, p · q, p · P, q · P ) τkαβγδ(p, q, P ) (2.92)

Full baryon wave function. The full baryon wave function transforms under the
direct product of the flavor, color and Poincaré group. It must be totally antisymmetric
under quark exchange as required by the Pauli principle (spin-statistics theorem), since
the three quarks are anticommuting Grassmann fields. We have discussed the SU(3)F
flavor wave functions above, one has SF , DF orAF . Baryons are color singlets, therefore
the color part must be the antisymmetric SU(3)C color singlet combination AC in
Eq. (2.80). In order to obtain a fully antisymmetric total wave function, the product
of Poincaré and flavor representations must be totally symmetric, and from Eq. (??)
we see that this is only possible if they have the same permutation group symmetry:

Atotal = AC (DF · DP ) or AC (SF SP ) or AC (AF AP ). (2.93)

The question remains what the Poincaré representations look like. In the nonrelativistic
quark model, they are assumed to be the direct product of O(3) orbital and SU(2) spin
wave functions. The latter are also decomposed according to Eq. (??) (replace u by ↑
and d by ↓) and yield four permutation-group singlets S with spin 3/2 and two doublets
D with spin 1/2. For orbital ground states (L = 0), the orbital wave functions are
spatially symmetric, so that the only possible Poincaré states are SP and DP , and in
that case the total angular momentum J equals the quark spin. The flavor octet DF

in Eq. (??) must appear in combination with DP and the decuplet SF in combination
with SP , hence ground-state octet baryons carry spin 1/2 and decuplet baryons carry
spin 3/2. We also see that the flavor-singlet baryon Λ0 (with flavor wave function AF )
cannot be constructed in this way, therefore it must be orbitally excited. The possible
combinations and their identification with observed states are highlighted in color in
Table ??.

For orbital excitations, the quark-model construction works in the same way as for
mesons, with the rules ... replaced by ...
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with SP , hence ground-state octet baryons carry spin 1/2 and decuplet baryons carry
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Complete, orthogonal Dirac tensor basis
(partial-wave decomposition in nucleon rest frame):
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TABLE III: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the

eigenvalues of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the
relation between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for
better readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Ti j

1/2 0 1 ⊗ 1
1/2 0 γ

µ
T ⊗ γµT

1/2 1 1 ⊗ 1
2 [ /p, /q ]

1/2 1 1 ⊗ /p
1/2 1 1 ⊗ /q
1/2 1 γ

µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 γ
µ
T ⊗ γµT /p

1/2 1 γ
µ
T ⊗ γµT /q

3/2 1 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 /q ⊗ 1 − γµT ⊗ γµT /q

3/2 2 3 /p ⊗ /p − γµT ⊗ γµT
3/2 2 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 /p ⊗ /q + /q ⊗ /p
3/2 2 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

TABLE IV: Irreducible multiplets of the permutation group S3, constructed from the 8 covariants {Sr
11, Pr

11 ,A
r
11, Vr

11}.

ψ1
MA = S+11 ψ2

MA =
∑

r Pr
11 + S−11 ψ3

MA =
∑

r

(
Vr

11 − Pr
11

)
+ 2 S−11 ψA =

∑
r

(
Vr

11 + Pr
11

)
− 2 S−11

ψ1
MS = A+11 ψ2

MS =
∑

r rVr
11 − A−11 ψ3

MS =
∑

r r
(
Vr

11 + 3Pr
11

)
+ 2 A−11 ψS =

∑
r r
(
−Vr

11 + 3Pr
11

)
− 2 A−11

TABLE V: (adapted from Ref. [35]) Nucleon masses obtained from
the Faddeev equation in setups A and B and compared to the quark-
diquark result. The η dependence is indicated for setup B in paren-
theses.

Q-DQ [29] Faddeev (MA) Faddeev (MS)
Setup A 0.94 0.99 0.97
Setup B 1.26(2) 1.33(2) 1.31(2)

s waves
(8)

p waves
(36)

d waves
(20)

γδBαβA=αβγδ)B⊗A(

5

V. RESULTS

The explicit numerical implementation of the Faddeev
equation is described in App. A. The massive computa-
tional demand in solving the equation primarily comes from
the five Lorentz-invariant momentum combinations of Eq. (7)
upon which the amplitudes depend. In analogy to the sep-
arability assumption of the nucleon amplitude in the quark-
diquark model we omit the dependence on the angular vari-
able z0 = p̂T · q̂T but solve for all 64 dressing functions
fk(p2, q2, 0, z1, z2).

The resulting nucleon masses at the physical pion mass in
both setups A and B are shown in Table V. As a consequence
of Eq. (27), the two states ΨMA and ΨMS emerge as indepen-
dent solutions of the Faddeev equation. Both separate equa-
tions produce approximately the same nucleon mass, where
the deviation of ∼ 2% is presumably a truncation artifact as-
sociated with the omission of the angle z0. For either solution
typically only a small number of covariants are relevant which
are predominantly s-wave with a small p-wave admixture.
The corresponding amplitudes for the mixed-antisymmetric
solution are shown in Fig. 2. Comparing the relative strengths
of the amplitudes allows to identify the dominant contribu-
tions:

ΨMA :
∑

r

{
Sr

11, Vr
11, Sr

13, Vr
13, Xr

33,1

}
,

ΨMS :
∑

r

{
Ar

11, rVr
11, rPr

11, rVr
13, Xr

33,2

}
.

(29)

Fig. 3 displays the angular dependence in the variable z1
through the first few Chebyshev moments of the amplitudes
S±11 which contribute to ΨMA . The angular dependence in the
variable z2 is small compared to z1. This is analogous to the
quark-diquark model, where the dependence on the angle be-
tween the relative and total momentum of the two quarks in a
diquark amplitude is weak.

The evolution of MN and the ρ-meson mass from the BSE
vs. m2

π is plotted in Fig. 4 and compared to lattice results. The
findings for MN are qualitatively similar to those for mρ: setup
A, where the coupling strength is adjusted to the experimental
value of fπ, agrees with the lattice data. This behavior can
be understood in light of a recent study of corrections beyond
RL truncation which suggests a near cancellation in the ρ-
meson of pionic effects and non-resonant corrections from the
quark-gluon vertex [42]. Setup B provides a description of a
quark core which overestimates the experimental values while
it approaches the lattice results at larger quark masses.

A comparison to the consistently obtained quark-diquark
model result exhibits a discrepancy of only ∼ 5%. This sur-
prising and reassuring result indicates that a description of the
nucleon as a superposition of scalar and axial-vector diquark
correlations that interact with the remaining quark provides
a close approximation to the consistent three-quark nucleon
amplitude.

Ti j (Λ±γ5C ⊗ Λ+)
(γ5 ⊗ γ5) Ti j (Λ±γ5C ⊗ Λ+)

(30)

VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a
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Relativistic three-fermion bound state equations

Facts about the decomposition:
Independent of any truncation of the bound state equation.
Only Poincaré covariance and parity invariance exploited.
It includes all possible internal spin and orbital angular momenta.
For positive-parity, positive-energy (particle) baryons it consists of

spin-1
2 particle: 64 elements

# elements
s-wave 8
p-wave 36
d-wave 20

G. Eichmann et al., PRL 104 (2010) 201601

spin-3
2 particle: 128 elements

s-wave 4
p-wave 36
d-wave 60
f-wave 28

H. Sanchis Alepuz et al. PRD 84 (2011) 096003
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Relativistic three-fermion bound state equations

Antisymmetry of the nucleon amplitude under quark exchange:

Flavor states decouple if the Faddeev kernel is flavor-independent
(e.g. rainbow-ladder) ⇒  2 degenerate solutions of the equation: 

𝛹(𝑝, 𝑞, 𝑃) =  �  𝜓�(𝑝, 𝑞, 𝑃)  Flavor�  +  𝜓�(𝑝, 𝑞, 𝑃)  Flavor�  �   Color� � � ��

𝐴𝑀�𝑀�𝑀�𝑀�

(ud)u
(ud)d

Proton:
Neutron:

�2 [uu]d − [ud]u
[ud]d − �2 [dd]u

𝑀�  ~  𝑆�� , . . .� 𝑀�  ~  𝐴�� , . . .�
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Quark Propagator and Rainbow Truncation

2�2M2
��2M2

Im(p2)
Re(p2)

In bound state eqs.:
Knowledge of the quark
propagator inside parabolic
region required.
η ≥ 1/2 for mesons and
η ≥ 1/3 for baryons.
For ground states no
singularities in parabolic
region.

Lattice: Values for real p2 ≥ 0 only.
Dyson-Schwinger / ERG eqs.: complex p2 accessible.†

†Beyond singularities: A. Windisch et al., arXiv:1304.3642; in preparation.
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Quark Propagator and Rainbow Truncation

Dyson-Schwinger eq. for Quark Propagator:

S−1(p) = Z2S−1
0 + g2Z1f

∫
d4k

(2π)4γ
µS(k)Γν(k ,p; q)Dµν(q)

Dµν(q)Γν(k ,p; q) :

{
Dµν(q) =

(
δµν − qµqν

q2

)
Z (q2)

q2

Γν(k ,p; q) = γνZ1f + Λν(k ,p; q)
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Quark Propagator and Rainbow Truncation

Rainbow truncation
Projection onto tree-level tensor γµ, restrict momentum dependence

γνZ1f + Λν(k ,p; q = p − k)→
(

Z1f + Λ(q2)
)
γν

Z1f
g2

4π
Dµν(q)Γν(k ,p; q) →





Z1f
g2

4π
Tµν(q)

Z (q2)

q2

(
Z1f + Λ(q2)

)
γν

=: Z 2
2 Tµν(q)

αeff (q2)

q2 γν
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Interaction Kernels and Rainbow-Ladder Truncation

Truncation of the quark-gluon vertex in the quark DSE.
The BSE interaction kernel must be truncated accordingly.
Physical requirement: Chiral symmetry, here axial WT id.,
{γ5Σ(−p−) + Σ(p+)γ5}αβ = −

∫
K qq̄
αγδβ{γ5S(−p−) + S(p+)γ5},

which relates quark DSE and qq̄ (meson) BSE kernel.

Ladder truncation
qq̄ kernel compatible with rainbow truncation and axial WT id.:

K qq̄ = 4πZ 2
2
αeff (q2)

q2 Tµν(q)γµ ⊗ γν

Together constitute the DSE/BSE Rainbow-Ladder truncation.

Note: the truncation can and should be systematically improved!
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Interaction Kernels and Rainbow-Ladder Truncation

Rainbow-Ladder truncated three-body BSE:
Previous studies used successfully the quark-diquark ansatz
(reduction to a two-body problem).
pNRQCD: 3-body contribution ∼ 25 MeV for heavy baryons.

Supported by this, the three-body irreducible kernel
K (3) is neglected (Faddeev approximation).

Quark-quark interaction K (2): same as quark-antiquark
truncated kernel. (!Different color factor!)

Rainbow-Ladder truncated covariant Faddeev equation
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Interaction Kernels and Rainbow-Ladder Truncation

Effective interaction:
Maris-Tandy model (Maris & Tandy PRC60 1999)

α(k2) = αIR(k2; Λ, η) + αUV (k2)

Purely phenomenological model.

Λ fitted to fπ.

Ground-state pseudoscalar properties
almost insensitive to η around 1.8

Describes very succesfully hadron properties.

0,1

1

10

k2 (GeV2)
0,001 0,01 0,1 1 10 100 1.0001.000

 MT η=1.8

 AFW

DSE motivated model (R.A.,C.S. Fischer,R. Williams EPJ A38 2008)

α(k2; ΛS,ΛB,ΛIR ,ΛYM)

DSE-based in the deep IR.

Designed to give correct masses of π, ρ and η′ (UA(1) anomaly!).

4 energy scales! Fitted to π, K and η′.
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Interaction Kernels and Rainbow-Ladder Truncation

Note: The resulting qq-interaction is chirality-conserving,
flavour-blind and current-quark mass independent.

Beyond Rainbow-Ladder
“Corrections beyond-RL” refers to
corrections to the effective coupling but also to additional
structures beyond vector-vector interaction.
They can induce a different momentum dependence of the
interaction.
They can also induce a quark-mass and quark-flavour
dependence of the interaction
Question: how important are beyond-RL effects?
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Coupling of E.M. Current and Quark-Photon Vertex

Electromagnetic current in the three-body approach:

by “gauging of equations”
M. Oettel, M. Pichowsky and L. von
Smekal, Eur. Phys. J. A 8 (2000) 251
[nucl-th/9909082].

Impulse appr. + Coupling to + Coupling to + Coupling to
spectator q 2-q kernel 3-q kernel

not present not present
in RL appr. in Faddeev appr.

Additional Input: Quark-Photon Vertex
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Coupling of E.M. Current and Quark-Photon Vertex

Quark-Photon Vertex:

Vector WT id. determines vertex up to purely transverse parts:
“Longitudinal” part (Ball-Chiu vertex)
completely specified by dressed quark propagator.
Can be straightforwardly calculated in Rainbow-Ladder appr.:

important for renormalizibility (Curtis-Pennington term),
anomalous magnetic moment,
contains ρ meson pole!

The latter property is important to obtain the correct physics!

All elements specified to calculate baryon amplitudes and properties:
Use computer with sufficient RAM (∼ tens of GB) and run for a few hours . . .
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Some Selected Results
Dominant 
covariants 
(𝑀� solution)

s = 1/2,
l = 0
(s-wave)

s = 1/2,
l = 1
(p-wave)

s = 3/2,
l = 1
(p-wave)

𝑝 [𝐺𝑒𝑉]𝑝 [𝐺𝑒𝑉]

 

0.0

0.2

0.4

0.6

0.0

0.2

0.4

-0.2

-0.4

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

𝑆��⁺

𝑉��⁺

𝑉��⁺ 𝑉��⁻

𝑆��⁺ 𝑆��⁻

𝑆��⁻

𝑉��⁻

-0.2

-0.4

0.0

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

𝑋��⁺ 𝑋��⁻
1.17
0.86
0.63
0.46
0.32
0.22
0.15
0.09

0.00
0.05

𝑞 [𝐺𝑒𝑉]

∼ 𝑓�⁰⁰ (𝑝�, 𝑞�, 0 )
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Some Selected Results

Both models designed to
reproduce correctly DχSB and
pion properties within RL.
They capture beyond-RL
effects at this quark-mass.
This behaviour extends to other
light states (ρ, N, ∆), one gets a
good description.
Both interactions similar at inter-
mediate momentum region:
∼ 0.5− 1 GeV is the relevant
momentum region for DχSB &
ground-state hadron props.
Slight differences at larger
current masses, however,
qualitative model indep.PoS QNP2012 (2012) 112
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Some Selected Results

The trend of both models is
maintained for c-quarks, but
unexpectedly, for b-quarks both
models exactly agree.
Υ-mass is very well reproduced,
but not so much Ωbbb: Effect of
3-body interactions?
To make precise statements, we
should fit the models to the heavy
sector (where corrections to RL
should be suppressed) and study
the evolution to light quarks.
Remember: models
capture beyond-RL effects
at u/d-quark mass.
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Some Selected Results

Nucleon electromagnetic form factors

Good agreement with
recent data at large 

~ nucleon quark core
    without pion effects 

Good agreement with
lattice at large quark 
masses

Nucleon em. FFs
vs. momentum transfer
Eichmann,  PRD 84 (2011)

Passchier, Herberg, 
Zhu, Bermuth, Warren
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Missing pion cloud
below ~2 GeV , 
in chiral region 
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Some Selected Results

Nucleon electromagnetic form factors
Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

[ ]

[ ]

!!
But: pion-cloud cancels in   quark core 

       Exp:     = –0.12   
Calc:    = –0.12(1)
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Nucleon charge radii: 
isovector (p-n) Dirac (F1) radius

Pion-cloud effects missing 
in chiral region ( divergence!), 
agreement with lattice at 
larger quark masses.
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Some Selected Results

∆ electromagnetic form factors
H. Sanchis-Alepuz et al., Phys. Rev. D 87 (2013) 095015 [arXiv:1302.6048 [hep-ph]].
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GE2 and GM3:
Deviation from
sphericity!
Important:
Difference to
quark-diquark
model in GE2
and GM3.
Large GE2 for
small Q2!
“Small” GM3 is
a prediction!
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Some Selected Results

Ω electromagnetic form factors
H. Sanchis-Alepuz et al., Phys. Rev. D 87 (2013) 095015 [arXiv:1302.6048 [hep-ph]].
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quark mass
dependence!
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Some Selected Results

∆→ Nγ electromagnetic transition form factors
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H. Sanchis-Alepuz et al.,
in preparation

Slight deviation from
corresponding results in
diquark-quark model!

Good agreement with
experimental results.

Deviation from sphericity
is an effect from sub-leading
components required by
Poincaré invariance,
i.e., relativistic physics!

R. Alkofer (Graz) From gauge fields to physical particles Vienna, April 12, 2016 65 / 68



Summary

Hadrons from QCD bound state equations:

I Fundamental (i.e., quark and gluon) Landau gauge
Green functions well enough determined for hadron
phenomenology!

I QCD bound state equations:
Unified approach to mesons and baryons feasible!

I So far (shown):
In rainbow-ladder appr. meson observables
and N / ∆ / Ω masses and (e.m., axial, . . . ) form factors.

I So far (not shown):
Behaviour of propagators in conformal window, i.e., for Nf > Ncrit

f .
M. Hopfer, C. Fischer, RA, JHEP 1411 (2014) 035 [arXiv:1405.7031]
Meson properties beyond rainbow-ladder approximation.
M. Vujinovic, R. Williams, arXiv:1411.7619; M. Mitter et al., arXiv:1411.7978;
R. Williams et al., arXiv:1512.00455; M. Vujinovic, RA, in preparation
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Outlook

SU(2) gauge theory with two
massless fund. fermions:

= + +K

+ ++

JPC NA, 1PI NA + AB, 1PI NA, 3PI NA + AB, 3PI

0−+ 0 0 0 0
0++ 1.39(3) 1.22(2) 1.33(3) 1.25(2)

1−− 2.27(5) 2.00(4) 2.37(5) 1.99(4)
1++ 2.87(5) 2.65(5) 3.09(6) 2.67(5)

QCD with two light flavours:

RL 2PI-3L 3PI-3L PDG
0+ (π) 0.14 0.14 0.14 0.14

0++ (σ) 0.64 0.52 1.1(1) 0.48(8) or 1.3
1(ρ) 0.74 0.77 0.74 0.78

1++(a1) 0.97 0.96 1.3(1) 1.23(4)
1+ (b1) 0.85 1.1 1.3(1) 1.23

fπ 0.092 0.103 0.105 0.092
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Outlook

I In rainbow-ladder appr. 2-photon processes as,
e.g., nucleon Compton scattering.

I Dynamical hadronization incl. dressed vertex functions in the
Exact Renormalization Group approach.

I Technicolour theories:
Bound states for near-conformal gauge theories
as, e.g., decay width of techni-ρ-meson (→ signal at LHC?).

I Uncharged (technicolour) bound states as candidates for
Dark Matter?
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