Scattering Amplitudes and Precision Simulations for the LHC

Stefano Pozzorini

Zurich University

University of Vienna, 26 January 2016

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Success of LHC Run 1 (+2)

Data-theory consistency from milli-barn to femto-barn range

S. Pozzorini (Zurich University)

Success of Standard Model (Higgs discovery)

- SM promoted to realistic description of EW symmetry breaking (*at present* precision level and energy scales)
- M_H measurement \Rightarrow instead of disproving the SM, Run1 has turned it into a fully predictive theory at the quantum level!

Run2

• can falsify or verify SM with more stringent tests at higher precision and higher energy

S. Pozzorini (Zurich University)

Multi-TeV searches

2.5 σ diboson anomaly at $M_{VV} \sim 2 \text{ TeV}$ (not confirmed at 13 TeV)

- nontrivial multijet final states (often with MET and/or leptons)
- sophisticated selection strategies (e.g. boosted jets)
- requires higher-order calculations at TeV energies (EW Sudakov logs,...)

TH precision crucial for direct/indirect BSM sensitivity and interpretation of discoveries

Theoretical simulations of LHC collisions

$$d\sigma = d\sigma_{\rm LO} + \frac{\alpha_S}{\alpha_S} d\sigma_{\rm NLO} + \frac{\alpha_{\rm EW}}{\alpha_{\rm EW}} d\sigma_{\rm NLO}^{\rm EW} + \frac{\alpha_S^2}{\alpha_S} d\sigma_{\rm NNLO} + \dots$$

High-energy scattering

NLO QCD+EW and NNLO "revolutions"

Parton-shower MC simulations

- matching to (N)NLO matrix elements
- multijet merging at NLO

More and more general and widely applicable algorithms

NLO QCD calculations and NLO revolution

Born, virtual and real $2 \rightarrow n$ contributions ($|\mathcal{M}|^2$, flux factor and PDFs implicit)

$$\sigma_n^{\text{NLO}} = \int \mathrm{d}\Phi_n \mathcal{B}(\Phi_n) + \int \mathrm{d}\Phi_n \mathcal{V}(\Phi_n) + \int \mathrm{d}\Phi_{n+1} \mathcal{R}(\Phi_{n+1})$$

- UV renormalisation \Rightarrow reduction of μ_R dependence
- soft/collinear cancellations+PDF renormalisation \Rightarrow reduction of μ_F dependence

General "solution to NLO problem" exists since 1970s (tensor reduction) and 1990s (subtraction methods).

NLO revolution: $2 \rightarrow 4 (5, 6)$ processes

"the barrier that has existed for 15 years to NLO computations for more than 5 particles has been broken, allowing NLO computations for process of a complexity that matches that of LHC events. This is the most important development in theoretical particle physics of the past few years." [M. Peskin 2011]

One-loop multi-leg methods and tools

First 6-particle NLO steps: $pp \rightarrow t\bar{t}b\bar{b}$ [Bredenstein, Denner, Dittmaier, S.P. '09]

Solutions to one-loop multi-leg bottleneck

- radically new approaches: on-shell method, OPP reduction, ...
- automated 1-loop algorithms (CutTools, BlackHat, Collier, GoSam, HELAC 1-loop, MadLoop, NGluon, OpenLoops, Recola, Samurai, ...)
- vast range of multi-particle NLO predictions at LHC (pp → 5j, W + 5j, Z + 4j, H + 3j, WWjj, WZjj, γγ + 3j, Wγγj, WWbb, bbbb, ttbb, ttbb, ttbb, ttbt,...)

Flexibility and efficiency of best methods and tools is great but still insufficient

S. Pozzorini (Zurich University)

- 1 Scattering Amplitudes with OpenLoops
- (2) (N)NLO QCD at parton level
- ③ Matching and Multi-jet Merging at NLO QCD
- 4 NLO EW corrections

Strategy

- handle all process-dependent one-loop ingredients via tree-like algorithm
- hybrid "tree-loop" approach \Rightarrow very high speed and flexibility [Van Hameren '09]
- o diagrammatic representation

$$\underbrace{\int_{a}^{(n-1)} \frac{d^{D}q \,\mathcal{N}(\mathcal{I}_{n};q)}{D_{0}D_{1}\dots D_{n-1}}}_{numerical recursion} = \underbrace{\sum_{r=0}^{R} \mathcal{N}_{\mu_{1}\dots\mu_{r}}(\mathcal{I}_{n})}_{\text{fumerical recursion}} \underbrace{\int_{D_{0}}^{dD} \frac{d^{D}q \,q^{\mu_{1}}\dots q^{\mu_{r}}}{D_{0}D_{1}\dots D_{n-1}}}_{[Denner, Dittmaier]}$$

OpenLoops recursion [Cascioli, Maierhöfer, S.P '11]

Recursive merging of *q*-dependent trees

Interaction terms depend only on $\mathcal{L}_{int} \Rightarrow$ automation!

Recursion for polynomial coefficients \Rightarrow *very high speed!*

$$\mathcal{N}^{\beta}_{\mu_1\dots\mu_r;\alpha}(\mathcal{I}_n) = \left[Y^{\beta}_{\gamma\delta} \, \mathcal{N}^{\gamma}_{\mu_1\dots\mu_r;\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_1;\gamma\delta} \, \mathcal{N}^{\gamma}_{\mu_2\dots\mu_r;\alpha}(\mathcal{I}_{n-1}) \right] \, w^{\delta}(i_n)$$

S. Pozzorini (Zurich University)

OpenLoops performance for $2 \rightarrow 2, 3, 4$ processes

Orders of magnitude improvements for multi-particle amplitudes

- $\mathcal{O}(10^2 10^3)$ in code generation (code size and time for generation+compilation)
- $\mathcal{O}(10^2)$ in speed of amplitudes (wrt original OPP automation)

\Rightarrow large scale applicability at the technical frontier

OpenLoops 1.0 [Cascioli, Lindert, Maierhöfer, S.P. '14]

Automated generator of NLO QCD matrix elements (>30'000 lines of code)

• public library with more than 100 LHC processes at openloops.hepforge.org

Interface to multi-purpose Monte Carlo programs

- Munich [Kallweit] ⇒ very powerful (N)NLO parton level MC
- Sherpa [Höche, Krauss, Schönherr, Siegert et al.] ⇒ NLO matching and merging
- Powheg [Nason, Oleari et al.]
- Herwig [Gieseke, Plätzer wt al.]
- Geneva [Alioli, Bauer, Tackmann et al.]
- Whizard [Kilian, Ohl, Reuter et al.]

Completely automated NLO simulations for any $2 \rightarrow 2, 3, 4$ SM processes at LHC

State-of-the-art applications in Top, EW and Higgs physics

NLO QCD+EW

- S-MC@NLO for $pp \rightarrow t\bar{t}b\bar{b}$ with $m_b > 0$ [Cascioli, Maierhöfer, Moretti, S.P., Siegert, arXiv:1309.5912]
- NLO for $pp
 ightarrow W^+W^-bar{b}$ with $m_b>0$ [Cascioli, Kallweit, Maierhöfer, S.P., arXiv:1312.0546]
- NLO QCD+EW for W + 1, 2, 3 jets [Kallweit, Lindert, Maierhöfer, S.P., Schönherr, arXiv:1412.5157]
- NLO QCD+EW for $\ell\ell/\ell\nu/\nu\nu + 0, 1, 2$ jets [Kallweit, Lindert, Maierhöfer, S.P., Schönherr, arXiv:1511.08692]

NLO merging

- MEPS@NLO for *llνν*+0,1 jets, [Cascioli, Höche, Krauss, Maierhöfer, S.P., Siegert, arXiv:1309.0500]
- $(1-\text{loop})^2$ merging for $pp \rightarrow HH+0,1$ jets, [Maierhöfer, Papaefstathiou, arXiv:1401.0007]
- MEPS@NLO for WWW+0,1 jets, [Höche, Krauss, S.P., Schönherr, Thompson arXiv:1403.7516]
- MEPS@NLO for tt+0,1,2 jets, [Höche, Krauss, Maierhöfer, S.P., Schönherr, Siegert arXiv:1402.6293]

NNLO QCD

- $pp
 ightarrow \gamma Z$ and γW [Grazzini, Kallweit, Rathlev, Torre, arXiv:1309.7000; arXiv:1504.01330]
- $qar{q}
 ightarrow tar{t}$ [Abelof, Gehrmann-de Ridder, Maierhöfer, S.P., arXiv:1404.6493]
- pp
 ightarrow ZZ [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, S.P., Rathlev, Tancredi, Weihs, arXiv:1405.2219]
- $pp
 ightarrow W^+W^-$ [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, S.P., Rathlev, Tancredi arXiv:1408.5243]

S. Pozzorini (Zurich University)

Scattering Amplitudes with OpenLoops

(2) (N)NLO QCD at parton level

3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

Vast top-physics program at LHC

- SM benchmark and omnipresent Higgs- and BSM-background
- 3 decades of precision calculations
- full description of production \times decay crucial: jet veto, m_t -measurements, ...

$W^+W^-bar{b}$ production at NLO [Cascioli,Kallweit,Maieröfer,S.P. '13]

First unified description of $t\bar{t}+Wt$ production and decay at NLO

- full set of $2 \to 6$ diagrams ($\Gamma_t > 0$) and full b-quark phase space ($m_b > 0$)
- multi-particle, multi-scale $(\Gamma_t, m_b, \dots, m_{t\bar{t}})$ simulation with $\mathcal{O}\left(10^3\right)$ loop diagrams

done with Munich+OpenLoops

S. Pozzorini (Zurich University)

First $W^+W^-b\bar{b}$ NLO predictions for $N_{\rm jet} = 0, 1$

Jet veto and jet bins

• key to suppress top backgrounds in $H \rightarrow W^+ W^-$ and many other analyses

Excellent perturbative convergence

• small NLO correction and reduction of scale uncertainty from 40% to <10%

Single-top and other $\mathcal{O}\left(\Gamma_t/m_t\right)$ effects \bullet from 1% to 30–40% with jet veto

$W^+W^-b\bar{b}$ crucial for accurate simulation of top-production and decay

Diboson production at LHC

- test $SU(2) \times U(1)$ gauge structure
- interplay with $H \rightarrow VV$
- BSM searches, ...

Some tensions between NLO QCD and Run1 data

~ 2.5 σ (20%) excess in $\sigma_{W^+W^-}^{\text{ATLAS}} \simeq 3 \times \sigma(H \to W^*W)$

Diboson production at NNLO QCD

Flexible NNLO+NNLL framework based on q_T-subtraction [Catani, Grazzini '06]

Gehrmann, Tancredi von Manteuffel, Weihs; Caola, Henn, Melnikov Smirnov, Smirnov

Grazzini, Kallweit, Rathlev, Wiesemann

\Rightarrow predictions for $Z\gamma, W\gamma$ at NNLO and ZZ, WW at NNLO+NNLL [2013–15]

S. Pozzorini (Zurich University)

Unexpectedly large QCD corrections

- +58% NLO and +12% NNLO at 14 TeV
- well beyond expected size from scale uncertainties and $gg \rightarrow W^+W^-$ (+4%)

Residual scale uncertainty

- 3% NNLO scale variation
- consistent with 2% higher-order correction to $gg \rightarrow W^+W^-$ [Melnikov et al., 1511.08617]

Comparison with ATLAS and CMS data

• NNLO reduces significance of excess in 8 TeV ATLAS measurement and agrees well with published 8 TeV result by CMS

Theoretical definition(s) of top-free W^+W^- production

Huge Wt and $t\bar{t}$ contamination from W^+W^-b and $W^+W^-b\bar{b}$

- intimately connected with W^+W^- through $g \to b\bar{b}$ singularities
- top subtraction tricky and not unique \Rightarrow theoretical ambiguity in $\sigma_{WW}^{(N)NLO}$!

+40% NLO

+400% NNLO

Definition A: veto *b*-quark emissions in 4F scheme $(m_b > 0)$

• $\Rightarrow \ln(m_b/M_W)$ terms might jeopardize NNLO accuracy!

Definition B: top-resonance fit in 5F-scheme $(m_b = 0)$

$$\lim_{\xi_t \to 0} \sigma_{\text{full}}^{5F}(\xi_t \Gamma_t) = \xi_t^{-2} \left[\sigma_{t\bar{t}}^{5F} + \xi_t \, \sigma_{Wt}^{5F} + \xi_t^2 \, \sigma_{W^+W^-}^{5F} \right]$$

 \Rightarrow for inclusive $\sigma_{WW}^{\text{NNLO}}$ only 1–2% ambiguity (A vs B)

Relevant issue for percent-precision tests of W^+W^- physics! ... Relation to σ_{WW}^{EXP} ?

Scattering Amplitudes with OpenLoops

2 (N)NLO QCD at parton level

③ Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

$t\bar{t}H$ searches in the dominant $H ightarrow b\bar{b}$ channel

- $\sim 3'000 \; t\bar{t}H$ events but only 3–4 $\times \sigma_{\rm SM}$ exclusion at Run1
- heavy background contamination with large theory uncertainty
- requires nontrivial $t\bar{t}b\bar{b}$ and $t\bar{t}+2$ jet simulations

Irreducible $t\bar{t}b\bar{b}$ QCD background at NLO

NLO $t\bar{t}b\bar{b}$ [Bredenstein et al '09/'10; Bevilacqua et al '09];

- $t\bar{t}b\bar{b}$ dominates $t\bar{t}H(b\bar{b})$ systematics
- NLO reduces uncertainty from 80% to 20–30%

- NLO+PS $t\bar{t}b\bar{b}$ 5F scheme ($m_b = 0$) with POWHEL [Garzelli et al '13/'14]
 - $t\bar{t}b\bar{b}$ NLO MEs cannot describe collinear $g \rightarrow b\bar{b}$ splittings
- \Rightarrow inclusive $t\bar{t}$ +b-jets simulation requires parton shower in collinear $b\bar{b}$ region
- \Rightarrow **NLO merging** $t\bar{t} + 0, 1, 2$ **jets** (see later)

NLO+PS $t\bar{t}b\bar{b}$ 4F scheme ($m_b > 0$) with SHERPA+OPENLOOPS [Cascioli et al '13] • $t\bar{t}b\bar{b}$ NLO MEs cover full b-quark phase space

 \Rightarrow inclusive NLO accurate $t\bar{t}$ +b-jets simulation possible

S–MC@NLO $t\bar{t}b\bar{b}$ 4F scheme [Cascioli et al '13]

Good perturbative stability but unexpected MC@NLO enhancement

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644_{-38\%}^{+71\%}_{-11\%}^{+14\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{\rm NLO}[{\rm fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{\rm MC@NLO}[{\rm fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

Large enhancement (~30%) in Higgs region from double $g \rightarrow b\bar{b}$ splittings

S. Pozzorini (Zurich University)

DESY15 21 / 35

$t\bar{t}$ + multijet background and merging at NLO

NLO $t\bar{t} + 2$ jets [Bevilacqua, Czakon, Papadopoulos, Worek '10/'11]

- reduces uncertainty from 80% to 15%
- experiments need inclusive particle-level simulation with $t\bar{t} + 0, 1, 2$ jets at NLO

MEPS@NLO merging [Höche, Krauss, Schönherr, Siegert '12]

0-jet	NLO+PS $t\bar{t}$
1-jet	NLO+PS $t\bar{t}$ + 1 j
$\geq n$ jets	NLO+PS $t\bar{t} + nj$

- NLO and log accuracy for $0, 1, \ldots n$ jets
- separated via k_{T} -algo at merging scale Q_{cut}
- smooth PS–MEs transition ↔ MEs with PS-like scale and Sudakov FFs

[see also FxFx, UNLOPS, GENEVA, MINLO]

NLO merging for $t\bar{t} + 0, 1$ jets

- FxFx with MADGRAPH5/AMC@NLO [Frederix, Frixione '12]
- MEPS@NLO with SHERPA+GOSAM [Höche et al '13]

MEPS@NLO for $t\bar{t} + 0, 1, 2$ jets (SHERPA+OPENLOOPS)

[Höche, Krauss, Maierhöfer, S. P. , Schönherr, Siegert '14]

Consistency with LO merging and NLO+PS

• decent (10–20%) mutual agreement

Reduction of μ_R, μ_F, μ_Q variations

$N_{\rm light-jet} \ge$	0	T	2	
LO	48%	65%	80%	
NLO	17%	18%	19%	

More realistic uncertainties when multijet emission described by matrix elements instead of parton shower!

MEPS@NLO for $t\bar{t} + 0, 1, 2$ jets (SHERPA+OPENLOOPS)

[Höche, Krauss, Maierhöfer, S. P. , Schönherr, Siegert '14]

Consistency with LO merging and NLO+PS

• decent (10–20%) mutual agreement

$\frac{\text{Reduction of } \mu_R, \mu_F, \mu_Q \text{ variations}}{\frac{N_{\text{light-jet}} \ge 0 \quad 1 \quad 2}{\text{LO} \quad 48\% \quad 65\% \quad 80\%}}$

Differential distributions

- similarly mild scale dependence
- small shape corrections

\Rightarrow Precision for omnipresent $t\bar{t}$ +multijet background

Boosted $tar{t}H(bar{b})$ analysis [Plehn, Salam, Spannowsky '10]

Original strategy

- **1** Two $p_T > 200 \text{ GeV}$ fat jets $(t \rightarrow bjj \text{ and } H \rightarrow b\bar{b})$
- 2 identify $t \rightarrow bjj$ with top tagger
- (3) identify $H \rightarrow b\bar{b}$ with substructure and 2 b-tags
- $\ \ \, \textbf{ 4 ard } b\text{-tag for } t\rightarrow b\ell\nu$

Significance in $|m_{b\bar{b}} - m_H| < 10 \,\mathrm{GeV}$ window

- strong $t\bar{t}+jets$ suppression
- $\Rightarrow t\bar{t}b\bar{b}$ dominated background
 - $S/\sqrt{B}\simeq 4\sigma$ with 100 fb $^{-1}$
 - S/B = 35% (decent systematics)

New boosted $t ar{t} H(b ar{b})$ analysis [Moretti, Petrov, S.P., Spannowsky,

ArXiv:1510.08468]

(A) Update of original analysis

- HEPTopTagger [Plehn et al. '10]
- more conservative b-tagging
- LO \rightarrow NLO simulations of $t\bar{t}b\bar{b}$ and $t\bar{t}+$ multijets

- S/B = 13% only!
- only 17% pure $H \to b \bar{b}$ jets
- large tt+ jets contamination due to sizable (7%) probability that b-quark escapes top tagger

w

Expected $\sigma_{t\bar{t}H}$ sensitivity [Moretti, Petrov, S.P., Spannowsky, ArXiv:1510.08468]

95% CL limits on $\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H}$ for $\Delta B / B = 15\%$ (or $\sim 1/\sqrt{\mathcal{L}}$ above 300 fb⁻¹)

(A) Update of original analysis

• $|\Delta\sigma/\sigma| \lesssim 100\%$ (50%) at 3 ab $^{-1}$

(B) Adding regions with one fat jet

• $|\Delta\sigma/\sigma| \lesssim 50\%$ (25%) at 3 ab $^{-1}$

 $t\bar{t} + X$ background systematics dominates above $\mathcal{O}(100\,\mathrm{fb}^{-1})$

S. Pozzorini (Zurich University)

- 1 Scattering Amplitudes with OpenLoops
- 2 (N)NLO QCD at parton level
- 3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

EW Sudakov logarithms at $Q \sim \text{TeV} \gg M_W$

Soft/collinear logarithms from virtual EW bosons

- order $\alpha_w \ln^2(Q^2/M_W^2) \sim 25\% \gg \alpha_S$ in any TeV scale observable!
- analogies with IR QCD effects and EW symmetry breaking subtleties

Universality and factorisation [Denner, S.P. '01]

$$\delta \mathcal{M}_{\mathrm{LL+NLL}}^{1-\mathrm{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$$

• depend on external EW charges (anomalous dimensions) and kinematic details

• large negative EW corrections exceed NLO QCD uncertainties at $Q^2 \gg M_W^2$

\Rightarrow EW corrections crucial for SM tests and BSM searches at TeV scale

S. Pozzorini (Zurich University)

Nontrivial NLO EW features (wrt NLO QCD)

- protons and jets $\supset g, q, \gamma$ (photon-jet separation subtle)
- Subtle QCD–EW interplay, e.g. NLO EW emissions of photons and QCD-partons

• nontrivial $V \rightarrow$ lepton decays: final-state interactions and non-fact effects

NLO EW automation

Technical tour de force

• implementation of loop recursion, UV+ R_2 CTs, Catani-Seymour subtraction, general $\mathcal{O}(\alpha_S^n \alpha^m)$ bookkeeping at NLO, complex masses scheme,...

First automated tools and multi-particle applications (2014–15)

Tools	first results	
Recola+Collier	$pp \rightarrow \ell^+ \ell^- jj$	[arXiv:1411.0916]
OpenLoops+ Munich/Sherpa	$pp ightarrow W+1,2,3{ m jets}$	[arXiv:1412.5156]
	$pp ightarrow \ell \ell / \ell u / u u ightarrow + 0, 1, 2 { m jets}$	[arXiv:1511.08692]
Madgraph5_aMC@NLO	$pp \rightarrow t\bar{t} + V$	[arXiv:1504.03446]
GoSam+ MadDipole	$pp ightarrow W + 2{ m jets}$	[arXiv:1507.08579]

Full NLO QCD+EW automation [Kallweit,Lindert,Maierhöfer,S.P.,Schönherr '14]

- Loop amplitudes: OPENLOOPS [Cascioli et al. '13] and COLLIER [Denner et al. '14]
- Monte Carlo: MUNICH [Kallweit] or SHERPA [Hoeche et al.]

$pp \rightarrow W + 1, 2, 3 \, {\rm jets}$ at NLO QCD+EW

[Kallweit,Lindert,Maierhöfer,S.P.,Schönherr '14]

Technical motivation

• highest # of jets with on-shell $W \Rightarrow$ study tool performance for $n_{\text{jets}} = 1, 2, 3$

W + 3 jets	# QCD trees	# EW trees	# QCD 1-loop	# EW 1-loop
$u_i \bar{d}_i \to W^+ q_j \bar{q}_j g$	12	33	352	1042
$u_i \bar{d}_i \to W^+ q_i \bar{q}_i g$	24	66	704	2084
$u_i \bar{d}_i \to W^+ ggg$	54	-	2043	2616

• many flavour combinations & crossings \Rightarrow unconceivable w.o. automation

• NLO EW more complex but less CPU expensive than NLO EW!

Pheno importance of $pp \rightarrow V+$ multijets

- precision tests of QCD theory and tools
- crucial for TeV scale searches with leptons+jets+MET
- large EW corrections in Sudakov app. [Chiesa et al. '13] untested in multijet regime
- V + 1 jet production pathologic at NLO QCD+EW

S. Pozzorini (Zurich University)
NLO QCD+EW corrections to $pp \rightarrow W + 1$ jet

Large NLO corrections at high $p_{T,W}$ • +100% (QCD) - 20-35% (EW)

Iarge EW×QCD uncertainty!

\Rightarrow W+multijets NLO QCD+EW mandatory!!

NLO QCD+EW corrections to $pp \rightarrow W + 2, 3$ jets

Stable NLO QCD behaviour

- small and almost p_T independent
- $\lesssim 10\%$ scale dependence at NLO

Large negative EW effects (resummation desirable)

- -30-60% at $p_{T,W} = 1-4$ TeV
- -15-25% at $p_{T,j} = 1-4 \text{ TeV}$

Take home message

- NLO QCD+EW for W + 2, 3 jets under control
- next: NLO QCD+EW merging of W + 1, 2, 3 jets
- \Rightarrow reliable prediction for *inclusive* W+jet production

V + 0, 1, 2 jets with off-shell $W \to \ell \nu$ and $Z/\gamma^* \to \ell \ell / \nu \nu$

[Kallweit, Lindert, Maierhöfer, S.P., Schönherr, arXiv:1511.08692]

NLO QCD+EW_{virt} multi-jet merging \Rightarrow inclusive V + 1 jet observables stable!

At $p_{T,V} \sim \text{TeV}$ EW effects enhanced through (soft) multi-jet contributions

At $p_{T,jet} \sim \text{TeV EW}$ effects cancel due to (hard) multi-jet contributions

Multi-jet NLO QCD+EW effects crucial at the TeV scale

Concluding remarks

Automation of (N)NLO QCD+EW simulations

• high potential to improve sensitivity of many SM tests and BSM searches at LHC

Powerful tools (but can't provide precision & physics insights if used as black boxes!)

- technically and physically highly involved simulations (many particles, many scales, resonances, process interferences, EW–QCD interplay, ...)
- precision will require thorough understanding of physics and uncertainties

The NLO problem is solved (?)

- fundamental problems solved in the '70s -'90s (reduction, IR subtraction)
- modern algorithms more automated and widely applicable
- for complex LHC simulations still serious efficiency bottlenecks and lacking physics+precision (chain decays at NLO, IR behaviour for NNLO subtraction, NLO EW matching, interplay of shower with resonances and multi-scale matrix elements,...)

\Rightarrow the NLO business is still (and should remain!) work in progress

Backup slides

Structure of NLO Calculations

Born, virtual and real $2 \rightarrow n$ contributions ($|\mathcal{M}|^2$, flux factor and PDFs implicit)

$$\sigma_n^{\text{NLO}} = \int \mathrm{d}\Phi_n \mathcal{B}(\Phi_n) + \int \mathrm{d}\Phi_n \mathcal{V}(\Phi_n) + \int \mathrm{d}\Phi_{n+1} \mathcal{R}(\Phi_{n+1})$$

- UV renormalisation \Rightarrow reduction of μ_R dependence
- soft/collinear cancellations+PDF renormalisation \Rightarrow reduction of μ_F dependence

Dipole subtraction method [Catani, Seymour '96; Catani, Dittmaier, Seymour, Trocsanyi '99]

• factorisation and universality of IR (sof/collinear) singularities

$$\mathcal{R}(\Phi_{n+1}) \longrightarrow \mathcal{B}(\Phi_n) \otimes \mathcal{S}(\Phi_1) \qquad \qquad \mathcal{I} = \int \mathrm{d}\Phi_1 \mathcal{S}(\Phi_1) \quad \text{analytically}$$

• NLO formula suitable for numerical integration

$$\sigma_n^{\text{NLO}} = \int \mathrm{d}\Phi_n \mathcal{B}(\Phi_n) + \int \mathrm{d}\Phi_n \left[\mathcal{V}(\Phi_n) + \mathcal{B}(\Phi_n) \otimes \mathcal{I} \right] + \int \mathrm{d}\Phi_{n+1} \left[\mathcal{R}(\Phi_{n+1}) - \mathcal{B}(\Phi_n) \right]$$

Tree recursion

Colour-stripped tree diagrams are built numerically in terms of sub-trees

 $\beta \leftrightarrow \text{off-shell line spin}$

and recursively merged by attaching vertices and propagators

(sub-tree = individual topology with off-shell line \neq off-shell current)

Completely generic and automatic

- flexible (only \mathcal{L}_{int} dependent)
- fast (many diagrams share common sub-trees)
- efficient colour bookkeeping (colour factorisation and algebraic reduction)

$$w^eta(i) = rac{X^eta_{\gamma\delta}(i,j,k)}{p_i^2 - m_i^2} \; w^\gamma(j) \; w^\delta(k)$$

sub-tree = individual topology with off-shell line \neq off-shell current

Example

$$w_{\alpha}(1) = \bullet \longrightarrow = \bar{u}_{\alpha}(p_1, \lambda_1) \qquad \qquad w_{\mu}(2) = \bullet \circ \circ \circ = \epsilon_{\mu}^*(p_2, \lambda_2)$$

$$w_{\beta}(12) = \bigoplus_{\nu} (12) = \bigoplus_{\nu} (12) = \frac{g_s \left[(\not p_{12} + m) \gamma^{\mu} \right]_{\alpha\beta}}{p_{12}^2 - m^2} w_{\alpha}(1) w_{\mu}(2) \qquad w_{\nu}(3) = \underbrace{w_{\nu}(3)}_{\nu} = e_{\nu}^*(p_3, \lambda_3)$$
$$w_{\gamma}(123) = \bigoplus_{\nu} (12) \sum_{\nu} (12) e_{\nu}(3) = \frac{e_{\nu}(p_1, \lambda_3)}{2\sqrt{2}s_w(p_{123}^2 - m^2)} w_{\beta}(12) w_{\nu}(3) = e_{\nu}(12) e_{\nu}(12)$$

Recursion terminates when full set of diagram can be obtained via sub-diagram merging

S. Pozzorini (Zurich University)

Precision simulations

DESY15 38 / 35

Colour-stripped loop diagrams

OpenLoops computes symmetrised $\mathcal{N}_{\mu_1...\mu_r}(\mathcal{I}_n)$ coefficients

tensor-rank	R	0	1	2	3	4	5	6	7
# coeff. per diagram	$\begin{pmatrix} R+4\\4 \end{pmatrix}$	1	5	15	35	70	126	210	310
						6	particles	5	

and applies two alternative methods for the reduction to scalar integrals:

- (A) Tensor-integral reduction [Denner/Dittmaier '05]
- (B) **OPP reduction** [Ossola, Papadopolous, Pittau '07] based on numerical evaluation of $\mathcal{N}(\mathcal{I}_n; q) = \sum \mathcal{N}_{\mu_1 \dots \mu_r}(\mathcal{I}_n) q^{\mu_1} \dots q^{\mu_r}$ at multiple *q*-values (strong speed-up!)

One-loop amplitudes with conventional tree generators

Cut-open loops can be built by recursively attaching external sub-trees

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n};q) = X^{\beta}_{\gamma\delta}(\mathcal{I}_{n},i_{n},\mathcal{I}_{n-1}) \mathcal{N}^{\gamma}_{\alpha}(\mathcal{I}_{n-1};q) w^{\delta}(i_{n})$$

like in conventional tree generators

- one-loop automation in Helac-NLO (off-shell recursion) and MadLoop (diagrams)
- CPU expensive OPP reduction (multiple-q evaluations) since tree algorithms conceived for fixed momenta

Nature of loop amplitudes requires loop-momentum functional dependence!

OpenLoops recursion [Cascioli, Maierhöfer, S.P '11]

Handle building blocks of recursion as polynomials in the loop momentum q

$$\underbrace{\mathcal{N}_{\alpha}^{\beta}(\mathcal{I}_{n};q)}_{r=0} = \underbrace{X_{\gamma\delta}^{\beta}(\mathcal{I}_{n},i_{n},\mathcal{I}_{n-1})}_{Y_{\gamma\delta}^{\beta}+q^{\nu}Z_{\nu;\gamma\delta}^{\beta}} \underbrace{\mathcal{N}_{\alpha}^{\gamma}(\mathcal{I}_{n-1};q)}_{r=0} w^{\delta}(i_{n})$$

and construct polynomial coefficients with "open loops recursion"

$$\mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) = \left[Y^{\beta}_{\gamma\delta} \,\mathcal{N}^{\gamma}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_{1};\gamma\delta} \,\mathcal{N}^{\gamma}_{\mu_{2}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1})\right] \, w^{\delta}(i_{n})$$

Parent-child relations

Pinch relations

n-point loop diagrams constructued from pre-computed (n-1)-point child diagrams

Example

Example of OpenLoops recursion: fermion loop

• n-point open-loop coefficients of rank $r=0,1,\ldots,n$

$$\begin{aligned} \mathcal{N}^{\beta}_{;\alpha}(\mathcal{I}_{n}) &= g_{s}[(\not\!\!\!p_{n}+m)\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}^{\gamma}_{;\alpha}(\mathcal{I}_{n-1}) \, \varepsilon^{*}_{\nu}(p_{n},\lambda_{n}) \\ \mathcal{N}^{\beta}_{\mu_{1};\alpha}(\mathcal{I}_{n}) &= g_{s} \left\{ [(\not\!\!\!p_{n}+m)\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}^{\gamma}_{\mu_{1};\alpha}(\mathcal{I}_{n-1}) + [\gamma_{\mu_{1}}\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}^{\gamma}_{;\alpha}(\mathcal{I}_{n-1}) \right] \, \varepsilon^{*}_{\nu}(p_{n},\mu_{n}) \\ &\quad \text{etc.} \end{aligned}$$

• initial condition for 0-point rank-0 open loop

$$\mathcal{N}^{\gamma}_{;\alpha}(\mathcal{I}_0) = \delta^{\gamma}_{\alpha}$$

- rank, i.e. complexity, increases with $n \Rightarrow$ symmetrised $\mu_1 \dots \mu_r$ components!
- bookkeeping of tensor components fully automated

R_2 rational terms

Extra rational terms from $3 < \mu_1, \ldots, \mu_r \leq D - 1$ coefficient components

$$R_{2} = \sum_{\mu_{1}...\mu_{r}=0}^{D-1} \mathcal{N}_{\mu_{1}...\mu_{r}} \bigg|_{D=4-2\varepsilon} T_{\mathrm{UV}}^{\mu_{1}...\mu_{r}} - \sum_{\mu_{1}...\mu_{r}=0}^{3} \mathcal{N}_{\mu_{1}...\mu_{r}} \bigg|_{D=4} T_{\mathrm{UV}}^{\mu_{1}...\mu_{r}}$$

From catalogue of 2-, 3- and 4-point 1PI diagrams (depends only on model)

$$\begin{pmatrix} z \\ & &$$

[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09-'11; Shao, Zhang, Chao '11]

S. Pozzorini (Zurich University)

Precision simulations

Process	size [MB]	$t_{\sf code} [s]$
$u\bar{u} \rightarrow t\bar{t}$	0.1	2.2
$u\bar{u} \rightarrow W^+W^-$	0.1	7.2
$u\bar{d} \rightarrow W^+g$	0.1	4.2
$gg \rightarrow t\bar{t}$	0.2	5.4
$u\bar{u} \rightarrow t\bar{t}g$	0.4	12.8
$u\bar{u} \rightarrow W^+W^-g$	0.4	39.8
$u\bar{d} \rightarrow W^+gg$	0.5	22.9
$gg \rightarrow t\bar{t}g$	1.2	52.9
$u\bar{u} \rightarrow t\bar{t}gg$	3.6 (200)*	236 $(\sim 10^6)^*$
$u\bar{u} \rightarrow W^+W^-gg$	2.5 (1000)*	381.7 $(\sim 10^6)^*$
$u\bar{d} \rightarrow W^+ ggg$	4.2	366.2
$gg ightarrow t \bar{t} gg$	16.0	3005

Fast code generation/compilation

- few seconds to minutes
- $\mathcal{O}(10^3)$ speed-up in $2 \to 4$

Compact code

- 100 kB to few MB object files
- $\mathcal{O}(10^2 \text{--} 10^3)$ compression in $2 \rightarrow 4$

 $^*pp \rightarrow t\bar{t}b\bar{b}$ & $WWb\bar{b}$ (Bredenstein, Denner, Dittmaier, Kallweit, S.P. '09–'11)

large-scale applicability!

Numerical stability with **tensor reduction** in double precision

Stability Δ in samples of 10^6 points ($\sqrt{\hat{s}} = 1 \text{ TeV}$, $p_T > 50 \text{ GeV}$, $\Delta R_{ij} > 0.5$)

Average number of correct digits

• 11-15

Cross section accuracy

- depends on tails
- stability issues grow with $n_{\rm part}$
- $2 \rightarrow 4~\mathrm{processes}$ very stable
 - $\lesssim 0.01\%$ prob. that $\Delta_S < 10^{-3}$
 - thanks to Gram-determinant expansions in Collier!

Real-life NLO applications

- $\bullet~\mathcal{O}(10^{-4})$ unstable points in most challenging $2\to 4$ calculations considered so far
- can be monitored and safely suppressed thanks to online instability-trigger

Finite-width effects vs NWA

Separation of narrow- and finite-top-width parts

• via numerical $\Gamma_t \to 0$ extrapolation

 $\lim_{\xi_t \to 0} \mathrm{d}\sigma_{W^+W^-b\bar{b}}(\xi_t \Gamma_t) = \xi_t^{-2} \left[\mathrm{d}\sigma_{t\bar{t}} + \xi_t \, \mathrm{d}\sigma_{\mathrm{FtW}} \right]$

⇒ permille-level convergence demonstrates nontrivial cancellation of soft-gluon $\ln(\Gamma_t/m_t)$ singularities

 $\sigma_{t\bar{t}} = \text{ on-shell } t\bar{t} \text{ production} \times \text{decay}$

 $pp \rightarrow \nu_{e}e^{+}\mu^{-}\bar{\nu}_{\mu}b\bar{b}+X @ 8 \text{ TeV}$

 $\sigma_{\rm FtW} = \mathcal{O}(\Gamma_t/m_t) \text{ effects dominated by } Wt + \text{ interference } + \text{ off-shell } t\bar{t} + \dots$ $= 6-8\% \text{ of } \sigma_{\rm inclusive} \text{ (cf. sub-percent effect with } t\bar{t} \text{ cuts!})$

Generic-Jet Bins: complete cross section and finite-top-width (FtW) effects

	μ_0	σ [fb]	σ_0 [fb]	σ_1 [fb]	$\sigma_{2^+}[{\rm fb}]$
LO	μ_{WWbb}	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	μ_{WWbb}	$1777^{+10\%}_{-12\%}$	$41^{+3\%}_{-8\%}$	$377^{+1\%}_{-6\%}$	$1359^{+14\%}_{-14\%}$
K	μ_{WWbb}	1.44	1.09	1.03	1.64
LO	m_t	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	m_t	$1817^{+8\%}_{-11\%}$	$40^{+4\%}_{-8\%}$	$372^{+1\%}_{-8\%}$	$1405^{+13\%}_{-13\%}$
K	m_t	1.38	1.14	1.00	1.55
	μ_0	$\sigma^{\rm FtW}[{\rm fb}]$	$\sigma_0^{\rm FtW}[{\rm fb}]$	$\sigma_1^{\rm FtW}[{\rm fb}]$	$\sigma_{2^+}^{ m FtW}[{ m fb}]$
LO	μ_{WWbb}	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	μ_{WWbb}	$107^{+6\%}_{-11\%}$	$13^{+1\%}_{-7\%}$	$61^{+2\%}_{-16\%}$	$33^{+51\%}_{-31\%}$
K	μ_{WWbb}	1.18	0.99	0.86	4.70
LO	m_t	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	m_t	$100^{+17\%}_{-16\%}$	$13^{+14\%}_{-14\%}$	$65^{+9\%}_{-12\%}$	$23^{+42\%}_{-28\%}$
K	m_t	1.58	1.47	1.32	3.89

b-J	let	Bins :	complete	cross	section	and	finite-top-width	(FtW)	effects
-----	-----	---------------	----------	-------	---------	-----	------------------	-------	---------

	μ_0	σ [fb]	σ_0 [fb]	σ_1 [fb]	$\sigma_{2^+}[{\rm fb}]$
LO	μ_{WWbb}	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	μ_{WWbb}	$1777^{+10\%}_{-12\%}$	$65^{+20\%}_{-17\%}$	$571^{+14\%}_{-14\%}$	$1140^{+7\%}_{-10\%}$
K	μ_{WWbb}	1.44	1.73	1.56	1.38
LO	m_t	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	m_t	$1817^{+8\%}_{-11\%}$	$63^{+20\%}_{-17\%}$	$584^{+14\%}_{-14\%}$	$1170^{+5\%}_{-9\%}$
K	m_t	1.38	1.80	1.56	1.29
	μ_0	$\sigma^{\rm FtW}$ [fb]	$\sigma_0^{\rm FtW}[{\rm fb}]$	$\sigma_1^{\rm FtW}[{\rm fb}]$	$\sigma_{2^+}^{\rm FtW}[{ m fb}]$
LO	μ_{WWbb}	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	μ_{WWbb}	$107^{+6\%}_{-11\%}$	$20^{+18\%}_{-17\%}$	$82^{+4\%}_{-10\%}$	$5^{+2\%}_{-10\%}$
K	μ_{WWbb}	1.18	1.49	1.16	0.77
LO	m_t	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	m_t	$100^{+17\%}_{-16\%}$	$16^{+22\%}_{-18\%}$	$77^{+16\%}_{-15\%}$	$6^{+12\%}_{-16\%}$
K	m_t	1.58	1.89	1.58	1.10

Jet-Veto and Binning Effects

0-jet bin vs $p_{\rm T}$ -veto

- smooth inclusive limit at large p_T and very strong p_T sensitivity below 50 GeV:
 - FtW effects increase up to 50%
 - K-factor falls very fast
- ${\, \bullet \,}$ at low $p_{\rm T}$ IR singularity calls for NLO+PS matching
- typical veto $p_{\rm T} \sim 30 \, {\rm GeV}$ yields 98% suppression and still decent NLO stability $(K \sim 1)$

1-jet bin vs p_{T} threshold

- low $p_{\rm T}$ behaviour driven by veto on 2nd jet and analogous to 0-jet case
- high $p_{\rm T}$ region driven by 1st jet and NLO radiation dominates over b-jets from $W^+W^-b\bar{b}$

WWbb cross section in b-jet bins

 NLO radiation doesn't change b-jet multiplicity ⇒ rather stable K-factor and uncertainties

ullet single-top and off-shell effects still enhanced at small b-jet p_{T}

In general: nontrivial interplay of NLO and off-shell/single-top effects

S. Pozzorini (Zurich University)

Precision simulations

Top background to 0-jet bin of $H \rightarrow W^+W^-$ analysis

NLO distributions in key variables for $H \rightarrow W^+W^-$ measurement

- better than 10% accuracy and stable shape
- $\mathcal{O}(\Gamma_t/M_t)$ contributions around 25–40%

 \Rightarrow requires full $WWb\bar{b}$ NLO simulation!

S. Pozzorini (Zurich University)

Precision simulations

NLO+PS for $W^+W^-b\bar{b}$ (conceptual and technical issues)

Need of NLO+PS matching

- NLO precision in the context of fully exclusive simulations for experimental analysis
- describes higher-order resummation effects in the shower aproximation and, possibly, related uncertainties (both should be small!)

NLO+PS matching for a process with intermediate resonances

- matrix elements provide NLO accurate description of "Breit-Wigner" top-distributions (with off-shell effects,...)
- crucial for precision observables sensitive to shape of top resonance (kinematic m_t measurements!), edges of on-shell $t\bar{t}$ phase space, single-top Wt contributions, ...

Nontrivial conceptual and technical (open) issue

- recoil of standard shower emissions off $W^+W^-b\bar{b}$ final states induce arbitrary kinematic distortions of m_{Wb}
- potentially very strong distortions of Breit-Wigner shape (formally of order $\alpha_S^2 m_t / \Gamma_t \sim 1!$)
- requires yet unknown technique for matching PS to off-shell resonances at NLO

Theory priorities in $t\bar{t}H$ searches

Key priority is precision for backgrounds

- various multi-particle processes: $t\bar{t}$ + jets, $t\bar{t}V$ + jets, $t\bar{t}\gamma\gamma$, VV+ jets
- NLO automation crucial but $2 \to 4 \ {\rm CPU}$ intensive

NLO matching & merging crucial

- various new methods (FxFx, MEPS@NLO, MINLO, UNLOPS, GENEVA, MINLO,...)
- *various* automated tools support NLO precision for signal and most backgrounds: MG5_AMC@NLO, SHERPA+OPENLOOPS/GOSAM, POWHEG/POWHEL

Theory uncertainty estimates nontrivial

- still limited experience in NLO matching+merging framework
- sophisticated analyses (profile likelihood, MEM, background reweighting, ...)

S. Pozzorini (Zurich University)

Precision simulations

Parton Showers in a Nutshell

High-energy *n*-parton final state \Rightarrow realistic multi-parton/hadron event

Chain of **ordered** emissions $\mu_Q > t_1 > t_2 > \cdots > t_{\rm IR}$

$$\mathrm{d}\sigma_n \simeq \mathrm{d}\sigma_{n-1} \frac{\alpha_s}{2\pi} \, \frac{\mathrm{d}t_n}{t_n} \, \mathrm{d}z \, \mathrm{d}\phi P(z,\phi) \qquad \quad \frac{\mathrm{d}t}{t} = \frac{\mathrm{d}k_\mathrm{T}^2}{k_\mathrm{T}^2}$$

Sudakov FF resums no-emission probability (V-like term)

$$\Delta(\mu_Q^2, t_0) = \exp\left\{-rac{lpha_s}{2\pi}\int_{t_{\mathrm{IR}}}^{\mu_Q^2}rac{\mathrm{d}t}{t}\int\mathrm{d}z\,\mathrm{d}\phi P(z,\phi),
ight\}$$

resummation scale $\mu_Q^2 \sim \hat{s}$ and IR cut-off $t_{\rm IR} \sim 1 \, {\rm GeV}$

First emission master formula

$$\sigma_n^{\rm LO+PS} = \int \mathrm{d}\Phi_n \mathcal{B}(\Phi_n) \bigg\{ \Delta(\mu_Q^2, t_{\rm IR}) + \int_{t_0}^{\mu_Q^2} \frac{\alpha_s}{2\pi} \frac{\mathrm{d}t_1}{t_1} \int \mathrm{d}z \, \mathrm{d}\phi P(z, \phi) \Delta(\mu_Q^2, t_1) \bigg\}$$

unitarity leaves inclusive LO normalisation and uncertainty unchanged

- emissions iterated with $\mu_Q^2 o t_1 o t_2 o \dots$
- resummation of large logarithms in exclusive oservables (jet vetoes, etc.)

S. Pozzorini (Zurich University)

Precision simulations

Sherpa Formulation of MC@NLO Matching

Matching NLO calculations to parton showers

- $\,$ $\,$ NLO accuracy + shower resummation w.o. double counting of $1^{\rm st}$ emission
- achieved in MC@NLO [Frixione, Webber '02] by using shower kernels as NLO subtraction terms

Sherpa shower ideally suited: dipole subtraction terms as splitting kernels

$$\frac{\alpha_s}{2\pi} \frac{\mathrm{d}t}{t} \,\mathrm{d}z \,\mathrm{d}\phi P(z,\phi) \longrightarrow \theta(\mu_Q - t)\mathcal{S}(\Phi_1) \mathrm{d}\Phi_1 \qquad t = t(\Phi_1)$$

Sherpa's MC@NLO master formula [Höche, Krauss, Schönherr, Siegert '11]

$$\sigma_{n}^{\text{MC@NLO}} \stackrel{=}{=} \int \mathrm{d}\Phi_{n} \left[\mathcal{B}(\Phi_{n}) + \mathcal{V}(\Phi_{n}) + \mathcal{B}(\Phi_{n}) \otimes \mathcal{I} \right] \left\{ \Delta(\mu_{Q}^{2}, t_{\text{IR}}) + \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{d}\Phi_{1} \mathcal{S}(\Phi_{1}) \Delta(\mu_{Q}^{2}, t) \right\} \\ + \int \mathrm{d}\Phi_{n+1} \left[\mathcal{R}(\Phi_{n+1}) - \mathcal{B}(\Phi_{n}) \otimes \mathcal{S}(\Phi_{1}) \right]$$

- shower resummation effectively acts starting from $\mathcal{O}(\alpha_s^2)$, and iterated emissions yield fully realistic events
- inclusive observables with n (n + 1) particles preserve NLO (LO) accuracy

MEPS@NLO for $t\bar{t} + 0, 1, 2$ jets (SHERPA+OPENLOOPS)

[Höche, Krauss, Maierhöfer, S. P., Schönherr, Siegert '14]

Small merging scale choice

• $Q_{\rm cut} = 30 \,{\rm GeV}$ such that exp. resolved jets are described by MEs

Merging scale uncertainty

- $Q_{\rm cut} = 30 \pm 10 \, {\rm GeV}$
- $\Rightarrow \ll 10\%$ dependence

does not spoil $t\bar{t} + 0, 1, 2$ jets NLO precision

Les Houches priority list for $pp \rightarrow V(V')$ + jets

Process	State of the Art	Desired
V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay) @ NNNLO QCD
	$d\sigma$ (lept. V decay) @ NLO EW	and @ NNLO QCD+EW
		NNLO+PS
V + j(j)	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW
VV'	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma$ (decaying off-shell V)
	$d\sigma$ (on-shell V decays) @ NLO EW	@ NNLO QCD + NLO EW
$gg \rightarrow VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$
$V\gamma$	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V \text{ decay})$
	$d\sigma$ (PA, V decay) @ NLO EW	@ NNLO QCD + NLO EW
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD
	massive b	+ NLO EW, massless b
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV'V"	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
$\gamma\gamma$	$d\sigma @ NNLO QCD + NLO EW$	q_T resummation at NNLL matched to NNLO

Table 3: Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

Typical size at 1-loop

$$\left(\frac{\delta\sigma_1}{\sigma_0}\right)_{\rm LL} \simeq -\frac{4\alpha}{\pi s_{\rm w}^2} {\ln^2} \left(\frac{1\,{\rm TeV}}{M_W}\right) \simeq -26.4\% \qquad \left(\frac{\delta\sigma_1}{\sigma_0}\right)_{\rm NLL} \simeq +\frac{6\alpha}{\pi s_{\rm w}^2} {\ln} \left(\frac{1\,{\rm TeV}}{M_W}\right) \simeq +15.6\%$$

Typical size at 2-loops [Bauer, Becher, Ciafaloni, Comelli, Denner, Fadin, Jantzen, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, ...]

$$\left(\frac{\delta\sigma_2}{\sigma_0}\right)_{\rm LL} \simeq + \frac{8\alpha^2}{\pi^2 s_{\rm w}^4} \ln^4\left(\frac{1\,{\rm TeV}}{M_W}\right) \simeq 3.5\% \qquad \left(\frac{\delta\sigma_2}{\sigma_0}\right)_{\rm NLL} \simeq -\frac{24\alpha^2}{\pi^2 s_{\rm w}^4} \ln^3\left(\frac{1\,{\rm TeV}}{M_W}\right) \simeq -4.1\%$$

Bottom line

- \Rightarrow Large negative EW corrections exceed NLO QCD uncertainties at $Q^2 \gg M_W^2$
- \Rightarrow systematic inclusion of EW effects important for any search at the TeV scale

Real photon emission

- $\bullet\,$ mandatory since soft/collinear γ unresolved
- complete cancellation of QED singularities

Real Z, W emission [Ciafaloni,Comelli]

- inclusive emission: only partial $\ln(\hat{s}/M_W)$ cancellation
- \leftrightarrow free SU(2) charges, collinear IS logs, kinematic $M_{Z,W}$ effects
 - typical experimental cuts: modest $\ln(\hat{s}/M_W)$ cancellation (strongly dependent on process and analysis)
 - **bottom line**: needs to be considered but can be regarded as separate (tree-level) process

Nontrivial QCD-EW interferences for $q\bar{q} \rightarrow q\bar{q} + \dots$

⇒ EW corrections can involve emissions of photons and QCD-partons

Nontrivial QCD-EW interplay in $pp \rightarrow X + \geq 2$ jets

 $q\bar{q}
ightarrow q\bar{q} + \dots$ cross sections receive various Born contributions

 $\mathcal{O}\left(\alpha_{S}^{n}\alpha^{m+1}\right) \text{ NLO EW corrections to leading QCD Born, e.g. in } q\bar{q} \rightarrow q\bar{q}$ • EW corrections × QCD Born $\begin{array}{c} & & & \\ &$

In practice

- only full $\mathcal{O}\left(\alpha_{S}^{n}\alpha^{m+1}\right)$ IR finite \Rightarrow nontrivial bookkeeping (automated)
- $\mathcal{O}(\alpha)$ corrections can involve emissions of photons and QCD-partons
- protons and jets $\supset g, q, \gamma$

S. Pozzorini (Zurich University)

Precision simulations

Photons in the initial state

Factorisation of $q \rightarrow q\gamma$ singularities \Rightarrow QED PDFs with photon

- LO QED evolution
- γ-fit to DIS+DY data (NNPDF)
- $\mathcal{O}(50\%) \gamma$ -uncertainty

Very large $\gamma\text{-induced}$ effects with $\mathcal{O}\left(100\%\right)$ uncertainty in TeV region

Wanted: - NLO QED PDFs

- new fit of γ -PDF with accurate high-energy data & theory [Boughezal et al.'14]

S. Pozzorini (Zurich University)

Precision simulations

DESY15 63 / 35

Photons (and jets) in the final state

Cancellation of FS photon singularities

- requires IR subtraction method [Catani,Dittmaier,Seymour, Trocsanyi; Frixione, Kunszt, Signer]
- photon emission off quarks renders IR safe jet definition nontrivial at NLO EW

Option A: Democratic jet-algorithm approach (jets = photons)

collinear $q \rightarrow q\gamma$ singularities cancelled clustering q, g, γ on same footing

soft gluon singularities \leftrightarrow hard photons inside jets: cancelled in jet-production (NLO EW) + γ -production (NLO QCD)

Option B: Separation of jets from photons ($E_{\gamma}/E_{\text{jet}} < z_{\text{thr}}$ inside jets)

 $\bullet \ q \to q \gamma$ singularity must be absorbed into fragmentation function

 \Rightarrow requires careful theoretical and experimental treatment of photon-jet interplay

Decays of Z/W bosons

Leptonic Z and W decays are notrivial at NLO EW (in contrast to NLO QCD)

NLO EW corrections to production×resonance×decay + non-fact corrections

Option A: complex mass scheme [Denner, Dittmaier]

- exact NLO description (always desirable)
- high complexity corresponding to total number of particles after decays

Option B: narrow-width approximation (production×decay)

- simpler but applicability to V+multijets limited to certain $\mathcal{O}\left(\alpha_{S}^{n}\alpha^{m+1}\right)$ (see later)
- captures all large $\ln(\hat{s}/M_W^2)$ effects (present only in production sub-process)
- typical uncertainty \lesssim 1–3% (apart form $\gamma^*/Z^* \to \ell^+ \ell^-$ at small $m_{\ell\ell}$)

Very large EW corrections to $pp \to Z/W + 1\,{\rm jet}$

- NLO (electro)weak [Maina, Ross, Moretti '04;Kühn, Kulesza, S.P.,Schulze '04–'07]
- EW Sudakov logs beyond NLO [Kühn, Kulesza, S.P.,Schulze '04–'07; Becher, Garcia i Tormo '13]
- NLO QCD+EW with off-shell Z/W decays [Denner,Dittmaier,Kasprzik,Muck '09-'11]

Complexity and efficiency of $pp \rightarrow W^+ + n$ jets $(n \leq 3)$

	$pp \rightarrow W + n$ jets @LO			pp ightarrow W + n jets @NLO					
	$\alpha_s^n \alpha$	$\alpha_s^{n-1}\alpha^2$	$\alpha_s^{n-2}\alpha^3$	$\alpha_s^{n-3} \alpha^4$	$\alpha_s^{n+1}\alpha$	$\alpha_s^n \alpha^2$	$\alpha_s^{n-1}\alpha^3$	$\alpha_s^{n-2}\alpha^4$	$\alpha_s^{n-3}\alpha^5$
$u_i \bar{d}_i \rightarrow W + ng$	×	-	-	-	×	×	-	-	-
$u_i \bar{d}_i \rightarrow W + q \bar{q} + (n-2)g$	×	×	×	-	×	×	×	×	-
$\gamma u_i \to d_i W + (n-1)g$	-	×	-	-	-	-	-	-	-
$\gamma u_i \rightarrow d_i W + q \bar{q} + (n-3)g$	-	×	×	×	-	-	-	-	-
$\gamma\gamma ightarrow ar{u}_i d_i W + (n-2)g$	-	-	×	-	-	-	-	-	-
$u_i\bar{d_i} \to W + (n+1)g$	-	-	-	-	×	-	-	-	-
$u_i \bar{d}_i \rightarrow W + q\bar{q} + (n-1)g$	-	-	-	-	×	×	×	-	-
$u_i \bar{d}_i \rightarrow W + q \bar{q} q' \bar{q}' + (n-3)g$	-	-	-	-	×	×	×	×	×
$u_i \bar{d_i} \to W + ng + \gamma$	-	-	-	-	-	×	-	-	-
$u_i \bar{d}_i \rightarrow W + q \bar{q} + (n-2)g + \gamma$	-	-	-	-	-	×	×	×	×

 \times (\times) = (not) included in 1412.5156

Ingredients of order $\alpha_S^{n+1}\alpha + \alpha_S^n\alpha^2$ calculation

- very many crossings and flavour combinations $(u_i, d_i, q, q' \in \{u, d, c, s, b\})$
- 2000–3000 virtual EW diagrams/channel: more complex than QCD but faster

"Pseudo resonances" in QCD×EW interferences

(IR EW singularities tricky...)

• external W stable ($\Gamma_W = 0$) but small $\Gamma_{reg} \to 0$ for s-channel t, W, Z, H prop.

S. Pozzorini (Zurich University)

Precision simulations

Number of diagrams in $pp \rightarrow W + 1, 2, 3$ jets (in parenthesis: $q = u_i, d_i$ case)

Channel	QCD trees	EW trees	QCD 1-loop	EW 1-loop
$u_i \bar{d}_i \to W^+ g$	2	-	11	32
$u_i \bar{d}_i \to W^+ q \bar{q}$	2 (4)	7 (14)	33 (66)	105 (210)
$u_i \bar{d}_i \to W^+ gg$	8	-	150	266
$u_i \bar{d}_i \to W^+ q \bar{q} g$	12 (24)	33 (66)	352 (704)	1042 (2084)
$u_i \bar{d}_i \to W^+ ggg$	54	-	2043	2616

- moderate growth of complexity wrt NLO QCD (up to 3× more loop diagrams)
- 1-loop QCD and EW similarly fast \Rightarrow 0.1% stat precision for W + 1, 2, 3 jets at NLO QCD+EW costs 13,210,6300 CPU h (dominated by NLO QCD!)

LO EW–QCD interplay in $pp \rightarrow W^+ + 2,3$ jets at 13 TeV

"QCD cuts" throughout

- $p_T > 30 \,\mathrm{GeV}$, $\eta < 4.5$
- $\Rightarrow \ \mathsf{QCD} \ \mathsf{dominates}$

EW contributions (WV, VBF, single-t)

- 3–6% in $\sigma_{\rm int}$
- I0-20% at 1-4 TeV

EW–QCD interference

- $\mathcal{O}\left(10^{-3}\right)$ in σ_{int}
- 10–50% at 1–4 TeV (dominant!)

\Rightarrow nontrivial QCD-EW interplay at the TeV scale (with V+jets "QCD cuts")

LO γ -induced contributions in $pp \rightarrow W^+ + 1, 2, 3$ jets

Single- γ contributions

- from $\mathcal{O}(10^{-3})$ in $\sigma_{\rm int}$ to 5–100% at $p_{T,W}$ =1–4 TeV!
- driven by γ -PDF (NNPDF2.3 QED) at large x (huge γ -PDF uncertainty...)

S. Pozzorini (Zurich University)

NLO QCD+EW corrections to $pp \rightarrow W^+ + 1$ jet

Inclusive $\sigma(pp \to W + 1, 2, 3 \text{ jets})$ ($p_{T,j} > 30 \text{ GeV}$) • $\lesssim 1\%$ EW correction

W-boson p_T (Sudakov behaviour)

- $\bullet~+100\%$ QCD correction in the tail
- -20-35% EW correction at 1–4 TeV

Jet p_T (pathologic behaviour!)

- factor-10 QCD correction in the tail!
- *positive* 10–50% EW correction (QCD-EW real emission!)

Origin of dramatic instability

• huge di-jet contributions at high jet p_T

معمعم

soft W/Z

Same observables with "dijet-veto cut" $\phi_{jj} < \frac{3}{4\pi}$

QCD corrections

• moderate at high $p_{T,jet}$

EW corrections

- Sudakov behaviour in both tails
- -20-50% at 1–4 TeV (more pronounced)

Bottom line

- W + 1 jet at NLO ok for *exclusive* case
- inclusive case requires W + 2 jets at NLO

\Rightarrow strong motivation for V+multijets!

NLO corrections to $H_{T,tot}$ in $pp \rightarrow W^+ + 1, 2, 3$ jets

- NLO QCD in $H_{T,tot}$ tail well behaved only starting from W + 3 jets (calls for NLO multi-jet merging)
- only -20% EW corrections at very high $H_{T,tot}$ (more if also $p_{T,W}$ is high!)

$pp \rightarrow W^+W^-$ at NNLO vs jet vero in the 5F scheme

Top resonances, $g \rightarrow b\bar{b}$ singularities and b-jet veto ($p_{\rm T} < p_{{\rm T},bjet}^{ m veto}$)

Full 5F cross section vs 4F

- top contamination huge at large $p_{\mathrm{T},bjet}^{\mathrm{veto}}$ and 10% at 10 GeV, where sensitivity to singularity shows up
- no "robust" W^+W^- definition

Top-free 5F cross section vs 4F

- very stable top subtraction at $p_{\mathrm{T},bjet}^{\mathrm{veto}} > 10\,\mathrm{GeV}$
- 1% agreement with 4FNS
 - \Rightarrow NNLO prediction solid!

NNLO vs NLO

- fiducial region of ATLAS (CMS) measurement involves jet veto at $p_T = 25(30) \text{ GeV}$
- NNLO correction of -8% wrt NLO
- NNLO seems consistent with Powheg

NNLO vs MEPS@NLO (Sherpa)

- MEPS@NLO \Rightarrow 1st emission at NLO + LLs + particle level
- quite stable wrt scale variations
- consistent with NNLO