

Unitarisation of Anomalous Couplings in Vector Boson Scattering

Maximilian Löschner Institut für Theoretische Physik Advisor: Dieter Zeppenfeld

> Seminar on Particle Physics 10 Nov. 2015

MOTIVATION

Hope for interesting features to show up in the near future:
► LHC Run 2

INTRODUCTION

- Interactions among vector bosons predicted in the SM
- Coupling structure determined by the Glashow-Weinberg-Salam model of weak interactions
- Measurement has only begun recently
 - Room for new physics

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$W^{a}_{\mu\nu} = ig(\partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g\epsilon_{abc}W^{b}_{\mu}W^{c}_{\nu})$$

$$B_{\mu\nu} = \mathrm{i}g(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})$$

VECTOR BOSON SCATTERING SCATTERING

First results for electroweak production of same sign W-pairs from ATLAS Vector Boson Scattering

arXiv:1405.6241 [hep-ex]

NEW PHYSICS

At least two ways to describe new physics effects:

- Propose specific new physics model like SUSY
 - new particles
 - new symmetries
- Problem: relatively long way from physics model to explicitly modeling e.g. deviations in vector boson couplings
- Use model independent approach: effective field theory (EFT) or anomalous couplings
 - SM particle content with modified couplings

• Lagrangian approach (a little outdated): constructed to contain all possible Lorentzstructures

$$\begin{aligned} \mathcal{L}^{VVV'V'} &= c_0^{WW} W^+_{\mu} W^{-\mu} W^+_{\nu} W^{-\nu} + c_1^{WW} W^+_{\mu} W^{+\mu} W^-_{\nu} W^{-\nu} \\ &+ c_0^{WZ} W^+_{\mu} Z^{\mu} W^-_{\nu} Z^{\nu} + c_1^{WZ} W^+_{\mu} W^{-\mu} Z_{\nu} Z^{\nu} \\ &+ c^{ZZ} \left(Z_{\mu} Z^{\mu} \right)^2 . \end{aligned}$$

- ➡ Not necessarily gauge invariant
- \blacktriangleright Could add arbitrary number of terms with derivatives accompanied by factor m_V^{-1}
- Standard Model values:

$$c_{0,\rm SM}^{WW} = -c_{1,\rm SM}^{WW} = \frac{2}{\cos^2 \theta_W} c_{0,\rm SM}^{WZ} = -\frac{2}{\cos^2 \theta_W} c_{0,\rm SM}^{WZ} = g^2, \qquad c_{\rm SM}^{ZZ} = 0,$$

Maximilian Löschner Unitarisation of Anomalous Couplings in VBS

EFFECTIVE FIELD THEORY

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{k} \frac{f_k}{\Lambda^4} \mathcal{O}_k^{(8)}$$

- Use model independent approach: effective field theory (EFT) or anomalous couplings
 - SM particle content with modified couplings
- Extend SM by adding higher dimensional operators

- Capture any physics beyond SM in accessible energy range
- Balance energy dimension by inserting appropriate mass scale Λ (scale of New Physics)
- Dim. 8 operators as tools to model potential deviations of quartic gauge couplings from their SM values

DIM. 8 OPERATORS

- 3 classes of dim. 8 operators: $\mathcal{O}_{S,0} = [(D_{\mu}\Phi)^{\dagger}(D_{\nu}\Phi)] \times [(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)]$ $\mathcal{O}_{M,0} = \operatorname{Tr}[W_{\mu\nu}W^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}(D^{\beta}\Phi)]$ $\mathcal{O}_{T,0} = \operatorname{Tr}[W_{\mu\nu}W^{\mu\nu}] \times \operatorname{Tr}[W_{\alpha\beta}W^{\alpha\beta}]$
- 18 dim. 8 operators in total
- All are effecting vector boson 4vertices in different ways
- Problem: Different combinations of polarizations lead to unphysically large cross sections

$$\epsilon_L^{\mu}(k) = \frac{k^{\mu}}{m} + \mathcal{O}\left(\frac{m}{E}\right)$$

$$V_1, \lambda_1$$
 V_3, λ_3
 V_2, λ_2 V_4, λ_4

WHY UNITARISATION?

- Want to study deviations from the SM in an accessible energy range, e.g. at the LHC
- All effective operators break tree-level unitarity for high c.o.m. energy
 - Unphysically large cross- sections
 - When comparing predictions to data, all couplings would need to be zero

UNITARISATION

• Historic example: Fermi's 4point-interaction (1933):

- effective 4-vertex leads to rise of the amplitude with s
- Insertion of W- propagator unitarizes the amplitude and gives correct low energy behavior

FORM FACTORS

 Multiply amplitudes by factor resembling a propagator:

$$\mathcal{A} \to \mathcal{A} \times \frac{1}{\left(1 + \frac{s}{\Lambda_{\mathrm{FF}}^2}\right)^n}$$

- Choice of form factor lacks strong physical motivation
- One has to deal with two input-parameters depending on the operator structure and coupling strength

UNITARITY CONSIDERATIONS

- Unitarity of Scattering operator S leads to condition for eigenvalues of transition operator T:
 - $SS^{\dagger} = I$ $\Leftrightarrow (I + 2iT)(I + 2iT)^{\dagger} = I$
 - Argand-circle condition: $\left|t_j \frac{\mathrm{i}}{2}\right| = \frac{1}{2}$
- T can be expressed in terms of the so called K-matrix:

$$T = \frac{K}{I - iK}$$

• Perturbatively, K can be expressed in terms of partial wave amplitudes

$$A^{J}_{\lambda\mu}(s) = \int \mathrm{d}(\cos\theta) \ \mathcal{A}_{V_1V_2 \to V_3V_4}(s,\theta) \ d^{J}_{\lambda\mu}(\theta)$$

Unitarized partial wave amplitudes:

$$\hat{A}^{J}_{\lambda\mu} = \frac{A^{J}_{\lambda\mu}}{1 - iA^{J}_{\lambda\mu}/32\pi}$$

K-MATRIX-UNITARISATION

100

- Partial waves include dependence on couplings
 - Dynamic unitarisation for any size of coupling
- Saturation at high energies while keeping original low energy behavior

• Worked out for the operators $\mathcal{L}_{S,i}$

VBFNLO

- Parton level Monte Carlo program for NLO QCD simulation of
 - Vector boson fusion
 - Double and triple vector boson production in hadronic collisions
 - Double vector boson production in association with a hadronic jet
- Includes Higgs and vector boson decays with full spin correlations and all off-shell effects.
- Anomalous Couplings available for most processes
- Efficient by reusing electroweak part of diagrams in terms of leptonic tensors

https://www.itp.kit.edu/~vbfnloweb

Maximilian Löschner Unitarisation of Anomalous Couplings in VBS

VBFNLO / WHIZARD COMPARISON

- K-Matrix unitarisation implemented in **VBFNLO** (Parton level Monte Carlo program @ NLO QCD) for $\mathcal{L}_{S,i}$
- Comparable to
 implementation in WHIZARD
 - Qualitative agreement found for invariant mass distributions
 - Agreement at per mill level for total cross sections

$$\frac{f_{S,0}}{\Lambda^4} = \frac{f_{S,1}}{\Lambda^4} = 100 \text{ TeV}^{-4}$$

K-MATRIX-LIKE FORM FACTOR

Need different treatment for the other operators

- No diagonalizing basis for Smatrix available
- More than one important contribution in helicity space
- Translation to off-shell
 implementation difficult

• Use K-matrix-like form
factors:

$$\mathcal{F}_{K}(s) = \frac{\hat{A}_{\lambda\mu}^{J}}{A_{\lambda\mu}^{J}} = \frac{1}{1 - iA_{\lambda\mu}^{J}} = \frac{1}{1 - i\frac{s^{2}}{\Lambda_{K}^{4}}}$$

Maximilian Löschner Unitarisation of Anomalous Couplings in VBS 0

0

MATHEMATICA FRAMEWORK

Framework for calculating analytic expressions of partial wave amplitudes:

- Start from an arbitrary operator set, i.e. Lagrangian
- Generate analytic expressions for amplitudes by inserting explicit momenta and helicity eigenvectors
- Get partial waves for all of the 9x9 possible helicity configurations
- Determine leading contributions and use them for unitarisation

 $0 \ {m_W^2 \over 5 \sqrt{6} v^2} ar{f}_{M,1} s^2$

0

CONCLUSION

- Use a model independent way to describe New Physics: Effective Field Theory
- Need unitarisation scheme to suppress unphysical behavior for high c.o.m. energy
- K-matrix unitarisation implemented in VBFNLO for $\mathcal{L}_{S,i}$ and form factors for other operators
- Proposition of K-matrix-like form factors for other operators
- Development of Mathematica framework for calculating partial wave amplitudes of arbitrary dim. 8 operator set
- Simulation in VBFNLO including NLO QCD corrections
- New features available in VBFNLO 3.0beta: <u>https://www.itp.kit.edu/~vbfnloweb</u>

ONE-LOOP FERMION MASS CORRECTIONS AND FLAVOR SYMMETRIES

Maximilian Löschner Advisor: Walter Grimus

> Seminar on Particle Physics 10 Nov. 2015

INTRODUCTION

- Measurement of ν -oscillations:
 - *v*'s are massive and have nonvanishing mass differences
- Possibly far reaching implications of mass generating mechanisms:
 - Lepton number violation, leptogenesis, baryon asymmetry
 - Composition and origin of dark matter

SOME OPEN QUESTIONS

Experiment

- I. Value of the CP-violating phase in the mixing matrix
- 2. Normal or inverted mass hierarchy
- 3. Absolute mass scale of the lightest neutrinos
- 4. Dirac or Majorana nature

Theory

- I. Smallness of u masses
- 2. Strong hierarchy in mass spectra of charged leptons
- 3. Mild hierarchy in ν spectrum
- 4. One small and two large mixing angles in lepton mixing matrix

- In order to add mass terms to SM Lagrangian, necessarily need to introduce new particles
 - At least three right-handed
 v's for gauge invariant
 Yukawa mass terms
- ν masses are at least 10⁶ times smaller then electron mass
 - $y \lesssim 10^{-11}$
 - seems unnaturally small

$$\mathcal{L}_{\mathrm{Yuk},\nu} = y(\bar{\nu}_L \bar{\phi}^0 - \bar{l}_L \phi^-)\nu_R$$

Maximilian Löschner Unitarisation of Anomalous Couplings in VBS

RADIATIVE GENERATION

Example: Scotogenic Model [arXiv:1408.4785]

- Extend SM by three righthanded ν 's and second scalar doublet
- Impose exact Z₂ symmetry: all SM particles even, new particles odd
 - $y(\nu\phi^0 l\phi^+)N$ forbidden
 - $y(\nu\eta^0 l\eta^+)N$ allowed

- Vanishing VEV of second scalar doublet
 - No tree level Dirac mass
 - Radiative Majorana mass
- Possible dark matter candidate

OUTLOOK

 Determine one-loop mass corrections in general framework, investigate stability of tree level masses and influence of (discrete) flavor symmetries

$$\mathcal{L}_{\text{toy}} = i\overline{\chi}_L \gamma_\mu \partial^\mu \chi_L + \left(\frac{1}{2}y\chi_L^T C^{-1}\chi_L \phi + \text{h.c.}\right) + \frac{1}{2}(\partial_\mu \phi)(\partial^\mu \phi) - V(\phi)$$

- First step: Generalization of a simple toy model with arbitrary # of fermion and scalar fields imposing Z₂ symmetry
- In the end: apply to specific models like the scotogenic model and produce numerical results for corrections to masses and mixing angles

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." - Lord Kelvin, 1900

THANKS!

Seminar on Particle Physics 10 Nov. 2015

BACKUP SLIDES

Seminar on Particle Physics 10 Nov. 2015

DIM.6 VS. DIM.8

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
\mathcal{O}_{WWW}	X	Х					Х	Х	Х	Х
\mathcal{O}_W	X	Х	Х	Х	Х		Х	Х	Х	
\mathcal{O}_B	X	Х		Х	X					
$\mathcal{O}_{\Phi d}$			X	X						
$\mathcal{O}_{\Phi W}$			X	Х	X	X				
$\mathcal{O}_{\Phi B}$				Х	X	X				
$\mathcal{O}_{ ilde{W}WW}$	X	Х					Х	Х	X	Х
$\mathcal{O}_{ ilde{W}}$	X	X	X	X	X					
$\mathcal{O}_{ ilde{W}W}$			Х	X	X	X				
$\mathcal{O}_{ ilde{B}B}$				Х	X	X				

	wwww	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	X	Х	X						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	X	Х	X	Х	Х	X	X		
$\mathcal{O}_{M,2}, \mathcal{O}_{M,3}, \mathcal{O}_{M,4}, \mathcal{O}_{M,5}$		Х	X	Х	Х	Х	Х		
$\mathcal{O}_{T,0}, \mathcal{O}_{T,1}, \mathcal{O}_{T,2}$	X	Х	X	Х	Х	X	Х	Х	X
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		Х	X	Х	Х	X	X	Х	X
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$			X			X	X	X	X

$$\mathcal{A}_{S,1} = 2m_W^2 m_Z^2 \frac{f_{S,1}}{\Lambda^4} \epsilon_1 \cdot \epsilon_2 \epsilon_3^* \cdot \epsilon_4^*,$$

$$\mathcal{A}_{M,2} = \frac{4m_W^2 m_Z^2 \sin^4 \theta_W}{v^2} \frac{f_{M,2}}{\Lambda^4} \epsilon_1 \cdot \epsilon_2 \left(k_3 \cdot k_4 \epsilon_3^* \cdot \epsilon_4^* - \epsilon_3^* \cdot k_4 \epsilon_4^* \cdot k_3\right),$$

$$\mathcal{A}_{T,0} = \frac{128m_W^2 m_Z^2 \cos^4 \theta_W}{v^4} \frac{f_{T,0}}{\Lambda^4} \left(k_1 \cdot k_2 \epsilon_1 \cdot \epsilon_2 - \epsilon_1 \cdot k_2 \epsilon_2 \cdot k_1\right) \left(k_3 \cdot k_4 \epsilon_3^* \cdot \epsilon_4^* - \epsilon_3^* \cdot k_4 \epsilon_4^* \cdot k_3\right)$$

- Each operator has its ,,fingerprint" of which polarization states are the most important
- For a 2 to 2- process one has $3^4 = 81$ possible combinations
 - Number of independent amplitudes can be reduced using C-, P- and Bose symmetry

Reduction of polarization matrix (for WW to ZZ):

W- interchange

Z- interchange

/	0	+	0	00	0+	+-	+0	++
-0	-0 - 0	-0 - +	-00-	-000	-00+	-0 + -	-0 + 0	-0 + +
_ +	+-0	-+-+	-+0-	-+00	-+0+	-++-	-++0	-+++
0	00	0 +	0 - 0 - 0	0 - 00	0 - 0 +	0 - + -	0 - +0	0 - ++
00	00 - 0	00 - +	-000	0000	+000	00 + -	00 + 00	00 + +
0+	0 + -0	0 + - +	0 + 0 - 0	0 + 00	0 + 0 + 0	0 + + -	0 + +0	0 + + +
+	- +0	+ +	+ - 0 -	+ - 00	+ - 0 +	+ - + -	+ - + 0	+ - + +
+0	+0 - 0	+0 - +	+00-	+000	+00+	+0 + -	+0 + 0	+0 + +
++	- ++-0	+ + - +	+ + 0 -	++00	++0+	+++-	+++0	+ + + +

Parity

Final polarization matrix for WW to ZZ:

$$\begin{pmatrix} ----- & --00 & ---0 & ---+ \\ ++-- & ++00 & ++-0 & ++-+ \\ 00 & -- & 0000 & 00 & -0 & 00 & -+ \\ -0 & -- & -000 & -0 & -0 & -0 & -+ \\ 0 & +-- & 0 & +00 & 0 & +-0 & 0 & +-+ \\ -+-- & -+00 & -+-0 & -+-+ \end{pmatrix}$$

Corresponding helicity differences:

(0 0	0 0	0-1	0-2	
	0 0	0 0	0-1	0-2	
	0 0	0 0	0-1	0-2	
	-10	-1 0	-1-1	-1-2	
	-10	-1 0	-1-1	-1-2	
	-20	-2 0	-2-1	-2-2	

Result of this framework:

Partial waves that could be used as input for Kmatrix like form factors

Maximilian Löschner Unitarisation of Anomalous Couplings in VBS Seminar on Particle Physics 10 Nov. 2015 K-MATRIX

- Unitarity considerations lead to definition of inverse K-operator: $K^{-1} \equiv T^{-1} + iI$
- Then T can be expressed as T = K/(I - iK)

 If perturbative expansion of T exists then:
 - $K^{(1)} = T^{(1)}$

• By expanding arbitrary set of EFT operators in terms of the fields, relations to anomalous couplings can easily be found:

$$c_i^{VV'} = c_{i,\text{SM}}^{VV'} + g^2 \Delta c_i^{VV'}.$$

K-MATRIX VS. FORM FACTOR

WHIZARD COMPARISON

process	SN	Λ	no K-M	Iatrix	K-Matrix		
	VBFNLO	WHIZ	VBFNLO	WHIZ	VBFNLO	WHIZ	
W^+W^+	1.3102(4)	1.311(1)	51.49(2)	51.54(4)	2.452(1)	2.466(2)	
W^+W^-	0.9019(7)	0.902(2)	24.594(6)	21.52(4)	1.530(1)	1.455(4)	
W^+Z	0.1473(1)	0.1480(3)	2.633(1)	2.637(3)	0.2413(2)	0.2426(5)	
ZZ	0.02840(3)	0.0284(1)	3.141(2)	3.142(6)	0.08301(6)	0.0829(2)	

Agreement in terms of total cross sections (surprisingly) very good, except for W+W-

- ➡ Differences in operator sets show up
- ➡ Can be cured by introducing new operator

Need to take care that cancellations between Higgs- and vectorboson- sector don't get spoiled in BSM- Higgs- models

$$\mathcal{O}_{\mathrm{S},0} = \left[(D_{\mu}\Phi)^{\dagger} (D_{\nu}\Phi) \right] \times \left[(D^{\mu}\Phi)^{\dagger} (D^{\nu}\Phi) \right]$$

$$\begin{split} \Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix} \\ D_{\mu} &= \begin{pmatrix} \partial_{\mu} + \frac{\mathrm{i}}{2} Z_{\mu} (g c_{W} + g' s_{W}) + \mathrm{i} e A_{\mu} & \frac{\mathrm{i} g}{\sqrt{2}} W_{\mu}^{+} \\ \frac{\mathrm{i} g}{\sqrt{2}} W_{\mu}^{-} & \partial_{\mu} + \frac{\mathrm{i}}{2} Z_{\mu} \sqrt{g^{2} + g'^{2}} \end{pmatrix} \\ W_{\mu\nu} &= \frac{\mathrm{i} g}{2} \tau^{i} (\partial_{\mu} W_{\nu}^{i} - \partial_{\nu} W_{\mu}^{i}) + g \epsilon_{ijk} W_{\mu}^{j} W_{\nu}^{k} \end{split}$$

$$\Rightarrow \mathcal{O}_{\mathrm{S},0} = m_W^4 W^+ \cdot W^+ W^- \cdot W^-$$
$$+ m_W^2 m_Z^2 W^+ \cdot W^- Z \cdot Z$$
$$+ m_Z^4 Z \cdot Z Z \cdot Z$$