Sterile neutrino oscillations with altered dispersion relations in Cosmology and Astrophysics

Elke Aeikens

University Vienna

17th November 2015 Seminar on particle physics

Elke Aeikens (University Vienna)

- Introduction: Oscillations with sterile neutrinos with altered dispersion relations (ADR)
- **Astrophysics**: Sterile mixing in astrophysical neutrinos from IceCube
- Cosmology: Big Bang Nucleosynthesis as a test of new neutrino physics

Nobel price for discover neutrino oscillations

Arthur B. McDonald

 Flavor- (ν_α) and mass eigenstates (ν_i) differ via an oscillation matrix U:

 $v_{\alpha} \neq v_{i} \implies v_{\alpha} = U_{\alpha i} v_{i} \qquad \alpha, \beta \in \{e, \mu, \tau, s\}$

There are different models for neutrino mass:

$$\mathcal{L}_{M} \stackrel{?}{=} \mathcal{L}_{dirac} + \mathcal{L}_{majorana} \sim v_{\alpha} M v_{\beta} = v_{i} \underbrace{U^{\dagger} M U}_{m_{diag}} v_{j}$$

What is the advantage of right handed/sterile neutrino oscillation?

Advantage of sterile Neutrinos

- explain mass hierarchy in right-handed neutrino mass models via the Seesaw mechanism. $[m_{\nu_s} \gtrsim TeV]$ (with additional higgs doublets...)
- Dark matter candidates $[{\rm keV} \lesssim m_{\nu_s} \lesssim {\rm TeV}]$
- Baryon asymmetry via Leptogenesis in νMSM models $[keV \lesssim m_{\nu_s} \lesssim GeV]$
- Detected anomalies at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_s} \sim eV]$ (u.a here also: lceCube)

tightest constrains from cosmology:

- Boundaries from BBN (discussed here)
- CMB measurement from PLANCK sets limits on *N*_ν and also the Large Scale Structure.

Advantage of sterile Neutrinos

- explain mass hierarchy in right-handed neutrino mass models via the Seesaw mechanism. $[m_{\nu_s} \gtrsim TeV]$ (with additional higgs doublets...) actual work
- Dark matter candidates $[keV \lesssim m_{\nu_s} \lesssim TeV]$
- Baryon asymmetry via Leptogenesis in νMSM models $[keV \lesssim m_{\nu_s} \lesssim GeV]$
- Detected anomalies at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_s} \sim eV]$ (u.a here also: IceCube)

tightest constrains from cosmology:

- Boundaries from BBN (discussed here)
- CMB measurement from PLANCK sets limits on *N_ν* and also the Large Scale Structure.

Advantage of sterile Neutrinos

- explain mass hierarchy in right-handed neutrino mass models via the Seesaw mechanism. $[m_{\nu_s} \gtrsim TeV]$ (with additional higgs doublets...) actual work
- Dark matter candidates $[keV \lesssim m_{\nu_s} \lesssim TeV]$
- Baryon asymmetry via Leptogenesis in νMSM models $[keV \lesssim m_{\nu_s} \lesssim GeV]$
- Detected anomalies at: LSND, MiniBooNE, gallium detectors: GALLEX, SAGE, reactor experiments... $[m_{\nu_s} \sim eV]$ (u.a here also: IceCube)

tightest constrains from cosmology:

• Boundaries from BBN (discussed here)

previous work

• CMB measurement from PLANCK sets limits on *N*_ν and also the Large Scale Structure.

Oscillations with sterile neutrinos

In vacuum:

2-flavor-mixing approximation, $v_l \leftrightarrow v_s (l \in \{e, \mu, \tau\})$

 $\alpha, \beta \in \{l, s\}$

oscillation probability

$$P_{\nu_l \to \nu_s} = |\langle \nu_s | \nu_l(t) \rangle|^2$$

$$\langle P_{\nu_l \to \nu_s} \rangle = \sum_j |U_{lj}|^2 |U_{sj}|^2 = \langle \sin^2(\frac{\Delta m^2}{2E}x) \rangle \sin^2(2\theta) = \frac{1}{2}\sin^2(2\theta)$$

Oscillations with sterile neutrinos

Oscillations with sterile neutrinos

Neutrino potentials

Large extra dimension - ADD model [N. Arkani-Hamed, S. Dimopoulos, G. Dvali, 1998]

- invented to explain weakness of gravity relative to other forces (hierarchy problem)
- solve neutrino Anomalies with ε ≥ 10⁻¹⁶, [Paes et al., 2005] (shortcut parameter: ε ~ δt/t)

Elke Aeikens (University Vienna)

equation of motion for a particle

$$\frac{d}{dt} |\tilde{v}_{\alpha}(t)\rangle = \begin{bmatrix} \frac{\Delta m^2}{4E} \begin{pmatrix} -c(2\theta) & s(2\theta) \\ s(2\theta) & c(2\theta) \end{pmatrix} + \frac{1}{2E} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} |\tilde{v}_{\alpha}\rangle$$

in matter or in theories with shortcuts in extra dimensions:

$$A(E) = \begin{cases} \sqrt{2} \ G_F \ n_e(E^3) \cdot A_{\alpha} E^2 / M_W^2, & \text{matter (in BBN)} \\ \varepsilon E, & \text{extra dimensions} \\ \text{[Paes et al. Phys. Rev. D 72, 095017 (2005)]} \end{cases}$$

Elke Aeikens (University Vienna)

equation of motion for a particle

$$\begin{split} \frac{d}{dt} \left| \tilde{v}_{\alpha}(t) \right\rangle &= \begin{bmatrix} \frac{\Delta m^2}{4E} \begin{pmatrix} -c(2\theta) & s(2\theta) \\ s(2\theta) & c(2\theta) \end{pmatrix} + \frac{1}{2E} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \left| \tilde{v}_{\alpha} \right\rangle \\ &= \frac{\Delta \tilde{m}^2}{4E} \begin{pmatrix} -c(2\tilde{\theta}) & s(2\tilde{\theta}) \\ s(2\tilde{\theta}) & c(2\tilde{\theta}) \end{pmatrix} \left| \tilde{v}_{\alpha} \right\rangle, \qquad \tilde{U}_{\alpha j} = \begin{pmatrix} c\tilde{\theta} & s\tilde{\theta} \\ -s\tilde{\theta} & c\tilde{\theta} \end{pmatrix} \end{split}$$

oscillation probability

$$\langle \tilde{P}_{\nu_l \to \nu_s} \rangle = \sum_j |\tilde{U}_{lj}|^2 |\tilde{U}_{sj}|^2 = \frac{1}{2} \sin^2(2\tilde{\theta})$$

$$\sin^2(2\tilde{\theta}) = \frac{\sin^2(2\theta)}{\cos^2(2\theta)\left(\frac{E}{E_{\text{res}}} - 1\right)^2 + \sin^2(2\theta)}, \quad E_{\text{res}} = \frac{\Delta m^2}{2A(E_{\text{res}})}\cos(2\theta)$$

in matter or in theories with shortcuts in extra dimensions:

$$A(E) = \begin{cases} \sqrt{2} G_F n_e(E^3) \cdot A_{\alpha} E^2 / M_W^2, & \text{matter (in BBN)} & A_e \approx 55., \ A_{\mu/\tau} \approx 15.3 \\ extra dimensions \\ \text{[Paes et al. Phys. Rev. D 72, 095017 (2005)]} \end{cases}$$

Elke Aeikens (University Vienna)

Aspects of sterile neutrinos

17th November 2015 7 / 24

equation of motion for a particle

$$\begin{split} \frac{d}{dt} \left| \tilde{v}_{\alpha}(t) \right\rangle &= \left[\frac{\Delta m^2}{4E} \begin{pmatrix} -c(2\theta) & s(2\theta) \\ s(2\theta) & c(2\theta) \end{pmatrix} + \frac{1}{2E} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \right] \left| \tilde{v}_{\alpha} \right\rangle \\ &= \frac{\Delta \tilde{m}^2}{4E} \begin{pmatrix} -c(2\tilde{\theta}) & s(2\tilde{\theta}) \\ s(2\tilde{\theta}) & c(2\tilde{\theta}) \end{pmatrix} \left| \tilde{v}_{\alpha} \right\rangle, \qquad \tilde{U}_{\alpha j} = \begin{pmatrix} c\tilde{\theta} & s\tilde{\theta} \\ -s\tilde{\theta} & c\tilde{\theta} \end{pmatrix} \end{split}$$

oscillation probability

$$\langle \tilde{P}_{\nu_l \to \nu_s} \rangle = \sum_j |\tilde{U}_{lj}|^2 |\tilde{U}_{sj}|^2 = \frac{1}{2} \sin^2(2\tilde{\theta})$$
$$\sin^2(2\tilde{\theta}) = \frac{\sin^2(2\theta)}{\cos^2(2\theta) \left(\frac{E}{E_{res}} - 1\right)^2 + \sin^2(2\theta)}, \quad E_{res} = \frac{\Delta m^2}{2A(E_{res})} \cos(2\theta)$$

in matter or in theories with shortcuts in extra dimensions:

$$A(E) = \begin{cases} \sqrt{2} G_F n_e(E^3) \cdot A_{\alpha} E^2 / M_W^2, & \text{matter (in BBN)} & A_e \approx 55., \ A_{\mu/\tau} \approx 15.3 \\ extra dimensions \\ \text{[Paes et al. Phys. Rev. D 72, 095017 (2005)]} \end{cases}$$

Elke Aeikens (University Vienna)

Elke Aeikens (University Vienna)

Elke Aeikens (University Vienna)

Astrophysical flavor ratios

High energetic, extragalactic neutrinos ($E_{\nu} \gtrsim$ TeV, PeV) give information about:

- extragalactic neutrino sources (Distance \geq Mpc / Mio ly)
- (non)standard mixing scenarios,
 e.g. with dark matter, ν_s with ADR

<u>source</u>: ν typical originated by high energetic proton collisions $p + p \rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + \stackrel{(\bar{\nu})}{\nu}_{\mu} \rightarrow e^{\pm} + \stackrel{(\bar{\nu})}{\nu}_{e} + \nu_{\mu} + \bar{\nu}_{\mu}$

Elke Aeikens (University Vienna)

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

[M. G. Aartsen (IceCube Collaboration), Phys.Rev.Lett. 114 (2015) 17, 171102]

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

[M. G. Aartsen (IceCube Collaboration). Phys.Rev.Lett. 114 (2015) 17, 171102]

Ernie: 1.0 Pev

Bert: 1.1 Pev

Big Bird: 2.0 Pev

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

vacuum oscillation: (1:1:1) is consistent with data, **but**

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

[IceCube, 2015] 35 TeV - 1.9 PeV, Best Fit: (0:0.2:0.8)

[Palomares-Ruiz, Vincent, Mena, 2015] 28 TeV - 3 PeV, Best Fit: (0.92:0.08:0)

vacuum oscillation: (1:1:1) is consistent with data, **but**

best fit analysis: (1:0:0) & (0:0:1) \rightarrow **new physics**

Elke Aeikens (University Vienna)

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

vacuum oscillation: (1:1:1) is consistent with data, **but**

best fit analysis: (1:0:0) & (0:0:1) \rightarrow **new physics**

[Mena, Palomares-Ruiz, Vincent (Feb. '15), IceCube (Feb. '15)]

Elke Aeikens (University Vienna)

IceCube (Feb '15) reported the detection of 36 neutrinos:

at 30 TeV to 2 PeV with extragalactic origin

[Mena, Palomares-Ruiz, Vincent (Feb. '15), IceCube (Feb. '15)]

Elke Aeikens (University Vienna)

 $\begin{array}{ll} (1:2:0) \rightarrow (1:0:0) \\ source & earth \end{array}$

solution:

include v_s mixing with ADR (extradim.), so that $v_{\mu}, v_{\tau} \rightarrow v_s$

Neutrinofluxes¹

$$\Phi_{\alpha} = \sum_{\beta} P_{\alpha\beta} \Phi^{0}_{\beta} \,, \, \alpha, \beta \in \{l, s\}$$

$$P_{\nu_{\beta} \to \nu_{\alpha}} = P_{\beta \alpha} \approx \sum_{j} |U_{\beta j}|^2 |U_{\alpha j}|^2$$

¹[Pakvasa, Rodejohann, Weiler, JHEP 0802 (2008) 005]

Elke Aeikens (University Vienna)

 $\begin{array}{ll} (1:2:0) \rightarrow (1:0:0) \\ source & earth \end{array}$

solution:

include v_s mixing with ADR (extradim.), so that $v_{\mu}, v_{\tau} \rightarrow v_s$, with $s\theta_{\mu s} = s\theta_{\tau s}$

Neutrinofluxes¹

 $\tilde{\Phi}_{\alpha} = \sum_{\beta} \tilde{P}_{\alpha\beta} \Phi^{\mathsf{0}}_{\beta} , \quad \alpha, \beta \in \{l, s\}$

$$\tilde{P}_{\beta\alpha} \approx \sum_{j} |\tilde{U}_{\beta j}(\theta_{\mu s}, \theta_{\tau s})|^2 |\tilde{U}_{\alpha j}(\theta_{\mu s}, \theta_{\tau s})|^2$$

$$\tilde{U} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2}c_{\mu} & -s_{\tau}\sqrt{2}s_{\mu} & c_{\tau}\sqrt{2}s_{\mu} \\ -1 & \sqrt{2}c_{\mu} & -s_{\tau}\sqrt{2}s_{\mu} + \sqrt{3}c_{\tau} & c_{\tau}\sqrt{2}s_{\mu} + \sqrt{3}s_{\tau} \\ -1 & \sqrt{2}c_{\mu} & -s_{\tau}\sqrt{2}s_{\mu} - \sqrt{3}c_{\tau} & c_{\tau}\sqrt{2}s_{\mu} - \sqrt{3}s_{\tau} \\ -0 & -\sqrt{6}s_{\mu} & -\sqrt{6}c_{\mu}s_{\tau} & \sqrt{6}c_{\mu}c_{\tau} \end{pmatrix}$$

¹[Pakvasa, Rodejohann, Weiler, JHEP 0802 (2008) 005]

Elke Aeikens (University Vienna)

Aspects of sterile neutrinos

17th November 2015

 $\begin{array}{ll} (1:2:0) \rightarrow (1:0:0) \\ source & earth \end{array}$

solution:

include v_s mixing with ADR (extradim.), so that $v_{\mu}, v_{\tau} \rightarrow v_s$, with $s\theta_{\mu s} = s\theta_{\tau s}$

Neutrinofluxes¹

$$\tilde{\Phi}_{\alpha} = \sum_{\beta} \tilde{P}_{\alpha\beta} \Phi^{0}_{\beta} , \quad \alpha, \beta \in \{I, s\}$$

Oscillation probabilities

$$\tilde{\mathsf{P}}_{\beta\alpha} \approx \sum_{j} |\tilde{U}_{\beta j}(\theta_{\mu s}, \theta_{\tau s})|^2 |\tilde{U}_{\alpha j}(\theta_{\mu s}, \theta_{\tau s})|^2$$

for $\sin^2 \theta = 0.03$, $\Delta m^2 = 1 \, \mathrm{eV^2}$ best fit values from PDG

[EA, H. Päs, P. Sicking, arXiv: hep-ph\1410.0408]

 $\begin{array}{ll} (1:2:0) \rightarrow (1:0:0) \\ source & earth \end{array}$

solution:

include v_s mixing with ADR (extradim.), so that $v_{\mu}, v_{\tau} \rightarrow v_s$, with $s\theta_{\mu s} = s\theta_{\tau s}$

Neutrinofluxes¹

$$\tilde{\Phi}_{\alpha} = \sum_{\beta} \tilde{P}_{\alpha\beta} \Phi^{0}_{\beta} , \quad \alpha, \beta \in \{l, s\}$$

Oscillation probabilities

$$\tilde{P}_{\beta\alpha} \approx \sum_{j} |\tilde{U}_{\beta j}(\theta_{\mu s}, \theta_{\tau s})|^2 |\tilde{U}_{\alpha j}(\theta_{\mu s}, \theta_{\tau s})|^2$$

for $\sin^2 \theta = 0.03$, $\Delta m^2 = 1 \, \mathrm{eV^2}$ best fit values from PDG

[EA, H. Päs, P. Sicking, arXiv: hep-ph\1410.0408]

source	Φ^0_{β}	mixing	$\Phi_{eta}(heta^{lpha s})$
Pion X	1:2:0:0	none ($\theta^{\alpha s} = 0$)	1:1:1:0
\smile	\smile	$v_e - v_s$	4:11:11:6
		$v_{\mu} - v_s$	5:5:5:3
		$(\nu_{e},\nu_{\mu})-\nu_{s}$	32:41:41:30
		$(v_{\mu}, v_{\tau}) - v_s$	21:26:10:15
Damped	0:1:0:0	none ($\theta^{as} = 0$)	4:7:7:0
Muon		$v_e - v_s$	4:9:9:2
		$v_{\mu} - v_s$	1: 2:2:1
		$(v_e, v_\mu) - v_s$	16:115:115:42
		$(\nu_{\mu}, \nu_{\tau}) - \nu_s$	7:16:4:9
Neutron	1:0:0:0	none ($\theta^{\alpha s} = 0$)	5:2:2:0
Beam		$v_e - v_s$	2:1:1:2
		$v_{\mu} - v_s$	3:1:1:1
		$(v_e, v_\mu) - v_s$	10:1:1:6
		$(\nu_{\mu}, \nu_{\tau}) - \nu_s$	35:14:14:9

source	Φ^0_{β}	mixing	$\Phi_{eta}(heta^{lpha s})$	
Pion X	1:2:0:0	none ($\theta^{\alpha s} = 0$)	1:1:1:0	
	\smile	$v_e - v_s$	4:11:11:6	additionally
		$v_{\mu} - v_s$	5:5:5:3	examine:
		$(v_{0}, v_{\mu}) - v_{s}$	32:41:41:30	different
		$(v_{\mu}, v_{\tau}) - v_{s}$	21:26:10:15	
Damped	0:1:0:0	none ($\theta^{as} = 0$)	4:7:7:0	sources
Muon		$v_e - v_s$	4:9:9:2	different
		$v_{\mu} - v_s$	1: 2:2:1	mixina
		$(v_e, v_\mu) - v_s$	16:115:115:42	inixing
		$(\nu_{\mu}, \nu_{\tau}) - \nu_s$	7:16:4:9	🍉 even at
Neutron	1:0:0:0	none ($\theta^{\alpha s} = 0$)	5:2:2:0	other
Beam		$v_e - v_s$	2:1:1:2	energies it
		$v_{\mu} - v_s$	3:1:1:1	doesn't look
		$(v_e, v_\mu) - v_s$	10:1:1:6	too aood
		$(\nu_{\mu}, \nu_{\tau}) - \nu_s$	35:14:14:9	

possible solution is an adiabatic conversion (MSW-like effect):

- nearly full conversion $\nu_{\mu}(\nu_{\tau}) \rightarrow \nu_{s}$ possible
- extradim. potential is slowly changing: $A_{ext}(x) = \epsilon(x)E$
- runs through resonance, ends in vacuum oscillation with same mass-eigenstate |v_i>

oscillation propability

Elke Aeikens (University Vienna)

• extradim. potential is slowly changing ($\tau_{system} \ll \tau_{interaction}$)

•
$$A_{ext}(x) = \epsilon(x)E = \left(1 - \frac{1}{\sqrt{1 + k^2 x(l-x)}}\right)E$$

two free parameter: warp factor k, periodic length l

changing mass eigenstates:

$$\tilde{m}_{1/2}^2 = -\frac{A}{2} \pm \frac{\Delta m^2}{2} \sqrt{\left(\frac{A(x)2E}{\Delta m^2} - \cos(2\theta)\right)^2 + \sin(2\theta)^2}$$

Elke Aeikens (University Vienna)

Aspects of sterile neutrinos

17th November 2015

14/24

 extradim. potential is slowly changing (τ_{system} ≪ τ_{interaction}) two free parameter: warp factor k, periodic length I

• average over \overline{P} (travel distance $\gg I$)

nearly full conversion is possible $(1:2:0) \rightarrow (4:1:1)$

[EA, H. Päs, P. Sicking, JCAP 1510 (2015) 10, 005]

Elke Aeikens (University Vienna)

Testing method for new physics, eg. introducing new particles

Epochs in the early universe

	Todayte	t = 15 billion years
	Life on earth	T = 3 K (1 m eV)
	Solar system	
	Quasars	
	Gelevy formation	
	Epoch of gravitational collapse	
	Recombination	t = 400,000 years
	Matter domination	T = 3000 K (1 eV)
	Onset of gravitational instability	
		t = 3 minutes
	Nucleosynthesis	t = 1 second
	Light elements created - D. He. Li	T = 1 MoV
		I = I Mev
o o o rlu	Quark-hadron transition	t = 10 ⁻⁶ s
eleany	Hadrons form - protons & neutrons	T = 1 GeV
2		
	Electrowesk obses transit	ion all
	Electromagnetic & weak nuclea	t = 10 s
	forces become differentiated:	I = 10 GeV
	20f3/x20f5/x0f1)-> 20f3/x0f	0
	The Particle Desert	
	Autoris, supersymmetry	ery
	Grand unification transit	tion $t = 10^{-35}$ s
	inflation, baryogenesis,	T=10 ¹⁵ GeV
	monopoles, cosmic strings, e	eta ?
	The Planck epoch	$t = 10^{-43} s$
	The quantum gravity barr	ier T=10 ¹⁹ GeV

Epochs in the early universe

Elke Aeikens (University Vienna)

Time and temperature of the epochs in the early universe

interactions **freeze out** when: $\Gamma(T_{epoch}) \leq H(T_{epoch})$

• **BBN** (T_{BBN}) weak interaction n,p freeze out and glue to nucleons: $n \leftrightarrow p + e^- + \bar{v_e}$ ⁴He, De, Li... $v_e + n \leftrightarrow p + e^$ $e^+ + n \leftrightarrow p + \bar{v_e}$

Last Neutrino-Scattering (*T_{ν_e*)}

lepton-neutrino interaction

$$e^- + e^+ \leftrightarrow v_l + \bar{v}_l$$

 $v_l + e^- \leftrightarrow v_l + e^-$

BBN: temperature (T_{BBN}) in the early universe when the week interactions Γ_{BBN} freeze out

n,p freeze out and glue to nucleons: ⁴He, De, Li...

BBN: temperature (T_{BBN}) in the early universe when the week interactions Γ_{BBN} freeze out

 $\Gamma_{BBN}(T_{BBN}) \lesssim H(g_{eff}, T_{BBN})$

► $T_{BBN}^{exp.}$ precisely measured, since ⁴He abundance Y(⁴He) set limits $n_n/n_p \simeq e^{-\Delta M/T + (\mu_e - \mu_v)/T} \propto Y(^4\text{He}) = 0.249 \pm 0.009$ (measured)

►
$$T_{BBN}^{exp.}$$
 precisely measured, since ⁴He abundance Y(⁴He) set limits
 $n_n/n_p \simeq e^{-\Delta M/T + (\mu_e - \mu_v)/T} \propto Y(^4\text{He}) = 0.249 \pm 0.009 \text{ (measured)}$

BBN: temperature (T_{BBN}) in the early universe when the week interactions Γ_{BBN} freeze out

 $T_{BBN}^{theo.}$ reactions freeze out

 $\Gamma_{BBN}(T_{BBN}) = 2\langle n_e \cdot \sigma(E_e, p_e) \cdot |v_e| \rangle \qquad \leq \qquad H(g_{eff}, T_{BBN})$

with $v_s - v_l$ mixing $\rightarrow T_{BBN}$ changed 4 **no agreement now!** $\sim T_{BBN}^{exp.}$ precisely measured, since ⁴He abundance Y(⁴He) set limits $n_n/n_p \simeq e^{-\Delta M/T + (\mu_e - \mu_v)/T} \propto Y(^4\text{He}) = 0.249 \pm 0.009 \text{ (measured)}$ Elke Aeikens (University Vienna) Aspects of sterile neutrinos 17th November 2015 17/24

Solution: v_s -production should be **frozen out** in the time before T_{BBN}

Solution: v_s -production should be frozen out in the time before T_{BBN}

- ν_s (singlets under the SM) are only present through oscillations with active neutrinos. ν_s-production: Γ_{ν_s} = ⟨P<sub>ν_a→ν_s⟩Γ_{ν_a}
 </sub>
- The freezing of the active neutrino interactions freeze the $\nu_s-\nu_\alpha$ oscillations at T_{ν_α}

18/24

Solution: v_s -production should be frozen out in the time before T_{BBN}

- ν_s (singlets under the SM) are only present through oscillations with active neutrinos. ν_s-production: Γ_{ν_s} = ⟨P<sub>ν_a→ν_s⟩Γ_{ν_a}
 </sub>
- The freezing of the active neutrino interactions freeze the $\nu_s-\nu_\alpha$ oscillations at T_{ν_α}

$$\langle P_{\nu_l \to \nu_s}(\sin(2\theta), \Delta m^2) \rangle = \frac{1}{2} \sin^2(2\tilde{\theta}) = \frac{1}{2} \frac{\sin^2(2\theta)}{\cos^2(2\theta) \left(\frac{2\mathcal{E}A(\mathcal{E})}{\Delta m^2 \cos(2\theta)}\right)^2 + \sin^2(2\theta)} \to 0$$

either potential of ADR is high enough

or oscillation parameters are suppressed: $sin(2\theta)$, $\Delta m^2 \rightarrow 0$

$$\langle P_{\nu_l \to \nu_s}(\sin(2\theta), \Delta m^2) \rangle = \frac{1}{2} \sin^2(2\tilde{\theta}) = \frac{1}{2} \frac{\sin^2(2\theta)}{\cos^2(2\theta) \left(\frac{2EA(E)}{\Delta m^2\cos(2\theta)}\right)^2 + \sin^2(2\theta)} \to 0$$

either potential of ADR is high enough

or oscillation parameters are suppressed: $sin(2\theta)$, $\Delta m^2 \rightarrow 0$

Time evolution of the:

- hot dense matter potential: $A_{mat.} \propto T^5$
- extradimensional potential: A_{ext}∝ T
- both: $A_{all} = A_{ext.} + A_{mat.} \propto T + T^5$

(used param. $sin(2\theta) = 0.03$, $\Delta m^2 = 1 \text{ eV}^2$) Elke Aeikens (University Vienna)

Aspects of sterile neutrinos

oscillation probability $\langle P_{\nu_{\alpha} \to \nu_{s}}(A) \rangle$

ADR by a hot dense **matter potential** in the early universe: $A_{mat.} \propto T^5$ $\searrow \tilde{\Gamma}_{\nu_s} = \langle P(A_{mat.}) \rangle \Gamma_{\nu_a}$

(used param. $sin(2\theta) = 0.03$, $\Delta m^2 = 1 \text{ eV}^2$)

Elke Aeikens (University Vienna)

(used param. $sin(2\theta) = 0.03$, $\Delta m^2 = 1 \text{ eV}^2$)

Elke Aeikens (University Vienna)

 $\tilde{\Gamma}_{\nu_s} < H$

ADR caused by extra dimensions suppress v_s -oscillation in the early universe:

```
\sin(2\theta), \Delta m^2 \rightarrow 0
```

new additional effective potential from **extradim**.: $A_{all} = A_{ext.} + A_{mat.}$ $\checkmark \quad \tilde{\Gamma}_{\nu_s} = \langle P(A_{all}) \rangle \Gamma_{\nu_{\alpha}}$ (used param. $\sin(2\theta) = 0.03, \Delta m^2 = 1 \text{ eV}^2$)

(used param. $\sin(2\theta) = 0.03$, $\Delta m^2 = 1e$

Elke Aeikens (University Vienna)

Reference point is at $\sin^2(\theta_0) = 0.03$, $\Delta m^2 = 1 \text{ eV}^2$, [Kopp et al. JHEP 1305, 050]

1000 1000 100 100 10 10 $\Delta m^2 [eV^2]$ $\Delta m^2 [eV^2]$ Δm^2 (matter) Δm^2 (matter) Δm^2 (extradim.+mat.) Δm^2 (extradim.+mat.) 0.1 0.1 0.01 0.01 0.001 0.001 10-4 10-4 0.001 0.01 0.1 0.001 0.01 0.1 $\sin^2(2\theta)$ $sin^2(2\theta)$ $v_{\mu,\tau} - v_s$ oscillation $v_e - v_s$ oscillation

• without extradim. suppressed oscillation parameter Δm^2 , $\sin^2(2\theta) \rightarrow 0$

• larger parameter space allowed with ADR caused by extradim.

[EA, H. Päs, manuscript in preparation]

Elke Aeikens (University Vienna)

Summary

Neutrino oscillations with sterile neutrinos and background potentials (ADR) - like extra dimension:

- were constructed to solve neutrino Anomalies (and as an ADD model: weakness of gravity)
- can explain the best fit analysis of high energy IceCube neutrinos via ν_s − ν_l mixing with adiabatic conversion (Φ_{νµ},Φ_{ντ} → Φ_{νs})
- makes v_s compatible with BBN, sets softer limits on v_s v_l neutrino mixing parameters

Summary

Neutrino oscillations with sterile neutrinos and background potentials (ADR) - like extra dimension:

- were constructed to solve neutrino Anomalies (and as an ADD model: weakness of gravity)
- can explain the best fit analysis of high energy IceCube neutrinos via ν_s − ν_l mixing with adiabatic conversion (Φ_{νµ},Φ_{ντ} → Φ_{νs})
- makes v_s compatible with BBN, sets softer limits on v_s v_l neutrino mixing parameters

Thank you!

Elke Aeikens (University Vienna)