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Importance of vector boson production 
Production of pairs of electroweak vector  bosons in hadron collisions is an 
interesting process for  several reasons. For example, 

1) it is an important SM benchmark with small, but not tiny cross-section; this 
process may contain missing energy,  semi-leptonic final states, additional jets -- lots 
of physics and many features used to define a generic ``signal’’ !

2) it is sensitive to triple gauge boson couplings;

3) it is a background to Higgs boson signal in ZZ* and WW* final states; 

4) it is a background for searches with multi-lepton final states and jets ( SUSY);

5) it can be used to put constraints on the Higgs boson width;

6) it can be used to probe for anomalous couplings in the Higgs sector

These are clearly good enough reasons  to push for the best possible description of 
this  process in perturbative QCD.   This topic  is also quite challenging theoretically 
as  problems that need to be addressed to achieve high precision are quite non-
trivial.
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Issues we need to address to make NNLO accuracy useful
Our goal is to extend the description of vector boson pair production to NNLO in 
perturbative  QCD.   This is a non-trivial task per se but, in order to address realistic 
physics, we should be careful to take a few points into account. 

For example, we should have access to vector bosons  on- (VV production proper) 
and off- (background to Higgs signal) the mass-shell.

We should be able to monitor hadronic activity ( jet selection criteria) since this is 
how  the Higgs  signal is separated from many backgrounds in the WW channel.

Therefore, we need to construct a fully-exclusive 
partonic level generator that can describe 
production of four lepton final states in 
perturbative QCD including  both double-
resonant and single-resonant components.  In a 
way, we would like to be able to provide  NNLO 
QCD corrections to the plot on the right
for all values of the four-lepton invariant mass. 

The NNLO QCD calculation exists for   total cross sections 
for ZZ and WW production at the LHC.

Grazzini, Gehrmann, Pozzorini,Rathlev, Tancredi
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Anatomy of a NNLO computation

A NNLO QCD computation for a process pp -> X requires several well-defined things:

1) Two-loop amplitudes for i+j -> X where i and j are parton labels;

2)  One-loop amplitudes for  i+j -> X+k;

3) Tree amplitudes for i+j -> X+k+m

Putting those things together is  a non-trivial procedure that is currently being  explored in 
several ways.   We have seen significant process in our understanding  of how to organize 
the NNLO computations  in recent  years. This could have been a topic of a separate 
seminar...

However, my goal today is different. I would like to talk about  point 1) -- calculation of two-
loop amplitudes  for vector boson pair production -- in some detail.  This is a small well-
defined part of the NNLO program that can be discussed separately.
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Two-loop  calculations in QCD
Calculation  of two-loop virtual corrections is an integral part of any NNLO QCD computation 
for the LHC.  Technology for such computations is  being continuously developed since early 
2000’s.  It can be summarized as a sequence of four steps

1) Parametrization of scattering amplitudes in terms of Lorentz-invariant form factors;  

2) Determination of  operators that project an amplitude on  individual form factors ;

3)  Application of integration-by-parts identities and reduction of scalar Feynman integrals to 
master integrals; 

4)  Calculation of master integrals; 

Each of these steps is relatively  well-established, but for each step  there are complications; 

1) parametrization of scattering amplitudes becomes non-trivial  in cases when we have to deal 
with the Dirac matrix      in closed fermion loops ( in fact, so far we were always able to argue
such contributions away); 

2) integration-by-parts can be dealt with using existing programs (AIR,FIRE, REDUZE) but it 
becomes very difficult for processes with large number of kinematic invariants; 

3) calculation of master integrals was always an ``art’‘  rather than  `science’’ and  it a continues to 
remain this way.

�5
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gg -> VV scattering amplitude
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As an illustration, consider computation of a two-loop gg -> VV amplitude.  For generic 
vector bosons, the amplitude can be written in a form with all electroweak couplings 
factored out ( massless quarks only)
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Couplings to leptons and quarks  are shown below; note the absence of vector-axial 
current correlators (C-parity) and the equality of the vector-vector and axial-axial 
current correlators.

The primary object to compute  is the amplitude A(p1,p2,p3,p4) contracted with the polarization vectors of 
vector bosons.  Only vector couplings of electroweak bosons are needed.
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gg -> VV scattering amplitude
The problem with computing the amplitude A(p1,p2,p3,p4) ``as is’’ is that it is too 
complicated at two-loops. Indeed,  integration-by-parts technology can not be used 
efficiently if there are many external vectors ( vector boson polarizations and/or lepton 
momenta) in the calculation.

A = T1 (✏1 · ✏2) (✏3 · ✏4) + T2 (✏1 · ✏3) (✏2 · ✏4) + T3 (✏1 · ✏4) (✏2 · ✏3)
+ (✏1 · ✏2) (T4(p1 · ✏3) (p1 · ✏4) + T5(p1 · ✏3) (p2 · ✏4) + T6(p2 · ✏3) (p1 · ✏4) + T7(p2 · ✏3) (p2 · ✏4))
+ (✏1 · ✏3) (p? · ✏2) (T8(p1 · ✏4) + T9 (p2 · ✏4)) + (✏1 · ✏4) (p? · ✏2) (T10(p1 · ✏3) + T11 (p2 · ✏3))
+ (✏2 · ✏3) (p? · ✏1) (T12(p1 · ✏4) + T13 (p2 · ✏4)) + (✏2 · ✏4) (p? · ✏1) (T14(p1 · ✏3) + T15 (p2 · ✏3))
+ (✏1 · p?) (✏2 · p?) (T17(p1 · ✏3) (p1 · ✏4) + T18(p1 · ✏3) (p2 · ✏4) + T19(p2 · ✏3) (p1 · ✏4)
+T20(p2 · ✏3) (p2 · ✏4)) + (✏3 · ✏4) (p? · ✏1) (p? · ✏2)T16

To remove all external vectors, we need to express the amplitude through invariant form 
factors.  If this is done without imposing reasonable physics conditions, the number of 
form factors becomes very large, O(150) !

✏1 · p1,2 = 0, ✏2 · p1,2 = 0, ✏3 · p3 = 0, ✏4 · p4 = 0.Using transversality and gauge-fixing conditions   

The invariant form-factors T1-T20  are functions of Mandelstam variables only;  if we 
construct operators that project A -> Ti=1..16 , we are able to apply integration-by-parts  
technology without much problem.

The transverse momentum is defined through the Sudakov decomposition w.r.t p1 and p2.

we express the amplitude through just 20 form factors.
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gg -> VV scattering amplitude
It is relatively straightforward to construct such projection operators ( their choices 
are by far not unique).  We start by defining an auxiliary object (note projections on
physical polarizations)

Oµ1µ2µ3µ4 = Ā⌫1⌫2⌫3⌫4P⌫1µ1
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We then contract it with various vectors and tensors and find a mapping G1..20 -> T1..20 
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gg -> VV scattering amplitude

It turns out that it is easier to construct helicity amplitudes from projections that we 
just described;  one requires just two independent helicity amplitudes (polarizations 
of  gluons are  either the same or different); each amplitude is expressed in terms of 
nine form factors.   Vector boson polarization vectors are 
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✏µ3 = h5|�µ|6], ✏µ4 = h7|�µ|8].

Examples of  relations between F and G form factors are shown below. Note 
that no spurious d-4 singularities are present in these relations !
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gg -> VV scattering amplitude

As the result, it appears that  form factors can be computed in a straightforward way. We 
need to:  

1) generate diagrams (QGRAPH); 
2) project on relevant operators (Form);
3)  express the result in terms of various two-loop  four-point integrals  (Form) ;
4) apply integration-by-parts identities to reduce these integrals to  master integrals (FIRE); 
5) combine the results into  physical form factors;
6)  write a numerical program (Fortran,C++) that can turn the analytic formulas into numbers;

Even if every step  sounds straightforward, most of  them  are non-trivial and demanding.  A 
particular problem is the size of expressions that affects both reduction to master integrals
and procession of  the final expressions.   For example, the size of Fortran files ( not 
executables) for the final two-loop amplitude gg -> VV is O(100 MB) !)

The remaining problem to address is the computation of master integrals and this is what we 
will  discuss now.
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Master integrals

An interesting recent development in this field is the suggestion by J. Henn to streamline 
application of differential equations in external kinematic variables to compute master 
integrals.  Henn suggests to write the differential equations in the following form:

@

x

~

f = ✏Â

x

(x, y, z. . . )~f

The important point is that on  the right-hand side, the dimensional regularization 
parameter appears explicitly, and only as a multiplicative pre-factor. It is then 
possible to solve these equations iteratively  order-by-order in (d-4) since in each 
order  of this expansion the above equation contains no homogeneous terms ( so 
that in each order in epsilon, the right-hand side is a source for the left-hand side). 

The idea by Henn streamlines and simplifies such computations significantly, making 
bookkeeping particularly straightforward.

Calculation of two-loop integrals relies on a  number of  methods ( Feynman parameter 
integration, Mellin-Barns, differential equations).   The method of differential equations 
has been used to find master integrals for a long time,  starting from papers by Kotikov 
and Remiddi in the early 1990s.  However it was never considered to be ``the’’ method. 

~f =
1X

n=0

✏n ~f (n)

@pi·pjI↵ =
X

c↵,ij,�({p}, d)I�
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Two-loop virtual corrections:  gg->V1V2

For the case of double vector boson production,  we can 
identify  six different two-loop topologies; the differential 
equations can be ``rationalized’’ with the following change 
of variables ( topology B2P12)

q
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xy + z, 1 + x(1 + y � z), 1 + xz,
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The differential equation is written in the following form  where elements of the alphabet 
are rational functions of x,y and z ( topology B2P12) 
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Canonical basis at one-loop
Finding canonical basis is, in general, non-trivial.  If it exists, integrals have to be 
dimensionless quantities of uniform transcendentality.  This means that only very 
particular terms are allowed to  appear in each order of the ep-expansion  of master 
integrals. One thing that is prohibited are rational polynomials in epsilon.

Some ideas on how to find the basis can be  illustrated by looking at the one-loop 
example.  There are three types of master integrals -- box, triangle and bubble.  
Bubbles is easy to fix by hand. For triangles and boxes, considering multiple cuts is 
useful to realize that one must multiply original integrals by certain kinematic 
functions to obtain candidates for integrals in the canonical basis.

Tri !
p
�Tri

Box ! st Box

If an integral belongs to canonical basis, then
cut integrals should also exhibit all the  properties
of the canonical basis integrals. But cut integrals
are easier to compute....

Bub(1, 1) ⇠ (p2)�✏

✏(1� 2✏)
! (1� 2✏)Bub(1, 1) ⇠ p2Bub(2, 1)
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Canonical basis at two-loops: an example
The idea that cut integrals should be also of fixed transcendentality becomes  especially 
fruitful at higher loops.  For example, one can understand the appearance of particular 
tensor integrals as two-loop master integrals in this way.

I =

Z
ddkddl

N(k)

k2(k + p1)2(k + p12)2l2(l + p1)2(l � p3)2(k � l)2

Candidate integrals obtained from various cuts, consistent with canonical one-loop 
integrals, are  require  numerator functions shown below;  this construction, eventually, 
leads to correct  canonical basis at two loops.

N(k) = s2t, N(k) = s(k � p3)
2
p
�

!
Z

ddk


1

s(k � p3)2

�
N(k)

k2(k + p1)2(k + p12)2

2

p1

p2

p3

p4

k

k + p1

k + p12 l + p12

l
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Integrating system of equations
Integrating systems of differential equations in Henn’s basis 
becomes straightforward:  no homogeneous terms appear;  
recursive integration is possible, results expressed through 
Goncharov polylogarithms.

G(an, an�1, . . . , a1, t) =

tZ

0

dtn
tn � an

G(an�1, . . . a1, tn)

Important issue --   boundary conditions. They (obviously) need to be computed.  One 
option is  calculation of boundary conditions and integrals in an Euclidean point followed 
by the analytic continuation. We found the analytic continuation difficult, especially 
because of  non-linear changes of variables required  to rationalize the system.  

On the other hand, it is possible to compute boundary conditions in Minkowski region. 
We do it in a  singular threshold point s ! (m3 +m4)

2, m3 ! 1, m4 ! 0.

This point is not ideal.  For example, there are non-trivial limits, e.g. double-parton 
scattering singularities in certain diagrams.  

Interestingly, since we write differential equations in many variables, it happens  often that 
differential equations in a variable y,  constrain boundary conditions  in a variable x....   
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In principle, boundary conditions need to be ``just’’ calculated. This is possible but 
difficult.  However, often such calculations are even not necessary since  systems of 
differential equations contain a lot of information about  relations between boundary 
conditions for various integrals provided we  understand their singularities.

Consider an example of an ``easy’’ box.  Writing a differential equation in the transverse
momentum, we find  a branch cut at pt = 0.  But an easy box does not have a branch 
cut like this.  This gives a relation between various integrals in brackets on the right-
hand side in pt = 0 limit. 

Boundary conditions

@p?D =
✏

p?
(B1 +B2 +Bs � 2Bt � C �D)

lim
p?!0

(B1 +B2 +Bs � 2Bt � C) = lim
p?!0

D

Similar ideas can be applied to the two-loop case; this is obviously more  complex but 
the principle is the same  -- many boundary conditions can be deduced from the DEqs.

m3

m4

m = 0

m = 0
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Two-loop amplitudes  qq->V1V2   and gg -> V1V2

Analytic results for two-loop amplitudes are implemented in a Fortran code.  Numerical 
results for the poles can be checked against the Catani’s formula, which connects the 
infra-red poles  of NNLO amplitudes with LO and NLO amplitudes.
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Two-loop amplitudes  qq->V1V2   and gg -> V1V2

Numerical results for finite parts of two-loop amplitudes can be obtained.   Important  
issues are numerical stability and evaluation speed. 

Evaluation speed ( all amplitudes / per phase-space point ) close to one minute. The time 
is spent on the computation of master integrals (GINAC). Not ideal, but probably not a 
disaster. 

Numerical stability needs to be explored further;  results do have spurious singularity 
associated with zero transverse momentum;  recall that even one-loop calculations were 
performed with the transverse momentum cut until very recently. 
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Two-loop calculations: summary

Calculation  of complicated two-loop scattering amplitudes are now possible thanks 
to recent developments in techniques related to integration-by-parts reductions and 
computation of master integrals. 

Calculation of amplitudes requires  construction of projection operators that  
allow a decomposition of an amplitude into  invariant form factors. 

Form factors are expressed through master integrals that, in turn,  are computed 
using differential equations that follow from the integration-by-parts identities.

Calculation of master integrals in the canonical ( universal transcendentality) basis is 
``mechanical’’; important issues are how to find this  basis and how to find boundary 
conditions for differential equations.  There are  systematic considerations of how to 
do the former (only for single-variable problems) and not so many systematic 
considerations of how to do the latter.  It turns out to be useful to compute boundary 
conditions in Minkowski space and in this way avoid analytic continuation.

Monday, May 18, 15



From two-loop amplitudes to  cross-section

Suppose that a two-loop amplitude is, actually, available.   How do we get to the  cross-section?  
This question has many facets which are actually different for  qq->V1V2   and gg -> V1V2.

For quark annihilation, the leading order process is tree-level; implementation of two-loop amplitude 
requires  full-fledged NNLO computation.  This can be done but it is non-trivial. 

For gluon annihilation, the story is different since leading order process in this case is one-loop.
Therefore the two-loop amplitude has to be combined with a single real-emission process.
The amplitude for single real-emission process gg -> VV+g is  complicated but
it is well-understood how to combine virtual and real corrections in this case.

An essential  limitation of the calculation of the virtual amplitude that I just described is that 
it is applicable to massless quarks only. For certain type of physics this is sufficient and for some 
other  physics it is not.

In what follows I want to focus on a gluon annihilation to ZZ and discuss a massive quark 
contribution to this process.  I will explain the precise reasons for that on the next slide.
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Massive quarks and gg -> VV amplitudes
Consider gg->ZZ production. It is facilitated by massless and massive (top) loops; the formalism that 
we discussed works for massless loops; for massive loops absolutely nothing  is known ( no 
reductions,  no master integrals etc.).

Are massive loops needed?  For cross-sections, perhaps not ( O(1%) contributions to cross sections) 
but  for aggressive cuts or for Higgs boson off-shell measurements where interference of gg ->H -> 
ZZ and gg -> ZZ is important,  contributions of top quark loops become more relevant...

Also, as we will see, for massive top quarks we can get full results for cross-sections and obtain a 
reasonable  estimate of the K-factor ( whose value was the subject of much discussion recently).

√
s [TeV] 1.96 (pp̄) 7 8 10 12 14

σgg[ngen = 2] 0.460(0) 13.74(1) 18.19(1) 28.37(2) 40.06(3) 52.99(4)

σgg[ngen = 3] 0.490(1) 15.16(1) 20.12(2) 31.61(3) 44.84(4) 59.59(4)

σgg[ngen = 3]/σgg [ngen = 2] 1.065 1.103 1.106 1.114 1.119 1.125

σNLO
tot 134.6(2) 539(1) 657(1) 904(1) 1162(1) 1429(2)

σgg[ngen = 3]/σNLO
tot 0.0036 0.028 0.030 0.035 0.039 0.042

Table 3: Cross sections for the process W+(→ νee+)W−(→ µ−ν̄µ) (in femtobarns) with no cuts
applied. The cross section resulting from the gluon-gluon initial state (σgg) is broken down by the
number of generations of quarks circulating in the loop. The result with three generations is also
compared with the total cross section (σNLO

tot ), obtained by also including the NLO corrections to
the quark-antiquark initial state.

Figure 4: The ratio of σgg[ngen = 3] to σgg[ngen = 2] as a function of the top quark mass mt. The
expected results for two and three massless generations are shown as dashed blue (lower) and red
(upper) lines respectively.

and even at the LHC it is at most 4% of the total at the highest energy foreseen (although

this can increase upon application of various cuts on the final state [12, 24]). We note that

our findings at 14 TeV are in complete agreement with the results presented in Ref. [12].

The fact that the three-generation cross section is so close to the two-generation result

may be somewhat unexpected. For that reason, in Fig. 4 we illustrate the dependence of

σgg[ngen = 3] on the top quark mass, mt. In the limit of a very light top quark the third

generation is equivalent to the two massless generations, and as a result σgg[ngen = 3] →
σgg[ngen = 2] × 9/4 as mt → 0. In the opposite limit, when the top quark is very heavy,

the third generation decouples so that σgg[ngen = 3] → σgg[ngen = 2] as mt → ∞. The

behaviour of the three-generation result changes rapidly in the region mt ∼ mW , as could

be expected from the kinematics of the final state.

In Fig. 5 we present the pT distribution of one of the W bosons for the first two gener-

ations (red) and third generation only (blue). We observe that at low pT the contribution
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Figure 6: Upper panel: The cross sections for gg → H → W+(→ νee+)W−(→ µ−ν̄µ) in femto-
barns, with (σH,i) and without (σH) the interference with SM gg → WW production. The dashed
line represents the calculation of σH,i including only the first two generations of quarks. Lower
panel: The ratio of the cross sections with and without the interference terms. The dotted magenta
line highlights the boundary between constructive and destructive interference.

MH [GeV] 120 140 170 200 400

σH 7.90(1) 20.29(1) 26.13(2) 14.69(1) 4.23(1)

σH,i 6.73(1) 19.04(1) 26.25(2) 14.96(1) 4.16(1)
σH,i

σH
0.852 0.938 1.005 1.018 0.983

Table 5: Cross sections for gg → H → W+(→ νee+)W−(→ µ−ν̄µ) in femtobarns at
√
s = 7 TeV

with no cuts applied, computed at leading order and either excluding (σH) or including (σH,i) the
effect of interference with the gluon-initiated background process.

Numerical values of these cross section are shown in Table 5 for a selection of benchmark

Higgs masses. We observe that the relative size of the interference is strongly dependent

on the Higgs mass and that the interference changes sign at the mH = 2mW threshold.

For mH > 2mW there are two further changes of sign, with a minimum at mH = 2mt. For

very large Higgs masses the interference becomes large and positive. For reference we have

also plotted in Fig. 6 the contribution to the interference from the first two generations of

quarks only (i.e. setting Amassive = 0 in the definitions of Eq. (4.1). The difference between

– 16 –

Contribution of the 3rd generation to gg -> W+W-  processes.
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Top quark contribution to gg -> ZZ
As we just said  doing exact-in-mt calculation is not possible.  Therefore, we should 
invent an approximation that will  allow us to compute gg -> ZZ with the NLO (two-loop) 
accuracy.  The idea is to perform an  expansion in the  inverse mass of the top quark.

This is not an ideal expansion, but for ZZ invariant mass pairs between 180 GeV and 350 
GeV,  it may actually converge.  For those values of the invariant masses, it will give  us 
an idea  about the magnitude of the radiative corrections. 

Moreover, we know from gg->H and from gg->HH that QCD corrections to cross-
sections are not strongly affected by mass effects, in contrast to cross-sections 
themselves.  For this reason,  we expect that K-factor for gg -> ZZ,  computed in the 
approximation of  an infinitely large top quark mass is a good approximation to the actual 
mt-dependent K-factor.

Comparison of the exact and expanded ( leading term) one-loop results for  pp->ZZ cross-
section ( gluon fusion, top loops).  Right pane: MCFM cross-section for gg ->ZZ (top loop)

MCFM

mt ! 1
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Why the  expansion in the inverse top mass helps
The expansion in the inverse top quark mass helps because non-trivial two-loop  four-point 
integrals are reduced to either two-loop vacuum bubbles or to products of one-loop integrals. 

Key technique -- asymptotic expansion in the inverse large mass of the top quark. Consider 
a one-loop amplitude.  A typical integral reads ( p1..4 are external  momenta).

I =

Z
dl

(2⇡)d
1

((l + p1)2 �m2
t )((l + p2)2 �m2

t ). . . ((l + p4)2 �m2
t )

The essence of the large mass expansion procedure is the statement that the correct 
result for this integral is obtained if one expands the integrand in Taylor series in p/l,  p/m 
(loop momentum ‘‘hard”).   In principle,  one can consider another expansion of the 
integrand in l/m, p/m ( loop momentum “soft”) but this expansion   leads  to massless 
tadpoles and therefore vanishes.  

I !
Z

dl

(2⇡)d
Num(l, p)

(l2 �m2
t )

n
, n 2 1..4

Vacuum integrals are well-known.  They  can be computed directly, with or without 
tensor structures in the numerator.  The increase in complexity from the one-loop  to the  
two-loop case is minor; the only new element is that  one of the loop momenta can 
become soft, leading to factorized  one-loop integrals. 

Z
d⌦d l↵l� =

g↵�l2

d
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Virtual amplitudes
We work to leading order in the inverse top quark mass in a theory where Z bosons 
only couple to top quark loops ( anomalous theory, but for us this will be of no concern).
Zt̄t 2 �i�µ(gV + gA�5), gV = e/(2 sin 2✓W )(1� 8/3 sin2 ✓W ), gA = e/(2 sin 2✓W )

Agg!ZZ = ias�
a1a2

�
g2AAaa + g2V Avv + gAgV Aav

�
,

as =
�(1 + ✏)

(4⇡)�✏

↵s(µ)

⇡
,

The vector-axial contribution to the amplitude vanishes thanks to C-parity.  The vector-
vector and axial-axial contributions are both present but behave differently under 1/mt 
expansion.  The difference is that vector current is conserved and the axial is not.  As the 
result

Avv ⇠ s2

m4
t

, Aaa ⇠ s

m2
t

$ @µ
⇥
 ̄�µ 

⇤
= 0, @µ

⇥
 ̄�µ�5 

⇤
= 2mt ̄ 

Given that ttZ vector coupling is 3 times smaller than the axial coupling,  the Avv 
contribution is largely irrelevant in practice.  

As the first step, we will compute the  gg -> ZZ cross-section to leading order in 1/mt  
(a path taken earlier for gg -> H, gg -> HH, gg -> HZ etc.).

q =  t

Z

Z

g

g

g

g

Z

Z

q =  t q  =  t
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Results for gg-> ZZ amplitude
The gg -> ZZ amplitudes at leading order in 1/mt are simple to write down. To 
emphasize constraints that follow from gauge-invariance,  I will write the amplitudes 
using the   field-strength tensor for gluons

Aaa =
1

3m2
t

✓
µ

mt

◆2✏
(
Aaa

1 + as

✓
µ

mt

◆2✏

Aaa
2

)
.

Aaa
1 = (1 + ✏)

⇣
f1
µ⇢f

2,µ
� � g⇢�

2
f1
µ⇢f

2,µ⇢
⌘
t⇢�34 ,

Aaa,2 =

 
�
✓

3

2✏2
+

�0

2✏

◆✓�s� i0

m2
t

◆�✏

� �0

2
Lsµ +

11

4
Lsm +

⇡2

4
� 175

36

!
Aaa,1

+
1

2
f1
µ⇢f

2,µ⇢t�34�

✓
�385

72
+

11

8
Lsm

◆
� 1

2s
f1
µ⌫f

2,µ⌫t⇢,�34 (p1,⇢p1,� + p2,⇢p2,�)

+
3

2s
f1
µ⇢p

µ
1f

2
⌫�p

⌫
2t

⇢,�
34 +O(✏)

t⇢�34 = ✏⇢3✏
�
4 + ✏⇢4✏

�
3

The result shows a  proper structure of divergences consistent  with Catani’s formula; it 
can  be interpreted as the  leading-term of the effective Lagrangian ( generalization of the 
Euler-Heisenberg Lagrangian to the case where axial currents are present ).

f i,µ⌫ = pµi ✏
⌫
i � p⌫i ✏

µ
i , i = 1, 2.
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The partonic cross-section
To obtain the gg -> ZZ cross-section, we need to combine the elastic gg -> ZZ 
process with the inelastic process gg -> ZZ+g.   The amplitude for the latter  is 
complicated even in the limit of the large top mass.  Nevertheless, the resulting 
formula for partonic cross section ( differential in the invariant mass of the pair) is 
simple enough to be shown  ( note strong dependence on q/mz ).

q2
d�gg!ZZ

dq2
(s, q2)|s=q2/z = �0zG(z, q2),

G(z, q2) =

"
�0�(1� z) + as

⇣
�V �(1� z) + 6�0

✓
2D1(z) + ln

q2

µ2
D0(z)

◆
+�H

⌘#
,

�0 =
73

270
� 2r

15
+

34r2

135
, r = q2/(4m2

Z)

�V =
2473� 8661r + 5798r2

2430
+

(73� 36r + 68r2)⇡2

270
+

11(7 + 6r + 2r2)

135
ln

q2

m2
t

.

�H =
6�0

z

✓
(!(z)� z(z)) ln

✓
q2(1� z)2

µ2

◆
� !(z)2

ln(z)

(1� z)

◆
+ (1� z)

"
r(11(z)� 46z)

15z

� r2(187(z)� 302z)

135z
� (803(z)� 598z)

540z

#
,
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 Numerical results for cross-sections and K-factors
Integrating partonic cross-sections with PDFs (NNPDF3.0) we obtain predictions for 
cross-sections and for K-factors.   We again show the comparison of the MCFM (full top 
quark mass dependence) and our ( leading top mass dependence) cross-sections. We 
also show K-factors for  pp->ZZ ( gluon fusion through top loops only) and for pp -> H .

MCFM

The close proximity of the Higgs and gg->ZZ K-factors is striking. Note also that the  K-factor 
is large, O(1.5 - 2).  If a similar result holds for the massless quark contribution to gluon fusion 
( most likely in these cases the K-factor is smaller), the gluon fusion contribution to pp -> ZZ 
will be  be increased by a factor 2.   This is not negligible compared to current error estimates 
on NNLO QCD theory predications for pp->ZZ .

pp->ZZ

pp->H
mt ! 1
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Conclusions
Four-lepton production processes at the LHC are important for a variety of 
phenomenological  reasons ( anomalous couplings, Higgs backgrounds, SUSY 
backgrounds,  the Higgs width).

Calculation of two-loop QCD corrections to this process was hindered for a long time by 
uncalculated two-loop amplitudes for qq -> V1V2.  

Similarly, large gluon flux makes it desirable to compute gg -> V1V2 to NLO (i.e. two-loop
virtual again).  This requires gg -> V1V2 amplitude.

These amplitudes have now been computed.  This was  made possible by  recent 
improvements  in technology of reductions of loop integrals to master integrals and  of 
computing master-integrals.  I described how computation of these two-loop amplitudes 
(including master integrals) can be  performed.  Phenomenology of four-lepton final states  
is the next step. 

It is also interesting to discuss how massive quarks contribute to gg -> ZZ . In this case, 
one can  use the asymptotic expansions in the inverse top quark mass.  Our computation 
shows large K-factors that are very similar to the ones for gg -> H process.  Physically,  
this means that gluon fusion contribution to ZZ production is (probably) underestimated by 
a factor between 1.5 and 2.   Such large radiative corrections to gluon fusion will have 
important consequences  for estimating uncertainty in theory predictions for pp->ZZ.
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