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An overview of properties of the CMB.



Current status

General Relativity is a local theory, and constrains the local
properties of spacetime
The Standard Model is also a local theory
Nothing in the physical laws says anything about global properties
We can only see a finite portion of space (horizon)
Nothing known from the basic laws. Global structure has to be
tested experimentally by observations on cosmological scales.
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Many possibilities:

Take the usual flat, closed or open universes (R3, S3, H3) and take the
quotient by the action of a discrete group.

Result is a finite manifold of constant curvature which is locally
indistinguishable from the original covering space.

Simple 1D example:

R/Z = S1, under action x → x + n, n ∈ Z

-1-2 0 1 2 3
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Universe Flat

Observations (Planck + BAO + highL + WP):

Ωk = −0.0005
+0.0065
−0.0066

Theoretically:
The probability of quantum creation of positive curvature universes is
exponentially suppressed.

Much easier to think of flat space.
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3 Possible Flat manifolds

M0 = T
3 M1 = T

2 ×R M2 = S1 ×R2
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Opposite edges are identified (periodic boundary conditions).
All sides have equal length L (to reduce number of parameters)
Break isotropy of space
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Particle Horizon and LSS

The particle horizon (PH) is the portion of space from where light could
have reached us.

The last scattering surface (LSS) is where the CMB comes from.
Photons free stream after that.

RLSS ≡ L0 = 14.4 Gpc

If the global structure of space is smaller than the particle horizon, then
we can (in principle) see it, and hence constrain it by observations.
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Circles in the Sky

Main method — circles in the sky

Cornish, Spergel, Starkman astro-ph/9801212

LSS crosses with itself on circles if 2L0 > L. Looks for these patterns
in the sky.
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Limits

WMAP1 (Cornish, Spergel, Starkman, Komatsu, astro-ph/0310233)

L > 24 Gpc

WMAP7 (Bielewicz, Banday, arXiv:1012.3549)

L > 27.9 Gpc

Method does not constrain L > 2L0 = 28.8 Gpc.

Can one can see beyond 2L0?

Turns out you can do better using the CMB.

A Manohar (UCSD) 24 Mar 2015 / Vienna 9 / 40



COBE Temperature
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WMAP9 Temperature
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Planck Temperature

A Manohar (UCSD) 24 Mar 2015 / Vienna 12 / 40



Plank CMB Polarization
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HEALPix
Gorski et al.

Divide the sky into 12 pixels of equal solid angle, and then subdivide.

Npixel = 12 N2
side

with Nside = 1,2,4, . . .. Allows for a fast angular Fourier transform.
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Temperature and Polarization
For T , subtract out the average temperature and the dipole, which
gives our motion relative to the CMB.

Polarization:

E = Re E0 eik·r−iωt

For a wave travelling in the z direction, let

|ψ〉 =

[
ex eiθx

ey eiθy

]

so that

Ex = ex cos (ωt − θx )

Ey = ey cos (ωt − θy )
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Polarization
The intensity matrix is

ρ = |ψ〉 〈ψ|

=

[
e2

x exeyei(θx−θy )

exeye−i(θx−θy ) e2
y

]

Decompose the density matrix as

ρ =
1
2

(a0 + a · σ) aµ = Tr ρ σµ σ0 = 1

Stokes’ parameters defined by

aµ = (I,U,V ,Q) ρ =
1
2

[
I + Q U − iV

U + iV I −Q

]

I = e2
x + e2

y U = 2exey cos (θy − θx )

Q = e2
x − e2

y V = 2exey sin (θy − θx )
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Rotate the x − y axes by θ:

I′ = I V ′ = V
[

Q′

U ′

]
=

[
cos 2θ sin 2θ
− sin 2θ cos 2θ

] [
Q
U

]

Q′ ± iU ′ = e±2iθ (Q ± iU)

So can measure Q and U from difference in intensities for x and y
polarization, and x ′ and y ′ polarization with θ = π/4.

Acts like a helicity ±2 object because it is quadratic in the EM field.
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Spherical harmonic decomposition:

T (n̂) =
∑

lm

TlmYlm(n̂)

Q(n̂)± i U(n̂) =
∑

lm

(Elm ± i Blm) ±2Ylm(n̂)

where ±2Ylm(n̂) are helicity spherical harmonics.

Under parity, E → E and B → −B.

E < 0 E > 0

B < 0 B > 0

Figure 21: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across

a line going through the center the E-mode patterns are unchanged, while the positive

and negative B-mode patterns get interchanged.

The angular power spectra are defined as before

CXY
` ⌘ 1

2`+ 1

X

m

ha⇤X,`maY,`mi , X, Y = T,E,B . (278)

In Fig. 22 we show the latest measurement of the TE cross-correlation [11]. The EE spectrum has

now begun to be measured, but the errors are still large. So far there are only upper limits on the

BB spectrum, but no detection.

The cosmological significance of the E/B decomposition of CMB polarization was realized by

the authors of Refs. [31, 32], who proved the following remarkable facts:

i) scalar (density) perturbations create only E-modes and no B-modes.

ii) vector (vorticity) perturbations create mainly B-modes.16

iii) tensor (gravitational wave) perturbations create both E-modes and B-modes.

The fact that scalars do not produce B-modes while tensors do is the basis for the statement

that detection of B-modes is a smoking gun of tensor modes, and therefore of inflation.

16 However, vectors decay with the expansion of the universe and are therefore believed to be subdominant

at recombination. We therefore do not consider them here.

76

A Manohar (UCSD) 24 Mar 2015 / Vienna 18 / 40



Inflation
T (n̂,x): CMB temperature seen by an observer at x in direction n̂.

T (n̂,x) =
∞∑

l=1

l∑

m=−l

alm(x)Ylm(n̂) ,

Fourier space temperature fluctuations T (n̂,k)

alm(x) =

∫
d3k

(2π)3 eik·x
∫

dΩ Y ∗lm(n̂)T (n̂,k) .

Observed CMB fluctuations from alm correlations:

Mlml ′m′ ≡ 〈alm(x0)a∗l ′m′(x0)〉 .

T (k ,k · n̂) =
T (k ,k · n̂)

ζ(k)
ζ(k)
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Inflation

The correlations between temperature anisotropies in k -space are
related to the initial matter power spectrum

〈
T (k, n̂)T ∗(k′, n̂′)

〉
= (2π)3δ3(k− k′)Pζ(k)

T (k ,k · n̂)

ζ(k)

T ∗(k ,k · n̂′)
ζ∗(k)

,

The matter power spectrum is defined by
〈
ζ(k) ζ∗(k′)

〉
≡ (2π)3δ3(k− k′)Pζ(k) .

Transfer function computed by CAMB:

T (k ,k · n̂)

ζ(k)

does not depend on initial conditions, since equations are linear.
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Inflation
Expanding T (k ,k · n̂) into Legendre polynomials

T (k ,k · n̂) =
∑

l

(−i)l(2l + 1)Pl(k̂ · n̂)Tl(k) ,

gives

Mlml ′m′ = (4π)2(−i)l i l
′
∫

d3k
(2π)3 Pζ(k)

Tl(k)

ζ(k)

T ∗l ′ (k)

ζ∗(k)
Y ∗lm(k̂)Yl ′m′(k̂) .

Usual infinite universe case:

Mlml ′m′ = δll ′δmm′Cl ,

with

Cl =
2
π

∫
dk k2 P(k)

∣∣∣∣
Tl(k)

ζ(k)

∣∣∣∣
2

.
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Planck 2015

Dl =
l(l + 1)Cl

2π
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Cosmic Variance

Measure alm and get

Cobs
l ≡ 1

2l + 1

∑

m

∣∣∣aobs
lm

∣∣∣
2

Each alm like a measurement of Cl . Large cosmic variance for small l .

〈
Cobs

l

〉
= Cl

〈(
∆Cobs

l

)2
〉

=
2Cl

2l + 1

〈·〉 is w.r.t. universes.
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Finite Case

∫
d3k

(2π)3 →
1

L1L2L3

∑

k

,

over the discrete k values

k1 =
2π
L1

n1, k2 =
2π
L2

n2, k3 =
2π
L3

n3 , ni ∈ Z

The derivation remains the same in the finite case except that the k
integral must be replaced by the sum

Mlml ′m′ = (4π)2(−i)l i l
′ 1
L1L2L3

∑

k

P(k)
Tl(k)

ζ(k)

T ∗l ′ (k)

ζ∗(k)
Y ∗lm(k̂)Yl ′m′(k̂) .

CAMB evolution is local, due to CMB scattering, etc. and is unaffected.
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Finite Case
Find

2 | l ′ − l 4 |m′ −m

Plot of the ratio of Cl forM0 = T3 with L/L0 = 1.8 (blue),
M1 = T2 × R1 with L/L0 = 1.9 (red), andM3 = S1 × R2 with

L/L0 = 1.9 (green), to that for infinite space R3.
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Inflation

Define the transfer functions

gX
l (k) =

Xl(k)

ζ(k)
, X = T ,E ,B

Power spectrum:

MXY
lml ′m′ = (4π)2(−i)l i l

′ 1
L1L2L3

∑

k

Pζ(k)gX
l (k)gY∗

l ′ (k)Y ∗lm(k̂)Yl ′m′(k̂) .

and TT , TE , EE and BB are non-zero. BB requires gravitational waves
(tensor perturbations) in the initial conditions.

MTB = 0 MEB = 0 MBB = 0
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Likelihood

The WMAP and Planck collaborations make public the data in the form
of maps in pixel space.

m = (T ,Q,U) are the temperature and polarization maps treated as a
column vector with index n̂i in pixel space.

Define S and N as the signal and noise correlation matrices, with
indices in pixel space.
N is provided by the experimental collaborations
S is the theoretical prediction based on the cosmological model.
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The likelihood is given by

L(m|S)dm =
exp

[
−1

2mt (S + N)−1m
]

(2π)3np/2 det(S + N)1/2
dm

Spherical harmonic decomposition:

T (n̂) =
∑

lm

TlmYlm(n̂)

Q(n̂)± i U(n̂) =
∑

lm

(Elm ± i Blm) ±2Ylm(n̂)

so we can compute pixel correlations in terms of MXY
lml ′m′

〈
X (n̂)Y (n̂′)∗

〉

lm↔ n̂ is like a change of basis with transformation Ylm(n̂)
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Noise in low resolution temperature maps is negligible. Can separate
out the temperature from the polarization maps.

Ẽlm = Elm −
[
MET

(
MTT

)−1
T
]

lm

so that
〈

ẼlmT ∗lm
〉

= 0

Define

Q̃(n̂) =
1
2

∑

lm

Ẽlm [2Ylm(n̂) + −2Ylm(n̂)] + i B̃lm [2Ylm(n̂)− −2Ylm(n̂)]

iŨ(n̂) =
1
2

∑

lm

Ẽlm [2Ylm(n̂)− −2Ylm(n̂)] + i B̃lm [2Ylm(n̂) + −2Ylm(n̂)]

〈
Q̃(n̂)T (n̂′)

〉
= 0

〈
Ũ(n̂)T (n̂′)

〉
= 0
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Define P to be the Q,U part, and T to be the temperature part. Then

L(m|S)dm =
exp

[
−1

2m̃t
P(S̃P + NP)−1mP

]

(2π)np det(S̃P + NP)1/2
dm̃P

exp
[
−1

2 T̃ t (ST )−1T
]

(2π)np/2 det(ST )1/2
dT

S̃P can be derived from

〈
ẼlmẼ ′lm

〉
= M ẼẼ

lml ′m′ =

[
MEE −MET

(
MTT

)−1
MTE

]

lml ′m′

Main difficulty is numerical: the maps have Np ∼ 3072 and so the
covariance matrices are 3072× 3072. Takes a lot of computing power.
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Previous Results based on Temperature

COBE: de Oliviera Costa, Smoot, astro-ph/9412003:

L > 4.32h−1 Gpc for M0 (95%)

de Oliviera Costa, Smoot, Starobinsky, astro-ph/9510109:

L > 3.0h−1 Gpc for M1,2 (95%)

WMAP1: Phillips, Kogut, astro-ph/0404400:

M0 : L > 1.2L0(95%), L > 2.1L0(68%) best fit L = 2.1L0

Kunz et al. astro-ph/0510164:

M0 :L > 19.3Gpc M2 : L > 14.4Gpc
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Data Used

WMAP temperature maps: Low resolution ILC, V, W, Q bands at
Nside = 16 smoothed to 9.183◦ degrees and masked with Kp2.

In pixel space, just drop the pixels corresponding to the mask.

1µK white noise added to regularize the numerical inversion of the
covariane matrix.

Polarization maps: Combination of Ka, Q, V bands at Nside = 8
masked with P06.

Analyze WMAP7 and WMAP9 data
CAMB used to calculate the transfer functions
WMAP likelihood code used

CAMB modified to use a sum on k , and WMAP modified to use the
new covariance matrices.

A Manohar (UCSD) 24 Mar 2015 / Vienna 32 / 40



Orientation

Isotropy of space broken, so have to look at orientations of the
compactification direction, in terms of Euler angles φ, θ, ψ.

Huge increase in computer time to map out these orientations. Some
simplification using symmetries of a cube,

R(φ, θ, ψ) = R(g)R(φ′, θ′, ψ′)

where R(g) is a symmetry of M, e.g. a π/2 rotation about an axis of
the cube.

Only studied all sides equal.
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Variation with Orientation

−2 lnL = χ2 + ln det C/Cf + ln det(2πCf )

Look at M0:
Det varies weakly

L/L0 = 1.8 with θ, φ fixed.

Likelihood varies strongly

red is best fit direction, blue is random
direction for L/L0 = 1.8 with θ, φ fixed.
green is best fit direction for L/L0 =

2.2.
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Analysis

Make a scan over angle steps 0.05π and then minimize using MINUIT.

Use the Feldman-Cousins method (physics/9711021) to construct
confidence intervals

1 For a point P in parameter space, construct a set of simulations Si
and find the best fit for each one.

2 Calculate likelihood ratios ∆L = −2 lnL(Si |P) + 2 lnL(Si |Pi,best)
3 Find ∆Lc such that a fraction α of simulations have ∆L < ∆Lc

4 For real data D calculate ∆LD = −2 lnL(D|P) + 2 lnL(D|PD,best)
5 Accept P at confidence level α if ∆LD < ∆Lc

Do 500 simulations for each size and topology, varying size in steps of
0.1L0.
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Results (Temp only)
M0 = T3 M1 = T2 × R1 M2 = S1 × R2

upper: WMAP7, lower: WMAP9. green triangles: ILC map, the blue squares: combined data from V, W, and Q maps.
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Lower bounds on L/L0:

Map M0(68.3%) M0(95.5%) M1(68.3%) M1(95.5%) M2(68.3%) M2(95.5%)

ILC (7) 1.71 1.50 1.49 1.40 1.49 1.11

VWQ (7) 1.71 1.50 1.48 1.38 1.50 1.10

ILC (9) 1.76 1.66 1.49 1.41 1.51 1.10

VWQ (9) 1.76 1.66 1.47 1.30 1.51 1.10

Planck 1.66 1.42 1.00

Planck 2013: XXVI 1303.5086

Topology Map ∆L L/L0 φ θ ψ

M0 ILC (7) 18.89 2.0± 0.05 2.328± 0.036 2.512± 0.012 0.379± 0.033

ILC (9) 19.45 2.0± 0.05 2.330± 0.035 2.512± 0.012 0.380± 0.033

M1 ILC (7) 19.30 1.9± 0.05 0.356± 0.023 0.932± 0.024 1.061± 0.020

ILC (9) 18.46 1.9± 0.05 0.357± 0.023 0.928± 0.022 1.061± 0.020

M2 ILC (7) 16.26 1.9± 0.05 1.705± 0.016 2.166± 0.016

ILC (9) 16.62 1.9± 0.05 1.704± 0.016 2.166± 0.016

Best Fit
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Temperature + Polarization

WMAP polarization maps are very noisy, and not much improvement.
Did a forecast for Planck using 100 simulations

Bounds go up 1.73→ 1.92 (68%) and 1.68→ 1.89 (95.5%). Detect
L/L0 = 1.7 at 3σ and L/L0 = 2.0 at 2σ.
Recent paper: Planck 1502.01593 consistent with these estimates.
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Checks

Not related to the lowest multipoles. We took Mlml ′m′ and replaced
pieces by the infinite universe case. Seems that the signal depends on
off-diagonal terms for 5 ≤ ` ≤ 25.

Not due to low `, i.e. not from the quadrupole or octupole.
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Conclusions

Tested for global topology using CMB data
Rule out L/L0 ∼ 1.1− 1.7
An indication of a dip at around L/L0 ∼ 2
Unlikely to get much better bounds
Also tested for deviations from inflation, can put limits in a similar
way.
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