

The π^0 and η Transition Form Factors: Hadronic Contributions to the Anomalous Magnetic Moment of the Muon

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

Bethe Center for Theoretical Physics

Universität Bonn, Germany

Wien, May 19th 2015

Outline

Introduction

- The anomalous magnetic moment of the muon
- Hadronic vacuum polarisation and hadronic light-by-light scattering

Dispersion relations for meson transition form factors

• Ingredients for a data-driven analysis of $\pi^0, \eta \to \gamma^* \gamma^{(*)}$

Summary / Outlook

Outline

Introduction

- The anomalous magnetic moment of the muon
- Hadronic vacuum polarisation and hadronic light-by-light scattering

Dispersion relations for meson transition form factors

Colangelo, Hoferichter, BK, Procura, Stoffer 2014

Summary / Outlook

The anomalous magnetic moment of the muon

gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = \frac{g}{2m} \vec{S}$$

- Dirac theory for spin-1/2 fermions: g_μ = 2 rad. corr.: g_μ = 2(1 + a_μ), a_μ "anomalous magnetic moment"
- one of the most precisely measured quantities in particle physics

 $a_{\mu} = (116\,592\,089\pm63) \times 10^{-11}$ BNL E821 2006

The anomalous magnetic moment of the muon

gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

- Dirac theory for spin-1/2 fermions: g_μ = 2 rad. corr.: g_μ = 2(1 + a_μ), a_μ "anomalous magnetic moment"
- one of the most precisely measured quantities in particle physics $a_{\mu} = (116592089 \pm 63) \times 10^{-11}$ BNL E821 2006

 ... and one with a significant (??) deviation from the Standard Model:

$$a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (27.6 \pm 8.6) \times 10^{-11}$$

```
Davier et al. 2011
```

 new g - 2 experiment at Fermilab: reduce experimental error by factor 4

picture: Fermilab

photo: BNL

photo: Fermilab

photo: BNL

photo: Fermilab

	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
$QED\ \mathcal{O}(lpha^2)$	413 217.63	0.01
$QED\ \mathcal{O}(lpha^3)$	30 141.90	0.00
$QED\;\mathcal{O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak	153.2	1.8
had. VP (LO)	6923.	42.
had. VP (NLO)	-98.	1.
had. LbL	116.	40.
total	116 591 813.	58.

	$a_{\mu} \left[10^{-11} \right]$	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
${f QED}~{\cal O}(lpha^2)$	413 217.63	0.01
QED ${\cal O}(lpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak	153.2	1.8
had. VP (LO)	6923.	42.
had. VP (NLO)	-98.	1.
had. LbL	116.	40.
total	116 591 813.	58.

	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]	
experiment	116 592 089.	63.	
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03	
$QED\ \mathcal{O}(lpha^2)$	413 217.63	0.01	$- \underbrace{\overset{\rho \circ \circ \circ}{\underset{I(a)}{}}}_{I(a)} \underbrace{\overset{\rho \circ \circ \circ}{\underset{I(b)}{}}}_{I(b)} \underbrace{\overset{\rho \circ \circ \circ}{\underset{I(c)}{}}}_{I(c)} \underbrace{\overset{\rho \circ \circ \circ}{\underset{I(c)}{}}}_{I(c)} \underbrace{\overset{\rho \circ \circ}{\underset{I(c)}{}}}_{I(c)}$
${\sf QED}\; {\cal O}(lpha^3)$	30 141.90	0.00	$-\underbrace{\bigwedge}_{I(f)} \underbrace{\bigwedge}_{I(g)} \underbrace{\bigwedge}_{I(g)} \underbrace{\bigwedge}_{I(h)} \underbrace{\bigwedge}_{I(h)} \underbrace{\bigwedge}_{I(i)} \underbrace{I(i)} \underbrace{I(i)}$
${\sf QED}\; {\cal O}(lpha^4)$	381.01	0.02	
$old QED \ \mathcal{O}(lpha^5)$	5.09	0.01	
QED total	116 584 718.85	0.04	
electroweak	153.2	1.8	
had. VP (LO)	6923.	42.	
had. VP (NLO)	-98.	1.	
had. LbL	116.	40.	
total	116 591 813.	58.	
	experiment QED O(α) QED O(α ²) QED O(α ³) QED O(α ⁴) QED O(α ⁵) QED total electroweak had. VP (LO) had. VP (NLO) had. LbL total	$a_{\mu} [10^{-11}]$ experiment116 592 089.QED $\mathcal{O}(\alpha)$ 116 140 973.21QED $\mathcal{O}(\alpha^2)$ 413 217.63QED $\mathcal{O}(\alpha^3)$ 30 141.90QED $\mathcal{O}(\alpha^4)$ 381.01QED $\mathcal{O}(\alpha^5)$ 5.09QED total116 584 718.85electroweak153.2had. VP (LO)6923.had. LbL116.total116 591 813.	$a_{\mu} [10^{-11}]$ $\Delta a_{\mu} [10^{-11}]$ experiment116 592 089.63.QED $\mathcal{O}(\alpha)$ 116 140 973.210.03QED $\mathcal{O}(\alpha^2)$ 413 217.630.01QED $\mathcal{O}(\alpha^3)$ 30 141.900.00QED $\mathcal{O}(\alpha^4)$ 381.010.02QED $\mathcal{O}(\alpha^5)$ 5.090.01QED total116 584 718.850.04electroweak153.21.8had. VP (LO)6923.42.had. VP (NLO)-98.1.had. LbL116 591 813.58.

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(\alpha)$	116 140 973.21	0.03
$QED\ \mathcal{O}(lpha^2)$	413 217.63	0.01
$QED\ \mathcal{O}(lpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak	153.2	1.8
had. VP (LO)	6923.	42.
had. VP (NLO)	-98.	1.
had. LbL	116.	40.
total	116 591 813.	58.

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
${\sf QED}~{\cal O}(lpha^2)$	413 217.63	0.01
${\sf QED}~{\cal O}(lpha^3)$	30 141.90	0.00
${\sf QED}~{\cal O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak	153.2	1.8
had. VP (LO)	6923.	42.
nad. VP (NLO)	-98.	1.
had. LbL	116.	40.
total	116 591 813.	58.

	$a_{\mu} \ [10^{-11}]$	Δa_{μ} [10 ⁻¹¹]
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
$QED\ \mathcal{O}(lpha^2)$	413 217.63	0.01
${\sf QED}~{\cal O}(lpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak	153.2	1.8
had. VP (LO)	6923.	42.
had. VP (NLO)	-98.	1.
had. LbL	116.	40.
total	116 591 813.	58.

-		a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
-	experiment	116 592 089.	63.
-	QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
	${\sf QED}\; {\cal O}(lpha^2)$	413 217.63	0.01
	${\sf QED}\; {\cal O}(lpha^3)$	30 141.90	0.00
	${\sf QED}\; {\cal O}(lpha^4)$	381.01	0.02
	${\sf QED}\; {\cal O}(lpha^5)$	5.09	0.01
	QED total	116 584 718.85	0.04
	electroweak	153.2	1.8
-	had. VP (LO)	6923.	42.
	had. VP (NLO)	-98.	1.
	had. LbL	116.	40.
-	total	116 591 813.	58.

	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]	
experiment	116 592 089.	63.	
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03	
$QED\;\mathcal{O}(lpha^2)$	413 217.63	0.01	
QED $\mathcal{O}(lpha^3)$	30 141.90	0.00	
$QED\;\mathcal{O}(lpha^4)$	381.01	0.02	
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01	
QED total	116 584 718.85	0.04	
electroweak	153.2	1.8	\rightarrow had dominate
had. VP (LO)	6923.	42.	certainty
had. VP (NLO)	-98.	1.	
had. LbL	116.	40.	Jegerienner
total	116 591 813.	58.	and refe

 \rightarrow hadronic part dominates the uncertainty by far!

Jegerlehner, Nyffeler 2009 Davier et al. 2011 and references therein

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass \rightarrow this is **not** a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{4M_{\pi}^2}^{\infty} K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

• K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$

- how to control hadronic vacuum polarization?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{4M_{\pi}^2}^{\infty} K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

- K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$
- more than 75% of $a_{\mu}^{had VP}$ given by energies $s \leq 1 \, {\rm GeV^2}$ Jegerlehner, Nyffeler 2009
- dominated by $e^+e^- \rightarrow \pi^+\pi^ \longrightarrow$ pion electromagnetic form factor
- well constrained by data KLOE, BABAR...

Hadronic light-by-light scattering

• hadronic light-by-light soon to dominate Standard Model uncertainty in $(g-2)_{\mu}$

Hadronic light-by-light scattering

Hadronic light-by-light scattering

 \rightarrow how to control hadronic modelling?

Jegerlehner, Nyffeler 2009

- dispersive point of view: analytic structure, cuts and poles
 - \longrightarrow (on-shell) form factors and scatt. amplitudes from experiment
 - \longrightarrow expansion in masses of intermediate states, partial waves

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$
$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$$
$$= \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} T(z)dz}{z-s}$$

• disc $T(s) = 2i \operatorname{Im} T(s)$ calculable by "cutting rules":

inelastic intermediate states ($K\bar{K}$, 4π) suppressed at low energies \longrightarrow will be neglected in the following

Dispersive analysis of $\pi^0/\eta o \gamma^*\gamma^*$

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

Dispersive analysis of $\pi^0/\eta o \gamma^*\gamma^*$

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

• analyze the leading hadronic intermediate states:

see also Gorchtein, Guo, Szczepaniak 2012

isovector photon: 2 pions

 \propto pion vector form factor $\times \gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$ all determined in terms of pion–pion P-wave phase shift

Dispersive analysis of $\pi^0/\eta o \gamma^*\gamma^*$

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

• analyze the leading hadronic intermediate states:

- ▷ isovector photon: 2 pions
- \propto pion vector form factor × $\gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$ all determined in terms of pion—pion P-wave phase shift ▷ isoscalar photon: 3 pions
Dispersive analysis of $\pi^0/\eta o \gamma^*\gamma^*$

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

• analyze the leading hadronic intermediate states:

▷ isovector photon: 2 pions

 \propto pion vector form factor × $\gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$ all determined in terms of pion–pion P-wave phase shift ▷ isoscalar photon: 3 pions → dominated by narrow ω , ϕ $\leftrightarrow \omega / \phi$ transition form factors; very small for the η

$\pi^0 o \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. $e^+e^- \rightarrow \pi^+\pi^-$, $\tau^- \rightarrow \pi^-\pi^0\nu_{\tau}$

 ${\sf Im}\,F(s)\,\propto\,F(s) imes$ phase space $imes\,T^*_{\pi\pi}(s)$

 \longrightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. $e^+e^- \rightarrow \pi^+\pi^-$, $\tau^- \rightarrow \pi^-\pi^0\nu_{\tau}$

 ${\sf Im}\,F(s)\,\propto\,F(s) imes$ phase space $imes T^*_{\pi\pi}(s)$

 \rightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

• dispersion relations allow to reconstruct form factor from imaginary part \rightarrow elastic scattering phase $\delta(s)$:

$$F(s) = P(s)\Omega(s)$$
, $\Omega(s) = \exp\left\{rac{s}{\pi}\int_{4M_\pi^2}^{\infty} ds' rac{\delta(s')}{s'(s'-s)}
ight\}$

P(s) polynomial, $\Omega(s)$ Omnès function

Omnès 1958

• today: high-accuracy $\pi\pi$ (and πK) phase shifts available Ananthanarayan et al. 2001, García-Martín et al. 2011 (Büttiker et al. 2004)

Pion vector form factor from dispersion relations

• pion vector form factor clearly non-perturbative: ρ resonance

 \rightarrow Omnès representation vastly extends range of applicability

Pion vector form factor vs. Omnès representation

• divide $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ form factor by Omnès function:

Hanhart et al. 2013

- \longrightarrow linear below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \, \text{GeV}^{-2}s) \Omega(s)$
- \longrightarrow above: inelastic resonances ρ' , ρ'' ...

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
ansatz: 𝔅^{η^(')}_{ππγ} = A × P(t) × Ω(t), P(t) = 1 + α^(')t, t = M²_{ππ}

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
ansatz: 𝓕^{η^(')}_{ππγ} = A × P(t) × Ω(t), P(t) = 1 + α^(')t, t = M²_{ππ}

• divide data by pion form factor $\longrightarrow P(t)$ Stollenwerk et al. 2012

Transition form factor $\eta ightarrow \gamma^* \gamma$

Transition form factor $\eta ightarrow \gamma^* \gamma$

Anomalous decay $\eta ightarrow \pi^+\pi^-\gamma$

• $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \,\text{GeV}^{-2}$ large

 \longrightarrow implausible to explain through ρ' , ρ'' ...

- for large t, expect $P(t) \rightarrow \text{const.}$ rather
- $\eta \to \gamma^* \gamma$ transition form factor:

 \longrightarrow dispersion integral covers

larger energy range

Anomalous decay $\eta ightarrow \pi^+\pi^-\gamma$

• $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \,\text{GeV}^{-2}$ large

 \longrightarrow implausible to explain through ρ' , ρ'' ...

- for large t, expect $P(t) \rightarrow \text{const.}$ rather
- $\eta \rightarrow \gamma^* \gamma$ transition form factor:

→ dispersion integral covers larger energy range

Intriguing observation:

• naive continuation of $\mathcal{F}^{\eta}_{\pi\pi\gamma} = A(1+\alpha t)\Omega(t)$ has zero at $t = -1/\alpha \approx -0.66 \,\mathrm{GeV}^2$

 \longrightarrow test this in crossed process $\gamma \pi^- \rightarrow \pi^- \eta$

 \rightarrow "left-hand cuts" in $\pi\eta$ system?

BK, Plenter 2015

What are left-hand cuts?

Example: pion-pion scattering

• right-hand cut due to unitarity: $s \ge 4M_{\pi}^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_{\pi}^2$
- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_\pi^2$
- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$
- partial-wave projection: $T(s,t) = 32\pi \sum_{i} T_i(s) P_i(\cos \theta)$

$$t(s,\cos\theta) = \frac{1-\cos\theta}{2}(4M_{\pi}^2 - s)$$

 \longrightarrow cut for $t \ge 4M_{\pi}^2$ becomes cut for $s \le 0$ in partial wave

Primakoff reaction $\gamma\pi o \pi\eta$

- can be measured in Primakoff
 reaction
 COMPASS
- S-wave forbidden
 P-wave exotic: J^{PC} = 1⁻⁺
 D-wave a₂(1320) first resonance

Primakoff reaction $\gamma\pi ightarrow \pi\eta$

- can be measured in Primakoff
 reaction COMPASS
- S-wave forbidden
 P-wave exotic: J^{PC} = 1⁻⁺
 D-wave a₂(1320) first resonance
- include a₂ as left-hand cut in decay couplings fixed from a₂ → πη, πγ

- compatible with decay data?
- ▷ predictions for $\gamma \pi \rightarrow \pi \eta$ cross sections and asymmetries [→ spares]

Formalism including left-hand cuts

- a₂ + rescattering essential to preserve Watson's theorem
- formally:

$$\mathcal{F}^{\eta}_{\pi\pi\gamma}(s,t,u) = \mathcal{F}(t) + \mathcal{G}_{a_2}(s,t,u) + \mathcal{G}_{a_2}(u,t,s)$$
$$\mathcal{F}(t) = \Omega(t) \left\{ A(1+\alpha t) + \frac{t^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dx}{x^2} \frac{\sin\delta(x)\hat{\mathcal{G}}(x)}{|\Omega(x)|(x-t)} \right\}$$

 $\hat{\mathcal{G}}$: t-channel P-wave projection of a_2 exchange graphs

• re-fit subtraction constants A, α

 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

$$\eta,\,\eta' o\pi^+\pi^-\gamma$$
 with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013

• $\alpha \approx \alpha'$ (large- N_c) better fulfilled including a_2 BK, Plenter 2015

$\gamma\pi ightarrow \pi\pi$ and the Wess–Zumino–Witten anomaly

controls low-energy processes of odd intrinsic parity

•
$$\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$$
: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi^0}}$

 F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011

$\gamma\pi ightarrow \pi\pi$ and the Wess–Zumino–Witten anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi}}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

$\gamma\pi ightarrow \pi\pi$ and the Wess–Zumino–Witten anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi}}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - ▷ chiral perturbation theory for extraction

Serpukhov 1987

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - chiral perturbation theory for extraction

counts

- Primakoff measurement of whole spectrum COMPASS, work in progress
- idea: use dispersion relations to exploit all data below 1 GeV for anomaly extraction
- effect of ρ resonance included modelindependently via $\pi\pi$ P-wave phase shift

hadron data beam K ρ

figure courtesy of T. Nagel 2009

Serpukhov 1987

COMPASS 2004

Dispersion relations for 3 pions

- $\gamma \pi \rightarrow \pi \pi$ fully crossing symmetric: odd partial waves \longrightarrow P-waves only (neglecting F- and higher)
- amplitude decomposed into single-variable functions

 $\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

Dispersion relations for 3 pions

- $\gamma \pi \rightarrow \pi \pi$ fully crossing symmetric: odd partial waves \longrightarrow P-waves only (neglecting F- and higher)
- amplitude decomposed into single-variable functions

 $\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

• left-hand cut $\hat{\mathcal{F}}(s)$ and right-hand cut $\mathcal{F}(s)$ self-consistent:

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_1}{3} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \left(1 - z^2\right) \mathcal{F}(t(s, z))$$
$$\mathcal{F}(s) = \cdots + \cdots + \cdots + \cdots + \cdots + \cdots$$

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_1}{3} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in C_1

 $\mathcal{F}(s) = C_1 \times \mathcal{F}_{C_1=1}(s)$

 \longrightarrow basis function $\mathcal{F}_{C_1=1}(s)$ calculated independently of C_1

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_1}{3} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in C_1

$$\mathcal{F}(s) = C_1 \times \mathcal{F}_{C_1=1}(s)$$

 \longrightarrow basis function $\mathcal{F}_{C_1=1}(s)$ calculated independently of C_1

 oversubtract → increase precision → representation of cross section in terms of two parameters

 \longrightarrow fit to data, extract

$$F_{3\pi} \simeq C_2 = C_2^{(1)} + C_2^{(2)} M_\pi^2$$

 $\rightarrow \sigma \propto (C_2)^2$ also in ρ region

Extension to vector-meson decays: $\omega/\phi ightarrow 3\pi$

- identical quantum numbers to $\gamma\pi \to \pi\pi$
- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes

Extension to vector-meson decays: $\omega/\phi ightarrow 3\pi$

- identical quantum numbers to $\gamma \pi \rightarrow \pi \pi$
- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes
- $\omega/\phi \rightarrow 3\pi$ analyzed in terms of KLOE 2003, CMD-2 2006 sum of 3 Breit–Wigners (ρ^+ , ρ^- , ρ^0)
 - + constant background term

Extension to vector-meson decays: $\omega/\phi ightarrow 3\pi$

- identical quantum numbers to $\gamma \pi \rightarrow \pi \pi$
- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes
- $\omega/\phi \rightarrow 3\pi$ analyzed in terms of KLOE 2003, CMD-2 2006 sum of 3 Breit–Wigners (ρ^+ , ρ^- , ρ^0)
 - + constant background term

Problem:

- \rightarrow unitarity fixes Im/Re parts
- \rightarrow adding a contact term destroys this relation
- \rightarrow reconcile data with dispersion relations?

• identical quantum numbers to $\gamma\pi \to \pi\pi$

$$\mathcal{F}(s) = \mathbf{a} \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \,(1 - z^2) \mathcal{F}(t(s, z))$$

 \longrightarrow fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$

• identical quantum numbers to $\gamma\pi \to \pi\pi$

$$\mathcal{F}(s) = \mathbf{a} \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

 \longrightarrow fix subtraction constant a to partial width(s) $\omega/\phi \rightarrow 3\pi$

• identical quantum numbers to $\gamma\pi \to \pi\pi$

$$\mathcal{F}(s) = \mathbf{a} \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

 \longrightarrow fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$

- complication: analytic continuation in decay mass M_V required
- $M_V > 3M_\pi$: path deformation required

• identical quantum numbers to $\gamma\pi \to \pi\pi$

$$\mathcal{F}(s) = \mathbf{a} \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

 \longrightarrow fix subtraction constant ${\it a}$ to partial width(s) $\omega/\phi \rightarrow 3\pi$

• complication:

analytic continuation in decay mass M_V required

- $M_V > 3M_{\pi}$: path deformation required
 - \rightarrow generates 3-particle cuts

$\omega/\phi ightarrow 3\pi$ Dalitz plots

• subtraction constant *a* fixed to partial width

 \longrightarrow normalised Dalitz plot a prediction

- ω Dalitz plot is relatively smooth
- ϕ Dalitz plot clearly shows ρ resonance bands

Niecknig, BK, Schneider 2012

$\omega/\phi ightarrow 3\pi$ Dalitz plots

• subtraction constant *a* fixed to partial width

 \longrightarrow normalised Dalitz plot a prediction

- ω Dalitz plot is relatively smooth
- ϕ Dalitz plot clearly shows ρ resonance bands

Niecknig, BK, Schneider 2012

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 28

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 28

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"

• $\pi^0 \to \gamma^* \gamma^*$ form factor linked to $\omega(\phi) \to \pi^0 \gamma^*$ transition:

• $\pi^0 \to \gamma^* \gamma^*$ form factor linked to $\omega(\phi) \to \pi^0 \gamma^*$ transition:

• $\pi^0 \to \gamma^* \gamma^*$ form factor linked to $\omega(\phi) \to \pi^0 \gamma^*$ transition:

• ω transition form factor related to

pion vector form factor $\times \omega \rightarrow 3\pi$ decay amplitude

• $\pi^0 \to \gamma^* \gamma^*$ form factor linked to $\omega(\phi) \to \pi^0 \gamma^*$ transition:

• ω transition form factor related to

pion vector form factor $\times \omega \rightarrow 3\pi$ decay amplitude

• form factor normalization yields rate $\Gamma(\omega \to \pi^0 \gamma)$

(2nd most important ω decay channel)

 \longrightarrow works at 95% accuracy

Schneider, BK, Niecknig 2012

Numerical results: $\omega ightarrow \pi^0 \mu^+ \mu^-$

- clear enhancement vs. naive vector-meson dominance
- incompatible with data (from heavy-ion coll.) NA60 2009, 2011
- more "exclusive" data? CLAS
- NA60 data potentially in conflict with unitarity bounds
 Ananthanarayan, Caprini, BK 2014

Naive extension to $e^+e^- ightarrow \pi^0 \omega$

• full solution above naive VMD, but still too low

• higher intermediate states (4 π / $\pi\omega$) more important?

• decay amplitude for $\omega/\phi \to 3\pi$: $\mathcal{M}_{\omega/\phi} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s) = \mathbf{a}_{\omega/\phi} \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

 $a_{\omega/\phi}$ adjusted to reproduce total width $\omega/\phi \rightarrow 3\pi$

• decay amplitude for $e^+e^- \rightarrow 3\pi$: $\mathcal{M}_{e^+e^-} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a_{e^+e^-}(q^2)\,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin\delta_1^1(s')\hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)} \right\}$$

 $a_{e^+e^-}(q^2)$ adjusted to reproduce spectrum $e^+e^- \rightarrow 3\pi$ contains 3π resonances \longrightarrow no dispersive prediction

• decay amplitude for $e^+e^- \rightarrow 3\pi$: $\mathcal{M}_{e^+e^-} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a_{e^+e^-}(q^2)\,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin\delta_1^1(s')\hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

 $a_{e^+e^-}(q^2)$ adjusted to reproduce spectrum $e^+e^- \rightarrow 3\pi$ • parameterisation:

$$a_{e^+e^-}(q^2) = \frac{F_{3\pi}}{3} + \beta q^2 + \frac{q^4}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}BW(s')}{s'^2(s'-q^2)}$$
$$BW(q^2) = \sum_{V=\omega,\phi} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)}$$

• decay amplitude for $e^+e^- \rightarrow 3\pi$: $\mathcal{M}_{e^+e^-} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a_{e^+e^-}(q^2)\,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin\delta_1^1(s')\hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

 $a_{e^+e^-}(q^2)$ adjusted to reproduce spectrum $e^+e^- \rightarrow 3\pi$ • parameterisation:

$$a_{e^+e^-}(q^2) = \frac{F_{3\pi}}{3} + \beta q^2 + \frac{q^4}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}BW(s')}{s'^2(s'-q^2)}$$
$$BW(q^2) = \sum_{V=\omega,\phi} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)}$$

• fit to $e^+e^- \rightarrow 3\pi$ data \longrightarrow prediction for $e^+e^- \rightarrow \pi^0 \gamma^*$

Fit to $e^+e^- ightarrow 3\pi$ data

Hoferichter, BK, Leupold, Niecknig, Schneider 2014

- one subtraction/normalisation at $q^2 = 0$ fixed by $\gamma \rightarrow 3\pi$
- fitted: ω , ϕ residues, linear subtraction β

Comparison to $e^+e^-
ightarrow \pi^0\gamma$ data

Hoferichter, BK, Leupold, Niecknig, Schneider 2014

- "prediction"—no further parameters adjusted
- data well reproduced

Extension to spacelike region; slope

• continuation to spacelike region: use another dispersion relation

$$F_{\pi^{0}\gamma^{*}\gamma}(q^{2},0) = F_{\pi\gamma\gamma} + \frac{q^{2}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\operatorname{Im} F_{\pi^{0}\gamma^{*}\gamma}(s',0)}{s'(s'-q^{2})}$$

 \longrightarrow work in progress; high-energy completion of the integral? convergence/uncertainties?

• sum rule for slope $F_{\pi^0\gamma^*\gamma}(q^2,0) = F_{\pi\gamma\gamma}\left\{1 + a_{\pi}\frac{q^2}{M_{\pi^0}^2} + \mathcal{O}(q^4)\right\}$

$$a_{\pi} = \frac{M_{\pi^0}^2}{F_{\pi\gamma\gamma}} \times \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \operatorname{Im} F_{\pi^0\gamma^*\gamma}(s',0)$$

= (30.7 ± 0.6) × 10⁻³ Hoferichter et al. 2014

compare: $a_{\pi} = (32 \pm 4) \times 10^{-3}$ PDG 2014

• theory error estimate: $\pi\pi$ phases and cutoff effects (in $\gamma^* \to 3\pi$ partial waves and $[\gamma^* \to 3\pi] \longrightarrow [\gamma^* \to \pi^0 \gamma]$) only!

Summary / Outlook

Summary / Outlook

Further experimental input for π^0 and η transition form factors:

- Primakoff reactions $\gamma \pi \rightarrow \pi \pi$, $\gamma \pi \rightarrow \pi \eta$
- $\omega \rightarrow 3\pi$ precision Dalitz plot
- $\omega/\phi \to \pi^0 \gamma^*$ test doubly virtual $F_{\pi^0 \gamma^* \gamma^*}$ with precision
- $e^+e^- \rightarrow \eta \pi^+\pi^-$ differential data C.-W. Xiao et al.
- \rightarrow determine $(g-2)_{\mu}$ contributions with controlled uncertainty

COMPASS

CLAS

Total cross section $\gamma\pi o \pi\eta$

blue: *t*-channel dynamics / " ρ " only red: full amplitude

- *t*-channel dynamics dominate below $\sqrt{s} \approx 1 \,\mathrm{GeV}$
- uncertainty bands: $\Gamma(\eta \to \pi^+ \pi^- \gamma)$, α , a_2 couplings BK, Plenter 2015

Differential cross sections $\gamma\pi o \pi\eta$

• amplitude zero visible in differential cross sections:

Differential cross sections $\gamma\pi o \pi\eta$

amplitude zero visible in differential cross sections:

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 39

Summary: processes and unitarity relations for $\pi^0 o \gamma^* \gamma^*$

Subtraction constants

$$\mathcal{F}(s) = \Omega(s) \left\{ a + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')|(s'-s)} \right\}$$

• one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction

Subtraction constants

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{a}{\pi} + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')|(s'-s)} \right\}$$

- one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction
- $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

Niecknig, BK, Schneider 2012; cf. Danilkin et al. 2014

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 41

Subtraction constants

$$\mathcal{F}(s) = \Omega(s) \left\{ a + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')|(s'-s)} \right\}$$

- one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction
- $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

Niecknig, BK, Schneider 2012; cf. Danilkin et al. 2014

Numerical results: $\phi ightarrow \pi^0 \ell^+ \ell^-$

- measurement would be extremely helpful: ρ in physical region!
- partial-wave amplitude backed up by experiment

Improved Breit–Wigner resonances

Lomon, Pacetti 2012; Moussallam 2013

• "standard" Breit–Wigner function with energy-dependent width

$$B^{\ell}(q^{2}) = \frac{1}{M_{\rm res}^{2} - q^{2} - iM_{\rm res}\Gamma_{\rm res}^{\ell}(q^{2})}$$
$$\Gamma_{\rm res}^{\ell}(q^{2}) = \theta(q^{2} - 4M_{\pi}^{2})\frac{M_{\rm res}}{\sqrt{q^{2}}} \left(\frac{q^{2} - 4M_{\pi}^{2}}{M_{\rm res}^{2} - 4M_{\pi}^{2}}\right)^{\ell}\Gamma_{\rm res}(M_{\rm res}^{2})$$

- ▷ no correct analytic continuation below threshold $q^2 < 4M_\pi^2$
- ▷ wrong phase behaviour for $\ell \ge 1$:

$$\lim_{q^2 \to \infty} \arg B^1(q^2) \approx \pi - \arctan \frac{\Gamma_{\text{res}}}{M_{\text{res}}} \qquad \lim_{q^2 \to \infty} \arg B^{\ell \ge 2}(q^2) = \frac{\pi}{2} \ (!)$$

remedy: reconstruct via dispersion integral

$$\tilde{B}^{\ell}(q^2) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} B^{\ell}(s')ds'}{s' - q^2} \longrightarrow \lim_{s \to \infty} \arg B^{\ell}(q^2) = \pi$$
On the approximation for the 3-pion cut

 \rightarrow isoscalar contribution looks simplistic; why not instead

ightarrow contains amplitude $3\pi
ightarrow \gamma\pi$

On the approximation for the 3-pion cut

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 44

On the approximation for the 3-pion cut

$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im}T(s',t)$$

• subtraction function c(t) determined from crossing symmetry

$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im}T(s',t)$$

- subtraction function c(t) determined from crossing symmetry
- project onto partial waves $t_J^I(s)$ (angular momentum J, isospin I) \longrightarrow coupled system of partial-wave integral equations

$$t_{J}^{I}(s) = k_{J}^{I}(s) + \sum_{I'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s,s') \operatorname{Im} t_{J'}^{I'}(s')$$

Roy 1971

- subtraction polynomial $k_J^I(s)$: $\pi\pi$ scattering lengths can be matched to chiral perturbation theory Colangelo et al. 2001
- kernel functions $K^{II'}_{JJ'}(s,s')$ known analytically

$\pi\pi$ scattering constrained by analyticity and unitarity

- elastic unitarity —> coupled integral equations for phase shifts
- modern precision analyses:
 - $\triangleright \pi\pi$ scattering Ananthanarayan et al. 2001, García-Martín et al. 2011
 - $\triangleright \pi K$ scattering

Büttiker et al. 2004

• example: $\pi\pi I = 0$ S-wave phase shift & inelasticity

García-Martín et al. 2011

• strong constraints on data from analyticity and unitarity!

B. Kubis, The π^0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 46