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Basic Idea

Effective field theory ideas are “obvious,” but non-trivial to actually use
them correctly in quantum field theory.

You can make quantitative predictions of observable phenomena
without knowing everything.

The computations have some small (non-zero) error.

Can improve on the accuracy by adding a finite number of
additional parameters, in a systematic way.

Key concept is locality — as a result one can factorize quantities
into some short distance parameters (coefficients in the
Lagrangian), and long distance operator matrix elements.
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Examples: H atom

Chemistry and atomic physics depend on the interactions of atoms.

The interaction Hamiltonian contains non-relativistic electrons and
nuclei interacting via a Coulomb potential, plus electromagnetic
radiation.

The only property of the nucleus we need is the electric charge Z .

The quark structure of the proton, weak interactions, GUTs, etc. are
irrelevant.
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Quantum Mehanics: H atom
A more accurate calculation includes recoil corrections and needs the
reduced mass.

The fine structure needs me,mp.

The Hyperfine interaction needs the proton magnetic moment µp

A more accurate calculation needs g − 2 for the electron and QED
radiative corrections.

Charge radius, . . .

Weak interactions, . . .

If one is interested in atomic parity violation, weak interactions are the
leading contribution, and cannot be treated as a small correction.
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Multipole Expansion

The field far away looks just like a point charge.
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V (r) =
1
r

∑
clmYlm(Ω)

(a
r

)l

At the classical level: expand in a/r .

clm expected to be of order unity, once al has been factored out.

Need more multipoles for a better description of the field.

Effective theory is a local quantum field theory with a finite number of
low energy parameters.

There is a systematic expansion in a small parameter like a/r for the
multipole expansion. [called power counting]

All the non-trivial effects are due to quantum corrections, i.e. loops
At the classical level, just series expand.
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Examples of EFT in High Energy Physics

In some cases, one can compute the EFT from a more fundamental
theory (typically, if it is weakly coupled).

The Fermi theory of weak interactions is an expansion in p/MW ,
and can be computed from the SU(2)× U(1) electroweak theory
in powers of 1/MW , αs(MW ), α(MW ) and sin2 θ.

The heavy quark Lagrangian (HQET) can be computed in powers
of αs(mQ) and 1/mQ from QCD.

NRQCD/NRQED: Non-relativistic QCD/QED
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Examples

Chiral perturbation theory: Describes the low energy interactions of
mesons and baryons.

The full theory is QCD, but the relation between the two theories (and
the degrees of freedom) is non-perturbative.

χPT has parameters that are fit to experiment. Has been enormously
useful.

Standard Model — don’t know the more fundamental theory, and we
all hope there is one.

Can use EFT ideas to parameterize new physics in terms of a few
operators in studying, for example, precision electroweak
measurements.
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Reasons for using EFT

Every theory is an effective theory: Can compute in the standard
model, even if there are new interactions at (not much) higher
energies.

Greatly simplifies the calculation by only including the relevant
interactions: Gives an explicit power counting estimate for the
interactions.

Deal with only one scale at a time: For example the B meson
decay rate depends on MW , mb and ΛQCD, and one can get
horribly complicated functions of the ratios of these scales. In an
EFT, deal with only one scale at a time, so there are no functions,
only constants.
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Makes symmetries manifest: QCD has spontaneously broken
chiral symmetry, which is manifest in the chiral Lagrangian, and
heavy quark spin-flavor symmetry which is manifest in HQET.
These symmetries are only true for certain limits of QCD, and so
are hidden in the QCD Lagrangian.

b ↑, b ↓, c ↑, c ↓

Sum logs: Use renormalization group improved perturbation
theory. The running of constants is not small, e.g.

αs(MZ ) ∼ 0.118, αs(mb) ∼ 0.22.

Fixed order perturbation theory breaks down. Sum logs of the
ratios of scales (such as MZ/mb).
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Efficient way to characterize new physics: Can include the effects
of new physics in terms of higher dimension operators. All the
information about the dynamics is encoded in the coefficients.
[This also shows it is difficult to discover new physics using
low-energy measurements.]

Include non-perturbative effects: Can include ΛQCD/m corrections
in a systematic way through matrix elements of higher dimension
operators. The perturbative corrections and power corrections are
tied together. [Renormalons]
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Dimensional Analysis

Effective Lagrangian (neglect topological terms)

L =
∑

ciOi =
∑

LD

is a sum of local, gauge and Lorentz invariant operators.

The functional integral is ∫
Dφ eiS

so S is dimensionless.
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Kinetic terms:

S =

∫
ddx ψ̄ i /D ψ, S =

∫
ddx

1
2
∂µφ∂

µφ

so
0 = −d + 2 [ψ] + 1, 0 = −d + 2 [φ] + 2

Dimensions given by

[φ] = (d − 2)/2, [ψ] = (d − 1)/2, [D] = 1, [gAµ] = 1

Field strength Fµν = ∂µAν − ∂νAµ + . . . so Aµ has the same dimension
as a scalar field.

[g] = 1− (d − 2)/2 = (4− d)/2
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In d = 4,

[φ] = 1, [ψ] = 3/2, [Aµ] = 1, [D] = 1, [g] = 0

Only Lorentz invariant renormalizable interactions (with D ≤ 4) are

D = 0 : 1
D = 1 : φ

D = 2 : φ2

D = 3 : φ3, ψ̄ψ

D = 4 : φψ̄ψ, φ4

and kinetic terms which include gauge interactions.
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Renormalizable interactions have coefficients with mass dim ≥ 0.

In d = 2,

[φ] = 0, [ψ] = 1/2, [Aµ] = 0, [D] = 1, [g] = 1

so an arbitrary potential V (φ) is renormalizable. Also
(
ψ̄ψ
)2 is

renormalizable.

In d = 6,

[φ] = 2, [ψ] = 5/2, [Aµ] = 2, [D] = 1, [g] = −1

Only allowed interaction is φ3.
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What Fields to use for EFT?
Not always obvious: Low energy QCD described in terms of meson
fields.

NRQCD/NRQED and SCET: Naive guess does not work. Need
multiple gluon fields.

The Sine-Gordon model is the massive Thirring model.
Two theories in 1+1 dimensions

L =
1
2
∂µφ∂

µφ+
α

β2 cosβφ, L = ψ̄
(
i /∂ −m

)
ψ − 1

2
g
(
ψ̄γµψ

)2
,

β2

4π
=

1
1 + g/π

.
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Effective Lagrangian:

LD =
∑

D

OD

MD−d

so in d = 4,

Left = LD≤4 +
O5

M
+

O6

M2 + . . .

An infinite number of terms (and parameters)
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Power Counting

If one works at some typical momentum scale p, and neglects terms of
dimension D and higher, then the error in the amplitudes is of order( p

M

)D−4

A non-renormalizable theory is just as good as a renormalizable theory
for computations, provided one is satisfied with a finite accuracy.

Usual renormalizable case given by taking M →∞.
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Photon-Photon Scattering

(a) (b)

L = −1
4

FµνFµν +
α2

m4
e

[
c1 (FµνFµν)2 + c2

(
Fµν F̃µν

)2
]
.

(Terms with only three field strengths are forbidden by charge
conjugation symmetry.)

e4 from vertices, and 1/16π2 from the loop.
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An explicit computation gives

c1 =
1
90
, c2 =

7
90
.

Scattering amplitude

A ∼ α2ω4

m4
e

and

σ ∼
(
α2ω4

m4
e

)2 1
ω2

1
16π

∼ α4ω6

16πm8
e
× 15568

22275

A ∝ 1
m4

e

determined by the operator dimension.
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Proton Decay

The lowest dimension operator in the standard model which violates
baryon number is dimension 6. Natural explanation of baryon number
conservation.

L ∼ qqql
M2

G

This gives the proton decay rate p → e+π0 as

Γ ∼
m5

p

16πM4
G

or

τ ∼
(

MG

1015 GeV

)4

× 1030 years
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Neutrino Masses

The lowest dimension operator in the standard model which gives a
neutrino mass is dimension five,

L ∼ (H†L)(H†L)

MS

and violates lepton number.

This gives a Majorana neutrino mass of (v ∼ 246 GeV)

mν ∼
v2

MS

or a seesaw scale of 6× 1015 GeV for mν ∼ 10−2 eV.

Absolute scale of masses not known. Only ∆m2 measured.
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Rayleigh Scattering

Scattering of light from atoms

L = ψ†
(

i∂t −
p2

2M

)
ψ + a3

0 ψ
†ψ
(

c1E2 + c2B2
)

A ∼ ci a3
0 ω

2

σ ∝ a6
0 ω

4.

Scattering goes as the fourth power of the frequency, so blue light is
scattered about 16 times mores strongly than red.

a3
0 dimensional analysis.
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Low energy weak interactions

W boson interacts with a current:

− ig√
2

Vij q̄i γ
µ PL qj ,

u d

b c

W

The tree-level amplitude is

A =

(
ig√
2

)2

VcbV ∗ud (c̄ γµ PL b)
(
d̄ γν PL u

)( −igµν
p2 −M2

W

)
,

A Manohar (UCSD) 04 Nov 2014 / Vienna 26 / 70



For low momentum transfers, p � MW :

1
p2 −M2

W
= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
,

and retaining only a finite number of terms.

A =
i

M2
W

(
ig√
2

)2

VcbV ∗ud (c̄ γµ PL b)
(
d̄ γµ PL u

)
+O

(
1

M4
W

)
.

L = −4GF√
2

VcbV ∗ud (c̄ γµ PL b)
(
d̄ γµ PL u

)
+O

(
1

M4
W

)
,

GF√
2
≡ g2

8M2
W
.
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Effective Lagrangian for µ decay

L = −4GF√
2

(ē γµ PL νe) (ν̄µ γ
µ PL µ) +O

(
1

M4
W

)
,

Gives the standard result for the muon lifetime at lowest order,

Γµ =
G2

F m5
µ

192π3 f

(
m2

e
m2
µ

)

EFT gives the full dependence on low energy parameters.

f (ρ) = 1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 ln ρ, ρ =
m2

e
m2
µ

The advantages of EFT show up in higher order calculations
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Loops

Gives a contribution∫
d4k

(2π)4
1

k2 −M2
W

1
k2 −m2 ∼

1
M2

W

∫
d4k

(2π)4
1

k2 −m2 ∼
Λ2

M2
W
∼ O (1)

Similarly, a dimension eight operator has vertex k2/M4
W , and gives a

contribution

I′ ∼ 1
M4

W

∫
d4k

k2

k2 −m2 ∼
Λ4

M4
W
∼ O (1)
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Would need to know the entire effective Lagrangian, since all terms are
equally important. The reason for this breakdown is using a cutoff
procedure with a dimensionful parameter Λ.

More generally, need to make sure that dimensionful parameters at the
high scale do not occur in the numerator after evaluating Feynman
diagrams.

In doing weak interactions, one should not have MG or MP appear in
the numerator.

Need a renormalization scheme which maintains the power counting.
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Dimensional Regularization

d = 4− 2ε:

µ2ε
∫

ddk
(2π)d

(
k2)a(

k2 −M2
)b

=
µ2ε

(4π)d/2
(−1)a−bΓ(d/2 + a)Γ(b − a− d/2)

Γ(d/2)Γ(b)

(
M2
)d/2+a+b

Integral defined by analytic continuation.

Convert all integrals to this form using Feynman parameters for the
denominator.
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MS

Need to use a mass independent subtraction scheme such as MS:

µ can only occur in logarithms, so

1
M2

W
µ2ε
∫

ddk
1

k2 −m2 ∼
m2

M2
W

log
µ2

m2 ,

1
M4

W
µ2ε
∫

ddk
k2

k2 −m2 ∼
m4

M4
W

log
µ2

m2 ,

Expanding 1/(k2 −M2
W ) in a power series ensures that there is no

pole for k ∼ MW , and so MW cannot appear in the numerator.

Dimensional regularization is like doing integrals using residues.
Relevant scales given by poles of the denominator.
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Power Counting Formula

Manifest power counting in p/M.

Loop graphs consistent with the power counting, since one can never
get any M ’s in the numerator.

If the vertices have 1/Ma, 1/Mb, etc. then any amplitude (including
loops) will have

1
Ma

1
Mb . . . =

1
Ma+b+...

Correct dimensions due to factors of the low scale in the numerator,
represented generically by p. (Could be a mass)
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Power Counting Formula
Only a finite number of terms to any given order in 1/M.

Order 1/M: L5 at tree level

Order 1/M2: L6 at tree level,
or loop graphs with two insertions of L5.

General power counting result:
you can count the powers of M.
you can count powers of p

Power counting formula for χPT:

A ∼ pr , r = 2L + 2 +
∑

k

nk (k − 2)

where nk is the number of vertices of order pk .
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Toy Model (Integral)
Rather than do an explicit EFT example, look at a simple integral which
illustrates what happens.

Tree-level:

− 1
k2 −M2 = c1

1
M2 + c2

k2

M4 + . . . ci = 1

u d

b c

W

u d

b c
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Toy Model (Integral)

One Loop:

IF =

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)

Integral arises as a one-loop graph in a field theory, has some
couplings in front.

= +

u d

b c
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Expanding does not commute with loop integration
Do the integral exactly in d = 4− 2ε dimensions:

IF = µ2ε
∫

ddk
(2π)d

1
(k2 −m2)(k2 −M2)

=
i

16π2

[
1
ε

+
m2 log(m2/µ2)−M2 log(M2/µ2)

M2 −m2 + 1
]

Relatively simple because only 2 denominators. Three denominators
gives Spence functions (dilogs).

Expand, do the integral term by term, and then sum up the result:

Ieft = µ2ε
∫

ddk
(2π)d

1
(k2 −m2)

[
− 1

M2 −
k2

M4 − . . .
]

=
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]
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Points to Note

Missing the non-analytic terms in M.

The 1/ε terms do not agree, they are cancelled by counterterms
which differ in the full and EFT.

The two theories have different anomalous dimensions.

The term non-analytic in the IR scale, log(m2) agrees in the two
theories. This is the part which must be reproduced in the EFT.

The analytic parts are local, and can be included as matching
contributions to the Lagrangian.

Sum log M2/m2 terms using RG evolution.
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No Non-Analytic Terms in M

log
m2

M2 = log
m2

µ2 − log
M2

µ2

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]
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1/ε terms are different

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]

Each theory has its own counterterms (renormalization).
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Different anomalous dimensions

Full theory:

1
ε

The amplitude has an anomalous dimensions

EFT:

−1
ε

m2

M2 −m2 = −1
ε

m2

M2 −
1
ε

m4

M4 + . . .

Each EFT order in 1/M has its own anomalous dimension.
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Non-analytic Terms in m Agree

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]

The EFT reproduces the complete low-energy limit of the full theory,
including all the dependence on low energy (IR) scales.

If there are multiple IR scales m1,m2, . . ., reproduces the complete
mi/mj dependence.
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Matching

Infinite parts cancelled by counterterms.

The difference between the finite parts of the two results is

IF − Ieft =
i

16π2

[
log

µ2

M2 +
m2 log(µ2/M2)

M2 −m2 +
M2

M2 −m2

]
=

i
16π2

[(
log

µ2

M2 + 1
)

+
m2

M2

(
log

µ2

M2 + 1
)

+ . . .

]
The terms in parentheses are matching coefficients to a coefficient of
order 1, order 1/M2, etc. They are analytic in m.

Note:
log

m
M
→ − log

M
µ

+ log
m
µ

with the first part in the matching, and the second part in the EFT.
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Summing Large Logs

The full theory has log M2/m2 terms. At higher orders, get

αn
s logn M2/m2

If M � m, perturbation theory breaks down as αs log M/m ∼ 1.
Full theory involves two widely separated scales.
Calculations become very difficult at higher orders.

Divide one calculation into two calculations, each involving one scale.
Each calculation much easer since it involves a single scale
For the matching to be accurate, want µ = M.
For the EFT to be accurate, want µ = m.
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For the matching use µ = M. log M/µ small

For the EFT calculation, pick µ = m. log m/µ small

Use the EFT renormalization group to convert the Lagrangian
from µ = M to µ = m.

RG perturbation theory valid as long as αs small. Do not need
αs log to be small.
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RG Improved Perturbation Theory

µ
d

dµ
c =

[
g2

16π2γ0 +O
(

g4

(16π2)2

)]
c

µ
d

dµ
g = −b0

g3

16π2 +O
(

g5

(16π2)2

)

with solution

c(µ1)

c(µ2)
=

[
α(µ1)

α(µ2)

]−γ0/(2b0)

, α =
g2

4π

Correction can be big (factors of two or more), but perturbation theory
is valid as long as α/(4π) is small.
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Radiative Corrections: Operator Mixing

L = −4GF√
2

VcbV ∗ud (c1O1 + c2O2)

O1 = (c̄α γµ PL bα)
(

d̄β γµ PL uβ
)

c1 = 1 +O (αs)

O2 = (c̄α γµ PL bβ)
(

d̄β γµ PL uα
)

c2 = 0 +O (αs)

µ
d

dµ

[
c1
c2

]
=
αs

4π

[
γ11 γ12
γ21 γ22

] [
c1
c2

]
Can integrate by finding the eigenvalues and eigenvectors of γ.
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Matching

IM =
i

16π2

[(
log

µ2

M2 + 1
)

+
m2

M2

(
log

µ2

M2 + 1
)

+ . . .

]
We computed the matching from IF − Ieft .

But there is an easier way which does not involve computing the two
scale integral IF .

IM is analytic in m. Therefore, we can compute

IF (m = 0) =

∫
ddk

(2π)d
1

(k2)(k2 −M2)

∂IF
∂m2 (m = 0) =

∫
ddk

(2π)d
1

(k2)2(k2 −M2)

Keep only the finite terms. More and more IR divergent.
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Summary of EFT procedure

1 Write down the most general EFT Lagrangian with coefficients ci .
2 Compute the EFT Lagrangian ci(µ = M) by expanding in 1/M

around M =∞.
3 Compute the EFT coefficients δci by matching:

Expand in powers of m around m = 0
4 RG improve the EFT result by running ci from µ = M to µ = m.
5 Compute EFT graphs in terms of ci(µ = m) using Left .

We have added the two contributions from expanding in 1/M and
expanding in m.

1
k2 −m2

1
k2 −M2

This gives IF , not 2IF .
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Decoupling of Heavy Particles
Heavy particles decouple from low energy physics.
Obvious?

Not explicit in a mass independent scheme such as MS.

p p

i
e2

2π2

(
pµpν − p2gµν

)[ 1
6ε
−
∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]

and we want to look at p2 � m2.

The graph is UV divergent.
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Momentum Subtraction Scheme
Note that renormalization involves doing the integrals, and then
performing a subtraction using some scheme to render the amplitudes
finite.

Subtract the value of the graph at the Euclidean momentum point
p2 = −M2 (the 1/ε drops out)

−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

m2 + M2x(1− x)

]
.

β (e) = −e
2

M
d

dM
e2

2π2

[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

m2 + M2x(1− x)

]

=
e3

2π2

∫ 1

0
dx x(1− x)

M2x(1− x)

m2 + M2x(1− x)
.
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m� M (light fermion):

β (e) ≈ e3

2π2

∫ 1

0
dx x(1− x) =

e3

12π2 .

M � m (heavy fermion):

β (e) ≈ e3

2π2

∫ 1

0
dx x(1− x)

M2x(1− x)

m2 =
e3

60π2
M2

m2 .
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cross-over
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In the MS scheme:

−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]
.

β (e) = −e
2
µ

d
dµ

e2

2π2

[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]

=
e3

2π2

∫ 1

0
dx x(1− x) =

e3

12π2 ,

Is the first term in the β-function scheme independent?
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−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2

µ2

]
,

Large logs cancel the wrong β-function contributions.

Explicitly integrate out heavy particles and go to an EFT.

Full theory: Includes fermion with mass m.

EFT: drop the heavy fermion (it no longer contributes to β)

A Manohar (UCSD) 04 Nov 2014 / Vienna 55 / 70



p p

Present in theory above m, but not in theory below m. Assume that
p � m, so

∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

=

∫ 1

0
dx x(1− x)

[
log

m2

µ2 +
p2x(1− x)

m2 + . . .

]
=

1
6

log
m2

µ2 +
p2

30m2 + . . .
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So in theory above m:

i
e2

2π2

(
pµpν − p2gµν

)[ 1
6ε
− 1

6
log

m2

µ2 −
p2

30m2 + . . .

]
+ c.t .

Counterterm cancels 1/ε term (and also contributes to the β function).

i
e2

2π2

(
pµpν − p2gµν

)[
−1

6
log

m2

µ2 −
p2

30m2 + . . .

]
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The log term gives

Z = 1− e2

12π2 log
m2

µ2

so that in the effective theory,

1
e2

L(µ)
=

1
e2

H(µ)

[
1−

e2
H(µ)

12π2 log
m2

µ2

]

One usually integrates out heavy fermions at µ = m, so that (at one
loop), the coupling constant has no matching correction.
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The p2 term gives the dimension six operator

−1
4

e2

2π2
1

30m2 Fµν∂2Fµν

and so on.

Even if the structure of the graphs is the same in the full and effective
theories, one still needs to compute the difference to compute possible
matching corrections, because the integrals need not have the same
value. (next example)

This difference is independent of IR physics, since both theories have
the same IR behavior, so the matching corrections are IR finite.
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Note that nothing discontinuous is happening to any physical quantity
at m.

We have changed our description of the theory from the full theory
including m to an effective theory without m. By construction, the EFT
gives the same amplitude as the full theory, so the amplitudes are
continuous through m.

All m dependence in the effective theory is manifest through the
explicit 1/m factors and through logarithmic dependence in the
matching coefficients (in eL).
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Have to treat the p2/m2 term as a perturbation

Otherwise

1
p2 − e2p4/(60π2m2)

has a pole at

p2 =
60π2m2

e2 =
15πm2

α

This new pole will violate the power counting. Also can get ghosts from
quantizing a higher derivative theory.
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SMEFT

A model independent way to include the effects of new physics. The
assumption is that there are no new particles at the electroweak scale.
This is what the data indicates.

Fields are the SM fields. 〈H〉 breaks SU(2)× U(1).

L = LSM +
L5

Λ
+

L6

Λ2 + . . .

Need to include the + . . .. Cannot just stop at a given dimension.
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SMEFT: dim 5

L5 = crs

(
H† i liαr

)(
H† j ljβs

)
εαβ

i : SU(2) index
α : Lorentz index
r : flavor index

Violates lepton number ∆L = 2. The scale is the seesaw scale and is
high. Not relevant for Higgs physics at LHC.
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SMEFT: dim 6
Lots of operators at dimension six. 59 operators that preserve baryon
number, and 4/5 that violate baryon number.
Buchmuller and Wyler, Nucl.Phys. B268 (1986) 621

Grzadkowski et al. JHEP 1010 (2010) 085

Flavor indices run over ng = 3 values.
2499 baryon number conserving operators, including flavor indices.
1350 CP-even and 1149 CP-odd operators.

Notation:

L : qr , lr , R : ur , dr , er r = 1, . . . ,ng = 3

Hj , H̃j = εijH† j

Xµν : GA
µν , W I

µν ,Bµν
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Fierz Identities
Write down all possible gauge invariant operators of dimension 6.

Use Fierz identities:

ψ1γ
µPLψ2 ψ3γ

µPLψ4 = ψ3γ
µPLψ2 ψ1γ

µPLψ4

So in the four-quark operators:

qαi
p γ

µqrαi qβj
s γµqtβj

qαi
p γ

µqrβi qβj
s γµqtαj → qβj

s γ
µqrβi qαi

p γµqtαj

qαi
p γ

µqrβj qβj
s γµqtαi → qβj

s γ
µqrβj qαi

p γµqtαi

Two independent contractions:

Q(1)
qq = qpγ

µqr qsγµqt

Q(3)
qq = qpγ

µτ Iqr qsγµτ
Iqt
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Equations of Motion

0 = D2Ha + m2Ha + 2λ(H†H)Ha + qbY †u uεba + dYdqa + eYela

i /Dqa = Y †u uH̃a + Y †d dHa i /Du = YuqaH̃†a
i /Dd = YdqaH†a i /Dla = Y †e eHa

i /De = YelaH†a DαFαβ = gjβ

EH� = (H†H)(H†D2H + D2H†H)

= −(H†H)(m2H†H + 2λ(H†H)2 + qbY †u uεbaH†a + dYdqaH†a
+ eYelaH†a + h.c.)

= −2m2(H†H)2 − 4λQH

−
(

[Y †u ]rs[QuH ]rs + [Y †d ]rs[QdH ]rs + [Y †e ]rs[QeH ]rs + h.c.
)
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Equations of Motion

Can use classical equations of motion in a quantum field theory.

Green’s functions can change, but the S-matrix does not.

There are no quantum corrections needed.

The two versions of the operator do not agree diagram by diagram.
Only the total contribution to the S-matrix is unchanged.
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Dimension Six Operators
Buchmüller and Wyler, Nucl.Phys. B268 (1986) 621

Grzadkowski et al. JHEP 1010 (2010) 085

X 3 H6 and H4D2 ψ2H3

QG f ABCGAν
µ GBρ

ν GCµ
ρ QH (H†H)3 QeH (H†H)(̄lper H)

QG̃ f ABCG̃Aν
µ GBρ

ν GCµ
ρ QH� (H†H)�(H†H) QuH (H†H)(q̄pur H̃)

QW εIJK W Iν
µ W Jρ

ν W Kµ
ρ QHD

(
H†DµH

)? (H†DµH
)

QdH (H†H)(q̄pdr H)

QW̃ εIJK W̃ Iν
µ W Jρ

ν W Kµ
ρ

X 2H2 ψ2XH ψ2H2D

QHG H†H GA
µνGAµν QeW (̄lpσµνer )τ IHW I

µν Q(1)
Hl (H†i

↔
Dµ H)(̄lpγµlr )

QHG̃ H†H G̃A
µνGAµν QeB (̄lpσµνer )HBµν Q(3)

Hl (H†i
↔
D I
µ H)(̄lpτ Iγµlr )

QHW H†H W I
µνW Iµν QuG (q̄pσ

µνT Aur )H̃ GA
µν QHe (H†i

↔
Dµ H)(ēpγ

µer )

QHW̃ H†H W̃ I
µνW Iµν QuW (q̄pσ

µνur )τ IH̃ W I
µν Q(1)

Hq (H†i
↔
Dµ H)(q̄pγ

µqr )

QHB H†H BµνBµν QuB (q̄pσ
µνur )H̃ Bµν Q(3)

Hq (H†i
↔
D I
µ H)(q̄pτ

Iγµqr )

QHB̃ H†H B̃µνBµν QdG (q̄pσ
µνT Adr )H GA

µν QHu (H†i
↔
Dµ H)(ūpγ

µur )

QHWB H†τ IH W I
µνBµν QdW (q̄pσ

µνdr )τ IH W I
µν QHd (H†i

↔
Dµ H)(d̄pγ

µdr )

QHW̃B H†τ IH W̃ I
µνBµν QdB (q̄pσ

µνdr )H Bµν QHud i(H̃†DµH)(ūpγ
µdr )

A Manohar (UCSD) 04 Nov 2014 / Vienna 68 / 70



(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (̄lpγµlr )(̄lsγµlt ) Qee (ēpγµer )(ēsγ
µet ) Qle (̄lpγµlr )(ēsγ

µet )

Q(1)
qq (q̄pγµqr )(q̄sγ

µqt ) Quu (ūpγµur )(ūsγ
µut ) Qlu (̄lpγµlr )(ūsγ

µut )

Q(3)
qq (q̄pγµτ

Iqr )(q̄sγ
µτ Iqt ) Qdd (d̄pγµdr )(d̄sγ

µdt ) Qld (̄lpγµlr )(d̄sγ
µdt )

Q(1)
lq (̄lpγµlr )(q̄sγ

µqt ) Qeu (ēpγµer )(ūsγ
µut ) Qqe (q̄pγµqr )(ēsγ

µet )

Q(3)
lq (̄lpγµτ I lr )(q̄sγ

µτ Iqt ) Qed (ēpγµer )(d̄sγ
µdt ) Q(1)

qu (q̄pγµqr )(ūsγ
µut )

Q(1)
ud (ūpγµur )(d̄sγ

µdt ) Q(8)
qu (q̄pγµT Aqr )(ūsγ

µT Aut )

Q(8)
ud (ūpγµT Aur )(d̄sγ

µT Adt ) Q(1)
qd (q̄pγµqr )(d̄sγ

µdt )

Q(8)
qd (q̄pγµT Aqr )(d̄sγ

µT Adt )

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (̄l jper )(d̄sqj
t ) Qduq εαβγεjk

[
(dαp )T Cuβr

] [
(qγj

s )T Clkt
]

Q(1)
quqd (q̄j

pur )εjk (q̄k
s dt ) Qqqu εαβγεjk

[
(qαj

p )T Cqβk
r

] [
(uγs )T Cet

]
Q(8)

quqd (q̄j
pT Aur )εjk (q̄k

s T Adt ) Q(1)
qqq εαβγεjkεmn

[
(qαj

p )T Cqβk
r

] [
(qγm

s )T Clnt
]

Q(1)
lequ (̄l jper )εjk (q̄k

s ut ) Q(3)
qqq εαβγ(τ Iε)jk (τ Iε)mn

[
(qαj

p )T Cqβk
r

] [
(qγm

s )T Clnt
]

Q(3)
lequ (̄l jpσµνer )εjk (q̄k

sσ
µνut ) Qduu εαβγ

[
(dαp )T Cuβr

] [
(uγs )T Cet

]

2499 independent coefficients: 1350 CP-even and 1149 CP-odd. Over
150 operators if you break them up into flavor representations.

Eight classes: X 3, H6, H4D2, X 2H2, ψ2H3, ψ2XH, ψ2H2D, ψ4.
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In the broken phase:

H =

[
ϕ+

1√
2

(
v + h + ϕ0)

]

X 2H2 : h→ γγ,h→ gg

ψ2XH : l r σµν es Fµν

ψ2H3 :
higgs coupling

mass
=

3
1
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