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General Introduction 
 

 

 Understanding fermion masses and mixings constitutes one of the most 
important problems of flavor physics. 

 

Quark masses:  
mu, md ~ few MeV, ms~90 MeV, mc~ 1.5 GeV, mb~ 4.5GeV, mt~ 170GeV.  
 
Neutrino masses:  

mν1≤ 10-2 eV, mν2~10-2 eV,  mν3~ 10-1 eV  (mR ~ 1015 GeV). 
 
 Δm2

solar ~7.5x 10-5 eV2, Δm2
atm ~2.5x 10-3 eV2 

 
Data from Planck satellite combined with other cosmological data limit  
∑ < 0.23 eV at 95 % C.L. 

 
   Quark mixing angles: s12~0.22,    s23~0.04,    s13~0.0035 

 
   Neutrino mixing angles: s12~0.55,    s23~0.69,    s13~0.15  
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 Mysteries associated: 
 

1.Fermion masses span around 13 (if neutrinos are Dirac particles) or 25-
27 (if neutrinos are Majorana particles) orders of magnitudes. Also, quark 
and neutrino masses show different hierarchy, latter not settled. 

 

2.Similarly, the quark mixing angles exhibit a clear cut hierarchy, this is 
absent in the case of neutrinos. 

 
 

 Several  ideas such as Grand Unified Theories, extra dimensions, horizontal 
symmetries, etc. have  been  considered  to  understand  mass  generation  

problem 
 

 Unfortunately, we do not have any viable theoretical framework from the 
`top-down’ perspective to describe the quark and lepton masses and 

mixings in a simplified and unified manner. 
 
 This necessitates examining the issues from a ‘bottom-up’ perspective. 

 
 To this end, texture specific mass matrices were initiated by Fritzsch (PLB 

1977, 1978). Proposed ansatze based on some plausible arguments (to 

enhance predictability), later christened as texture specific mass matrices.                                                                            
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Fermion mass matrices in the SM 

 

 The fermion masses, mixings and CP violation are encoded in the couplings 
of Higgs and fermions.  

 
 Within the framework of SM, the lepton mass matrices arise from the 

Higgs-fermion couplings, 

  

                    
 Mass matrices are related to Yukawa couplings as 

                                  
 

 In the SM with three generations, these couplings or mass matrices are 
completely arbitrary and are expressed in form of complex 3×3 matrices 
(with 36 real free parameters). 

 
 In the SM and its extensions where right handed quarks are singlets, mass 

matrices can be considered to be Hermitian using Polar Decomposition 

theorem (M=HX), therefore reducing the number of free parameters from 
36 to 18. 
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Texture Specific Mass matrices 
 

 To further enhance the predictability by reducing the number of free 
parameters, in texture specific mass matrices zeros are put in. The original 
texture 6 zero Fritzsch quark mass matrices are given by  

 

          
 A particular texture structure is said to be texture ‘n’ zero if it has ‘n’ 

number of non trivial zeros i.e. if the sum of number of diagonal zeros and 
half the number of symmetrically placed off diagonal zeros is ‘n’.  
 

 The conditions of hermiticity, hierarchy and textures are preserved when  

one  scales  down  from  GUT scale  to  low  energy scale. 

      [Raymond,Roberts,Ross,Nucl.Phys.B(1993)]  
 
 Reviews on textures  

1.[Fritzsch,Xing, Prog. Par. Nucl. Phys. 45, 1(2000); Xing IJMPA 19,1 
(2004)]  

2.[Gupta and Ahuja , IJMPA 27, 1230033 (2012)]  
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Weak Basis (WB) transformations 
 
 

 Within the framework of SM and its extensions, one has the freedom to 

make unitary transformations, referred to as Weak Basis (WB) 

transformations under which the quark mass matrices change but the 
gauge currents remain diagonal and real.  
 

[Branco et. al.,PLB.82,683 (1999); Fritzsch  et.al.,PLB 413, 396(1997); 
Nucl. Phys. B 556, 49(1999)]  
 

 
 In particular, one can find a unitary matrix W transforming  

MU −›W+ MU W and MD −›W+ MD W leading to 
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 Can be easily checked that such transformations preserve the hermiticity 
of the mass matrices.  

 
 

 The CKM matrix is independent of WB transformations.  
 

  are the respective diagonalizing transformations of 

. 

 For either MU and MD one can obtain  
 

 Using this result, the mixing matrix for the WB transformed quark mass 
matrices can be given as     
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Natural Mass Matrices 
 

 
 In yet another approach, advocated by Peccei and Wang 

[Peccei,Wang,PRD53(1996)], the concept of `natural mass matrices' has 

been introduced to formulate viable set of mass matrices at the Grand 

Unified Theories (GUTs) as well as the MZ scale.  
 

 Essentially, this approach, in order to avoid fine tuning of the elements of 

the mass matrices, involves reproducing the hierarchical nature of the 
mixing angles by constraining the parameter space available to the 
elements of the mass matrices. 

 
 This concept of naturalness can be incorporated on mass matrices by 

considering the following hierarchy for the elements of the matrices 

[Gupta et. al.,IJMPA 29,144405 (2014)]     
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Some Essential Details pertaining to Natural Mass Matrices 
 

Consider the CKM matrix in the Wolfenstein parametrization 
 

 
 

The above matrix can approximately be written as 
 

                
 

To translate the constraints of the above matrix on the mass matrices, we 

consider a basis in which either of the two mass matrices MU and MD is 
diagonal. For example, in case we choose MD to be diagonal and 
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Keeping in mind the relation  and using above  
equations, one gets  

 

     
 

Since mu<<mc<<mt , one obtains 
 

 
 
  

It is interesting to note that the elements (1,3) and (3,1) in the above 

matrix are larger than the (1,2) and (2,1) elements. However, we still have 
the freedom of WB transformations. Noting that WB transformations do not 
affect the hierarchy of elements of mass matrices, one can eliminate the 
(1,3) and (3,1) elements in the above matrix. In the matrix so obtained, 

one can easily see that the elements of the mass matrices satisfy the 
natural hierarchy, 
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Issues associated with the three approaches 

 
 

Texture Specific Mass matrices 
 

 Despite showing considerable promise, in this approach the possibility to 
arrive at a unique set of viable quark mass matrices emerges only by 

carrying out an exhaustive case by case analysis of all possible texture zero 
mass matrices. 

 
 

Weak Basis Transformations 
 

 Lead to a large number of viable texture zero matrices due to 

unconstrained parameter space of their elements, therefore, restricting  the 
use of such mass matrices for providing vital clues for developing viable 
theories of flavor physics. 

 
 

Natural Mass matrices 
 

 This idea constrains the elements of the mass matrices, yet it again does 

not yield a finite set of viable mass matrices. 
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Relationship between mass matrices and mixing 
matrices 

 

    A general mass matrix, Mk where k = U, D can be expressed as 

                     k

r

kkk PMQM    . 

   The real matrix 
r

kM   is given by  

       


 kkk

r

k PMQM  

 

    This matrix 
r

kM can be diagonalized by orthogonal transformation, 

 

                        )( k

r

kk

diag

k OMOM


   

                                       
)( k

r

kkkk OPMPO



 

 where        
),,( 321 mmmdiagM

diag

k   

 
The mixing matrix, in terms of the matrices used for diagonalizing the mass 
matrices is expressed as 

             DUU

T

UCKM OPPOV   
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Viability of mass matrices through mixing 
matrices 

 
 The larger CKM picture remains intact. Shown by us (Gupta et al., IJMPA 

2011) that the NP effects in the CKM paradigm if at all these are present, 

then they are not more than 10%.  
 

 Viability of mass matrices is ensured by constructing CKM matrix and then 
examining its compatibility with the CKM matrix available in the literature. 

 
 Usually, one compares with the CKM matrix given by PDG, UTfit, HFAG or 

CKMFitter, however these groups arrive at a matrix by invoking global fits 

which include inputs related to several parameters. 
 

 Since the mass matrices are constructed with the assumptions of strict 

unitarity, therefore it is desirable to examine the viability of the 
corresponding CKM matrix with a unitarity based CKM matrix calculated 
using minimal input.  
 

 Further, as there is a significant discrepancy between the exclusive and 
inclusive values of Vub, therefore desirable to finds its unitarity driven value.  
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Mixing matrices and unitarity 
 

 Firstly, we would like to discuss the impact of a very precisely known Sin2 

along with unitarity on the CKM element Vub and the CP violating phase δ. 
   [Gupta et al.,Phys. Lett B647 (2007) 394]. 
 

 

 The unitarity of the CKM matrix and the unitarity triangles have played an 
important role in establishing the CKM paradigm as well as the fact that a 
single CP violating phase δ is largely responsible for understanding the CP 

violation in the K and B sector. 
 

                     
 

 The unitarity of CKM matrix implies nine relations (3 diagonal & 6 non 

diagonal). The non diagonal ones can be expressed as six unitarity triangles 
in the complex plane.  
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                                  The `db’ unitarity triangle 

                              

The angles of the ‘db’ triangle (derived in PDG parameterization) 
               

      

























cos)sc(ssc-)scs(sc

sinssc
tan

VV 

VV -
 arg  

2

23

2

 23 13 12 12

2

13

2

 12

2

 12 23 23

13 12 121-

tb td

cb cd

*

*

 

             

 



























cosssscc

sinss
tan

VV 

VV -
 arg  

 23 12 13 23 12

23 121-

ub ud

tb td

*

*



























coscsssc

sincs
tan

VV 

VV -
 arg  

 23 12 13 23 12

23 121-

cb cd

ub ud

*

*



17 
 

Using above equations, one can find the relationship between the CP 
violating phase δ and the experimentally well determined angle β 

      131212 sscA  ,    )(
2

13

2

12

2

122323 scsscB  ,    
2

23

2

23 scC      

Re-expressed as 

)sin(sin
1312

23121 
sc

ss

 
Also written as  

  
1312

2312

sin

)sin(

sc

ss







  

 
Using ++ = ,  rewritten as 

   



sin

sin

12

2312
13

c

ss
s 

 
 

Lower bound on s13 

12

2312
13

sin

c

ss
s


                 





tan)(

tan)(

2
tan

22222

ACB

CABAA








18 
 

 
 

 
 

 

 
Vub versus CP violating phase   
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Figure reveals several interesting points: 
 

For  Vub > 0.00355,  shows a smooth decline and range gets narrower. 

 
For   Vub < 0.00355, sharp broadening of .  

 

1  range of inclusive Vub restricts  to 23-39 . 

 
Conclusions sharpened further using unitarity based relations: 

Yields lower bound Vub  0.0035. 

 

Obtained value of  Vub = 0.00350.0002 ► a rigorous prediction of unitarity 

which is quite independent of the variation (20%) of α ► agrees with latest 

exclusive Vub ► brings out so called ‘tension’ faced by inclusive Vub. 

 
Closure property of triangles yield  = 70.86.1. 

 
Using above mentioned  and Vub, along with precisely measured Vus and 

Vcb, the CKM matrix has been constructed  
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Unique texture for quark mass matrices 
 

Inputs pertaining to the analysis 
 

 The quark masses and mass ratios at MZ scale are 

 

 

   
 The latest values of quark mixing parameters are: 

 

 
 

 The parameters related to the phases of the mass matrices have been 

given full variation from 0 to 2π. The free parameters EU, ED, DU and DD 

have also been given wide variation in conformity with the condition of 

naturalness as well as to ensure that the elements of orthogonal 
diagonalizing transformations should remain real. 
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Essentials of the analysis 
 

 Starting with the most general mass matrices we have made an attempt to 
explore the possibility of obtaining a finite set of viable texture specific 
mass matrices formulated by invoking weak basis transformations as 
well as the constraints imposed due to naturalness. 

 
 Following Hermitian mass matrices can be considered to be the most 

general ones 

                         
 

 As a next step, to incorporate the concept of WB transformations one can 

introduce texture zeros in these matrices using a unitary matrix W  
 

                   
The above matrices can be characterized as texture 2 zero quark mass 
matrices. 
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 The matrix W can be a permutation matrix P giving rise to other possible 
structures for MU and MD wherein instead of zeros being in the (1,3) and 
(3,1) positions, these could be in either the (1,2) and (2,1) or (2,3) and 
(3,2) position.  

 
 These different mass matrices, however, yield the same Cabibbo-

Kobayashi-Maskawa (CKM) matrix, therefore while presenting the results of 

the analysis, it is sufficient to discuss any one of these matrices.   
 

 Further, in order to incorporate the condition of `naturalness' on these 

mass matrices, one can consider the following hierarchy for the elements of 
the matrices 
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Numerical analysis 
 

 Using the relation between mass matrices and mixing matrix, the resultant 
CKM matrix comes out to be 

 

            
 
 Fully compatible with the unitarity based CKM matrix as well as with the 

one given by PDG. 

 
 Interesting to examine the parameter space available to various elements 

of matrices MU and MD 
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 Curiously, the above matrices reveal that their (1,1) element (EU, ED) is 

quite small in comparison with the other non zero elements. 
 
 Can be confirmed using the following figures 

 

          
 

 The parameter EU assumes quite small values, < 0.0014 GeV. 
Also both Vus and Sin2β seem independent of the range of EU, indicating the 
redundancy of element EU.  
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 Similar conclusions can be drawn from ED versus the CKM matrix elements 
plots. 
 

 Ignoring the elements EU and ED of the mass matrices, one gets MU and MD 

as 

                 
 

 
 Carrying out a similar analysis for these matrices, the corresponding CKM 

matrix comes out to be 
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 Interesting to examine how the parameter space of the elements of the 

mass matrices gets changed on going from texture 2 to texture 4 zero. To 
this end, reconstructing MU and MD we get 

 
 

 
 

           
 

 Similar to the case of texture 2 zero mass matrices, using the WB 
transformations, apart from the matrices given above, one gets several 
other possible texture 4 zero mass matrices which may or may not be 

related through permutations.  
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 Based on whether the matrices are related through permutations or not, all 

possible texture 4 zero mass matrices can be classified as shown in Table. 
The matrices which are not related to each other through permutations 

have been put into different categories. 
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 For the matrices belonging to category 1, considering both MU and MD as 1a 

type, we have already shown that these are viable and explain the quark 
mixing data quite well. The other matrices of this category, related through 
permutation matrix, also yield similar results.  
 

 For the matrices belonging to category 4, one finds that interestingly these 
are not viable as in all these matrices one of the generations gets 
decoupled from the other two.  

 
 Further, for categories 2 and 3, again a similar analysis reveals that the 

matrices of these classes are also not viable as can be understood from the 

following CKM matrices obtained for categories 2 and 3 respectively, e.g., 

 
 
 These matrices show no compatibility with the latest quark mixing data. 
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 Can be further verified from graphs plotted for categories 2 and 3 

respectively.  
 

   
 



30 
 

 
 

 The plotted values of element Vcb have no overlap with its experimental 
range, therefore, these matrices can be considered to be non viable. 
 

 The above discussion clearly brings out that only the texture 4 zero quark 

mass matrices belonging to category 1 of the table are found to be viable. 
Interestingly, the matrices considered here are quite similar to the original 
Fritzsch ansatze, except for their (2,2) element being non zero for both MU 

and MD. 
 

 In case one considers more than 4 texture zero mass matrices, we find that 

the present data rules out texture 5 and 6 zero quark mass matrices, 
confirming our earlier conclusions in this regard. 
 

 In conclusion, we would like to state that texture 4 zero quark mass 

matrices, similar to the original Fritzsch ansatze, and its permutations seem 
to be a unique finite set of quark mass matrices which are in agreement 
with the present mixing data.  
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Texture specific lepton mass matrices 
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   SO(10) inspired texture specific mass matrices 
 
 SO(10) GUT is probably the best motivated candidate for the unification of 

strong and electroweak interactions. 
 

 It unifies the family of fermions: includes SU(4)c  quark-lepton symmetry 
and left-right (LR) symmetry. 
 

 It includes the right handed neutrinos and through the Seesaw mechanism 

offers an appealing explanation for the smallness of neutrino masses. 
 
 Symmetry breaking and fermion mass matrices in SO(10) 

 
 Since SO(10) is a rank 5 group and SM gauge group has rank 4, so there 

are different possible chains of symmetry breaking. 

 
 Chain 1: SO(10) ─>SU(5) x U(1) ─>SU(5) ─> Gstd  (ruled out by 

experiments) 
 

 Chain 2 : SO(10) ─> SU(4)cxSU(2)LxSU(2)R(GPS)  
                               ─> SU(3)c SU(2)L SU(2)R U(1)B-L (GLR) 
                               ─> Gstd  
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 Since the fermions of each generation belong to the 16 dimensional spinor 

representation of SO(10), the Higgs scalars which can couple to the 
fermions are contained in the product 16 x 16.  
 

 Since 16 x 16 = 10S + 120A + 126S the fermion masses are generated when 

the Higgs fields of 10, 120, 126 dimensional representations of SO(10) 
develop non-vanishing VEVs. 

 

 16 = (4,2,1) + (4,1,2) and (4,2,1)  (4, 1, 2) = (15, 2, 2) + (1, 2, 2) , 
the Dirac masses for quarks and leptons are generated when neutral  
components in a (1,2,2) multiplet in 10, (1,2,2) and (15,2,2) in 120 and 

(15,2,2) in 126 dimensional representations acquire non vanishing VEVs. 
 

 The (10,3,1) and (10,1,3) components in 126 dimensional Higgs break the 
SU(2)L and SU(2)R symmetries and hence are responsible for the left and 

right handed Majorana neutrino masses. 
 
 

 
 
 

 



42 
 

 Depending upon the different choices of Higgs, numerous models of SO(10) 
can be constructed leading to various forms of fermion mass matrices. 

 
 However, it can be shown that the most general mass matrices in any 

renormalizable SO(10) model can be given by the relations: 
 

Md = H + F + iG  
 
Mu = r( H +sF + itu G) 

 
Ml = H -3F + itl G 
 

MD = r(H-3sF +itD G) 
 
Mν = rL F – rR MDF

-1MD
T 

 

[Grimus and Kuhbock,hep-ph/0607197] 
[ Joshipura et al,0903.2161]  
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 Md, Mu, Ml, MD, M ν stand for the down, up, charged lepton, dirac and the 
effective neutrino mass matrices respectively. 

 
 Here (G), H, F are complex (anti)symmetric matrices corresponding to 120, 

10, 126 dimensional Higgs respectively and r, s, tl ,tu ,tD , rL ,rR are 
dimensionless complex parameters out of which r, rL , rR can be chosen to 

be real without loss of generality. 
 

 The Yukawa sector in SO(10) involves a large number of free  parameters :  

6 in H; 6 in F; 3 in G, along with r, s, tu, te, tD, rL and rR.  
 

 This implies a total of 22 such parameters for type-II seesaw and 21 

parameters for type-I seesaw.  
 

 Only 18 experimentally observable parameters namely 6 quark masses, 3 
quark mixing angles, 1 CP-violating phase in CKM matrix, 3 charged lepton 

masses, 3 lepton mixing angles and 2 neutrino mass square differences.  
 

 The parameter space of the SO (10) Yukawa sector can be significantly 

reduced by using phenomenological structures for these fermion mass 
matrices. 
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 The "texture zero" approach involving Hermitian mass matrices has been 
very promising, in particular, as shown earlier, texture 4 zero mass 

matrices explain the recent precision experimental data for the quark and 
lepton mixings independently at the electro weak scale. 
 

 Motivated by this idea, we impose the texture 2-zero structure on the 

fundamental Yukawa coupling matrices H, F and G in SO (10). This ensures 
texture 2-zero Hermitian Fritzsch-like structures for the mass matrices Mu, 
Md, Me and MD while ML and MR remain texture 2-zero Fritzsch-like real 

symmetric mass matrices, and these may, in general, be described by the 
following forms:  
 

 
 
 
 

 
 
 

 
 
 

 

u d e

u u d d e e

u d e

iα iα iα

u d e
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D D L L R R
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e e u u d dr (1  s) a Cos α  = 4 a Cos α   (3 + s) r a Cos α 

e e u u d dr (1  s) b Cos β  = 4 b Cos β   (3 + s) r b Cos β 

e u dr (1  s) d  = 4 d   (3 + s) r d 

e u dr (1  s) c  = 4 c   (3 + s) r c 

D D u u d d e ea  Cos α = a  Cos α r s (a  Cos α a  Cos α ) 

D D u u d d e eb  Cos β = b  Cos β r s (b  Cos β b  Cos β ) 

D u d ed  = d  r s (d  d  ) 

H F G

H H H F F F G G

H H F F G

0 a 0 0 a 0 0 i a 0

H = a d b  ; F = a d b  ; G = - i a 0 i b  

0 b c 0 b c 0 - i b 0

     
     
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e e e d da  Sin α = t a  Sin α

e e e d db  Sin β = t b  Sin β

u u u d da  Sin α = r t a  Sin α

u u u d db  Sin β = r t b  Sin β

D D D d da  Sin α = r t a  Sin α

D D D d db  Sin β = r t b  Sin β

D u d ec  = c  r s (c  c  ) 
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The GUT (MX = 2 x 1016 GeV ) scale values of the masses and mixing 
parameters  used either as inputs or as constraints in the calculations.  

 
 
 
 

 
      
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 

D u d ed  = d  r s (d  d  ) 

D u d ec  = c  r s (c  c  ) 

+0.51 +7 +0.04

d -0.48 s -6 b -0.04m = 1.14  MeV  ;   m =22  MeV   ;   m = 1.00  GeV

+0.20 +0.035 +4.0

u -0.17 c -0.034 t -3.7m = 0.48  MeV  ;   m =0.235  GeV   ;   m = 74.0  GeV

e μm = 0.469652046 0.000000041 MeV  ;   m =99.1466226 0.0000089 MeV    
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2 5 2 2 3 2

τ 12 13m = 1.68558 0.00019 GeV ; m (6.99 8.18) 10 eV ; m (2.06 2.67) 10 eV         

q q q

12 13 23sin θ  = 0.2235-0.2274 ; sin θ  = 0.00300-0.00455 ; sin θ  = 0.0401-0.0433

2 l 2 l 2 l

12 13 23sin  θ  = 0.265-0.364 ; sin  θ  = 0.005-0.05 ; sin  θ  = 0.34-0.64

us ub cbV =0.2234-0.2274 ; V =0.003-0.00455 ; V =0.0404-0.0433 ; Sin 2β = 0.656-0.706
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Results of the analysis  
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Summary and conclusions 
 

  Clues towards unique textures for quarks   
 
 Our unitarity based analysis shows that the larger CKM picture remains 

intact and in case the NP effects are there, these are at the level of only a 
few percent.  
 

 A precise value of sin2β along with other well known CKM matrix elements 

and unitarity allows one to find a precisely known CKM matrix and CP 
violating phase. 
 

 Starting with the most general mass matrices, using the concept of weak 
basis transformations, one first obtains texture 2 zero quark mass matrices. 
Analysis of these matrices, carried out by incorporating the naturalness 

condition, reveals that certain elements are essentially redundant, therefore 
can be discarded, reducing the matrices to texture 4 zero type.  
 

 Numerical analysis of all the texture 4 zero mass matrices, related through 

WB transformations, leads to a particular texture for the quark mass 
matrices which seems to be the unique viable option. This unique texture 
for quarks could be the first step towards unified textures for all fermions. 
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Texture specific lepton mass matrices 
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SO(10) inspired texture specific mass matrices 

 
 

 Interestingly, the texture 4 zero fermion mass matrices are compatible with 
the SO(10) mass matrices with and without super symmetry. 

 
 However, the parameter space available gets highly restricted with severe 

constraints on the phase structure of the mass matrices. A measurement of 

the leptonic CP violating phase would have deep implications for the 
formulation of mass matrices within GUTs. 
 

 SO(10) constraints allow natural hierarchy for the quark sector whereas the 
same need not be there in the case of leptons. 

 
 

Finally, we would like to state that the compatibility of texture specific mass 
matrices with SO(10) constraints motivates one to integrate the present 
approach with the horizontal / Abelian symmetries to have a comprehensive 

description of fermion masses and mixings. 
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