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General Introduction

e Understanding fermion masses and mixings constitutes one of the most
important problems of flavor physics.

Quark masses:
my, mgq ~ few MeV, ms~90 MeV, m~ 1.5 GeV, mp~ 4.5GeV, my~ 170GeV.

Neutrino masses:
my:< 1072eV, my;~107%eV, my~ 10teV (mg ~ 10 GeV).

AmZear ~7.5x 107° eV?, Am?,m ~2.5x 1073 eV?

Data from Planck satellite combined with other cosmological data limit
> < 0.23 eV atos % C.L.

Quark mixing angles: s1>~0.22, s,3~0.04, s43~0.0035

Neutrino mixing angles: s;>~0.55, s,3~0.69, s13~0.15




e Mysteries associated:

1.Fermion masses span around 13 (if neutrinos are Dirac particles) or 25-
27 (if neutrinos are Majorana particles) orders of magnitudes. Also, quark
and neutrino masses show different hierarchy, latter not settled.

2.Similarly, the quark mixing angles exhibit a clear cut hierarchy, this is
absent in the case of neutrinos.

e Several ideas such as Grand Unified Theories, extra dimensions, horizontal
symmetries, etc. have been considered to understand mass generation
problem

e Unfortunately, we do not have any viable theoretical framework from the
“top-down’ perspective to describe the quark and lepton masses and
mixings in a simplified and unified manner.

e This necessitates examining the issues from a ‘bottom-up’ perspective.
« To this end, texture specific mass matrices were initiated by Fritzsch (PLB

1977, 1978). Proposed ansatze based on some plausible arguments (to
enhance predictability), later christened as texture specific mass matrices.
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Fermion mass matrices in the SM

The fermion masses, mixings and CP violation are encoded in the couplings
of Higgs and fermions.

Within the framework of SM, the lepton mass matrices arise from the
Higgs-fermion couplings,

[

Lyupawa = Y LeHUy + YL H Dyy + hee, d0j =1,

Mass matrices are related to Yukawa couplings as

In the SM with three generations, these couplings or mass matrices are
completely arbitrary and are expressed in form of complex 3x3 matrices
(with 36 real free parameters).

In the SM and its extensions where right handed quarks are singlets, mass
matrices can be considered to be Hermitian using Polar Decomposition
theorem (M=HX), therefore reducing the number of free parameters from
36 to 18.




Texture Specific Mass matrices

To further enhance the predictability by reducing the number of free
parameters, in texture specific mass matrices zeros are put in. The original
texture 6 zero Fritzsch quark mass matrices are given by

0 Ay 0 0 Ap 0
M = AE} 0 By |, Mp= ;—’1}:_} 0 Bp

0 By Cu 0 Bj Cp

A particular texture structure is said to be texture ‘n’ zero if it has ‘n’
number of non trivial zeros i.e. if the sum of nhumber of diagonal zeros and
half the number of symmetrically placed off diagonal zeros is 'n’.

The conditions of hermiticity, hierarchy and textures are preserved when
one scales down from GUT scale to low energy scale.
[Raymond,Roberts,Ross,Nucl.Phys.B(1993)]

Reviews on textures
1.[Fritzsch,Xing, Prog. Par. Nucl. Phys. 45, 1(2000); Xing IJMPA 19,1
(2004)]
2.[Gupta and Ahuja , IJMPA 27, 1230033 (2012)]
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Weak Basis (WB) transformations

e Within the framework of SM and its extensions, one has the freedom to
make unitary transformations, referred to as Weak Basis (WB)
transformations under which the quark mass matrices change but the
gauge currents remain diagonal and real.

[Branco et. al.,PLB.82,683 (1999); Fritzsch et.al.,PLB 413, 396(1997);
Nucl. Phys. B 556, 49(1999)]

e In particular, one can find a unitary matrix W transforming
My —>W*™ My W and Mp —>W™ Mp W leading to

Ey Ay 0 En Ap 0O
My=| A, Duv Bu |, Mp=| Ay, Dp Bp
0 B Cy 0 Bp Cp




Can be easily checked that such transformations preserve the hermiticity
of the mass matrices.

The CKM matrix is independent of WB transformations.

e (U, Up) and (Ug, Up) are the respective diagonalizing transformations of
(My,Mp) and (M, M)

T — Ywtrr,. o wwtrr
For either My and Mp one can obtain Up =Wy, Up=Wp.

Using this result, the mixing matrix for the WB transformed quark mass
matrices can be given as

Gan = Uil Ug = (WU (WTUg) = (Un) ' WWTUs = (Uu)'Ud = Verm -

‘ckm




Natural Mass Matrices

e In yet another approach, advocated by Peccei and Wang
[Peccei,Wang,PRD53(1996)], the concept of "natural mass matrices' has
been introduced to formulate viable set of mass matrices at the Grand
Unified Theories (GUTs) as well as the Mz scale.

e Essentially, this approach, in order to avoid fine tuning of the elements of
the mass matrices, involves reproducing the hierarchical nature of the
mixing angles by constraining the parameter space available to the
elements of the mass matrices.

e This concept of naturalness can be incorporated on mass matrices by
considering the following hierarchy for the elements of the matrices
[Gupta et. al.,IJMPA 29,144405 (2014)]

(1,i) <(2,5) <(3,3); i=1,2,3, j=2.3.




Some Essential Details pertaining to Natural Mass Matrices

Consider the CKM matrix in the Wolfenstein parametrization

1 — A2 A AN (p —in)
Vekm = —A 1 — A2 AN?
;—lkfg{l —p—in) —A)N? 1

The above matrix can approximately be written as

1 A 0.3)3
1"T[j|«{l| = —.}'n 1 U'ﬁ;’\ﬁ
0.6)° —0.8)\2 1

To translate the constraints of the above matrix on the mass matrices, we
consider a basis in which either of the two mass matrices My and Mp is
diagonal. For example, in case we choose Mp to be diagonal and

a b ¢
M [y — d e ]r'
g h 1




. . . . 3 Fa 7 1--?5 r .
Keeping in mind the relation Mv = V1, M **Vawm and using above
equations, one gets

a b e 1 A 03)&3 f my 0 0 1 A\ 0.3 }ij
d e fl=| —A 1 0.8)° 0 me 0| [ _y 1 osn|

Since my<<m.<<m;, one obtains

a b ¢ e —Me A 0.6mm A3
d e f|~ —MeA 1M —0.8m \°
g h 1 0.6m: A% —0.8m\? m;

It is interesting to note that the elements (1,3) and (3,1) in the above
matrix are larger than the (1,2) and (2,1) elements. However, we still have
the freedom of WB transformations. Noting that WB transformations do not
affect the hierarchy of elements of mass matrices, one can eliminate the
(1,3) and (3,1) elements in the above matrix. In the matrix so obtained,
one can easily see that the elements of the mass matrices satisfy the
natural hierarchy,

(1,i) < (2,5) <(3,3); i=1,2,3, j=2,3.
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Issues associated with the three approaches

Texture Specific Mass matrices

e Despite showing considerable promise, in this approach the possibility to
arrive at a unique set of viable quark mass matrices emerges only by

carrying out an exhaustive case by case analysis of all possible texture zero
mass matrices.

Weak Basis Transformations

e Lead to a large number of viable texture zero matrices due to
unconstrained parameter space of their elements, therefore, restricting the

use of such mass matrices for providing vital clues for developing viable
theories of flavor physics.

Natural Mass matrices

e This idea constrains the elements of the mass matrices, yet it again does
not yield a finite set of viable mass matrices.
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Relationship between mass matrices and mixing
matrices

A general mass matrix, My where k = U, D can be expressed as
Mk :QkMkrPk
The real matrix M, is given by
r + +
M, =Q M, K

This matrix M, can be diagonalized by orthogonal transformation,
diag + r
Mk — (Ok Mk Ok)
+ r
— (Ok PkMkPk Ok)
diag -

The mixing matrix, in terms of the matrices used for diagonalizing the mass
matrices is expressed as

VCKM — OLTJ I:)u PU+OD
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Viability of mass matrices through mixing
matrices

The larger CKM picture remains intact. Shown by us (Gupta et al., IJMPA
2011) that the NP effects in the CKM paradigm if at all these are present,
then they are not more than 10%.

Viability of mass matrices is ensured by constructing CKM matrix and then
examining its compatibility with the CKM matrix available in the literature.

Usually, one compares with the CKM matrix given by PDG, UTfit, HFAG or
CKMFitter, however these groups arrive at a matrix by invoking global fits
which include inputs related to several parameters.

Since the mass matrices are constructed with the assumptions of strict
unitarity, therefore it is desirable to examine the viability of the
corresponding CKM matrix with a unitarity based CKM matrix calculated
using minimal input.

Further, as there is a significant discrepancy between the exclusive and
inclusive values of V,, therefore desirable to finds its unitarity driven value.
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Mixing matrices and unitarity

e Firstly, we would like to discuss the impact of a very precisely known Sin2f3
along with unitarity on the CKM element V,, and the CP violating phase 0.
[Gupta et al.,Phys. Lett B647 (2007) 394].

e The unitarity of the CKM matrix and the unitarity triangles have played an
important role in establishing the CKM paradigm as well as the fact that a
single CP violating phase 0 is largely responsible for understanding the CP
violation in the K and B sector.

€12€13 §12€13 s13e "
— 819023 — €12823813€'° CloC23 — 5128235130 S93013
S12893 — €12023513€"  —C12523 — S12023513€" Cagcya

e The unitarity of CKM matrix implies nine relations (3 diagonal & 6 non
diagonal). The non diagonal ones can be expressed as six unitarity triangles
in the complex plane.
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The " db’ unitarity triangle

A
o
Viud Vit Via Vo *
Y B
C B
Vied Vo™

- thth*:| _ tant S15 5,5 sino
Vud Vb C;, Cy3S;3 — S35 S, COSO
The angles of the ‘db’ triangle (derived in PDG parameterization)

5= arg [ VedVeb } _ tan‘l{ C,,S1,S,,SINS : }
- 2 2. 2 2
Via Vo CosSz3 (S " —C1pS157) ~C1p 815815 (Cp” —S557) COSS

-VuwVuw ] S,,C..SINO
y = arg| ——— |=tan™ 12 228
V Cy» S,3S13 +S5,Cyy COSO
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Using above equations, one can find the relationship between the CP
violating phase 0 and the experimentally well determined angle

oS A— A’ — (B2 — A°C?)tan’p
2 (B + AC)tans
2 2 2 2 2
A = C;,S,,S,3 , B 2023523(512 —Cyp Si3 ), C:C23 — Sy
Re-expressed as
: S,,S,s .
S = —Lf+sint (2222 sin B)
C12813

Also written as
siN(S + ) _ S15S53
sin S Ci12S513

Using a+pB+y = =, rewritten as
_ 512523Sin/8
B ¢,sina

Lower bound on s;3
S, = $1,S,3SIN S
C12
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Figure reveals several interesting points:
For Vu > 0.00355, 5 shows a smooth decline and range gets narrower.
For Vuw < 0.00355, sharp broadening of &.
1 o range of inclusive Vub restricts & to 23°-39° .

Conclusions sharpened further using unitarity based relations:
Yields lower bound V,, > 0.0035.

Obtained value of V , = 0.0035+0.0002 » a rigorous prediction of unitarity
which is quite independent of the variation (20%) of a » agrees with latest
exclusive Vy, » brings out so called ‘tension’ faced by inclusive V.

Closure property of triangles yield 5 = 70.8°+6.1°.

Using above mentioned 8 and V,,, along with precisely measured Vus and
Vo, the CKM matrix has been constructed

0.2234-0.2273 0.9729-0.9739 0.0401-0.04235

0.9738-0.9747 0.2236-0.2274 0.0033-0.0037
Viekm = )
0.0068-0.0103 0.0390-0.0417 0.9991-0.9992
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Unique texture for quark mass matrices

Inputs pertaining to the analysis

e The quark masses and mass ratios at Mz scale are
m, = 13870 MeV, mg=2.824+0.48MeV, m;=57"5MeV,

me = 0.63870021GeV, my =2.86"002GeV, m, = 172.1+1.2GeV,
my /mg = 0.553+0.043,m;/myg = 18.9+0.8.
e The latest values of quark mixing parameters are:

[Vus| = 0.22534£0.00065, |V,5| = 0.003517 500013, |Vep| = 0.04127G5005,

Sin2[3 = 0.679 £+ 0.020.

e The parameters related to the phases of the mass matrices have been
given full variation from 0 to 2n. The free parameters Ey, Ep, Dy and Dp
have also been given wide variation in conformity with the condition of

naturalness as well as to ensure that the elements of orthogonal
diagonalizing transformations should remain real.
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Essentials of the analysis

Starting with the most general mass matrices we have made an attempt to
explore the possibility of obtaining a finite set of viable texture specific
mass matrices formulated by invoking weak basis transformations as

well as the constraints imposed due to naturalness.

Following Hermitian mass matrices can be considered to be the most
general ones

Eff Aif’ F*?'
_gwq — A:f D,-_j,l BL E{?‘ — [r_,-r,‘DL
Fg By Cq

As a next step, to incorporate the concept of WB transformations one can
introduce texture zeros in these matrices using a unitary matrix W

Ey Ay 0 Ep Ap 0
My=1| A, Duv Bu |, Mp=| A, Dp Bp
0 B, Cy 0 B, Cp

The above matrices can be characterized as texture 2 zero quark mass
matrices.
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e The matrix W can be a permutation matrix P giving rise to other possible
structures for My and Mp wherein instead of zeros being in the (1,3) and
(3,1) positions, these could be in either the (1,2) and (2,1) or (2,3) and
(3,2) position.

e These different mass matrices, however, yield the same Cabibbo-
Kobayashi-Maskawa (CKM) matrix, therefore while presenting the results of
the analysis, it is sufficient to discuss any one of these matrices.

e Further, in order to incorporate the condition of " naturalness' on these

mass matrices, one can consider the following hierarchy for the elements of
the matrices

(1,i) < (2,)) < (3.3); i=1,2,3, j=2,3.
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Numerical analysis

e Using the relation between mass matrices and mixing matrix, the resultant
CKM matrix comes out to be

0.2224 —0.2259 0.9730—-0.9990 0.0408 — 0.0422

0.9730 —0.9745 0.2246 —-0.2259 0.00337 —0.00365
Vekm =
0.0076 —0.0101 0.0408 —0.0422  0.999() — 0.9999

e Fully compatible with the unitarity based CKM matrix as well as with the
one given by PDG.

e Interesting to examine the parameter space available to various elements
of matrices My and Mp

0—0.00138 0.006 —0.042 0
My =1 0.006—-0.042 2646—-102.68 62.82—-86.10 | GeV,
0 62.82 -86.10 68.78 — 145.00
0—0.00127 0.011-0.019 0

Mp=1| 0011-0.019 036-1.66 1.03—-1.44 | GeV.
0 1.03—1.44 1.16—-2.44
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e Curiously, the above matrices reveal that their (1,1) element (Ey Ep) is
quite small in comparison with the other non zero elements.

e Can be confirmed using the following figures

D228 : . .
0.2275 | §
0227 | §

02265 1

0,296 0.&B

II""rIJE
sin2fs

0.2255 056

|:| 225 - D '5!1- — N

0.2245 - s 062 - .

0224 L 1 L 0.6 L L L
0.0005 0.0m 0.0015 0.0:02 0 0.0005 0.0 0.0015 0.002

Eu =

=]

e The parameter E; assumes quite small values, < 0.0014 GeV.
Also both Vs and Sin2p3 seem independent of the range of Ey, indicating the
redundancy of element Ey.
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e Similar conclusions can be drawn from Ep versus the CKM matrix elements
plots.

e Ignoring the elements Ey and Ep of the mass matrices, one gets My and Mp

as
0 Ay 0 0 Ap 0O
My = A E Dy By . Mp = A ?J Dp Bp
0 B, Cu 0 B Cp

e Carrying out a similar analysis for these matrices, the corresponding CKM
matrix comes out to be

0.9741 —0.9744 0.2246 — 0.2259 0.00337 —0.00365
Vekm = | 0.2245-0.2258 0.9732-0.9736  0.0407 —0.0422
0.0071 —0.0100 0.0396 —0.0417  0.9990 — 0.9992
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e Interesting to examine how the parameter space of the elements of the
mass matrices gets changed on going from texture 2 to texture 4 zero. To
this end, reconstructing My and Mp we get

0 0.031 —0.041 0
My =1| 0.031-0.041 13.73-98.62 47.70—-85.80 | GeV,
0 47.70 —85.80 72.84—-157.73
0 0.012-0.018 0
Mp=1 0012-0018 0.18—-1.56 081—-145 | GeV.
0 0.81-1.45 1.24-2.61

e Similar to the case of texture 2 zero mass matrices, using the WB
transformations, apart from the matrices given above, one gets several
other possible texture 4 zero mass matrices which may or may not be
related through permutations.
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possible texture 4 zero mass matrices can be classified as shown in Table.
The matrices which are not related to each other through permutations

e Based on whether the matrices are related through permutations or not, all
have been put into different categories.

Category |
Category 2
Category 3
Category 4




e For the matrices belonging to category 1, considering both My and Mp as 1a
type, we have already shown that these are viable and explain the quark
mixing data quite well. The other matrices of this category, related through
permutation matrix, also yield similar results.

e For the matrices belonging to category 4, one finds that interestingly these
are not viable as in all these matrices one of the generations gets
decoupled from the other two.

e Further, for categories 2 and 3, again a similar analysis reveals that the
matrices of these classes are also not viable as can be understood from the
following CKM matrices obtained for categories 2 and 3 respectively, e.qg.,

0.9740 —-0.9744 0.2247 —0.2260 0.0024 — 0.0099
Vekm = | 0.2205-0.2256 0.9509 —-0.9727 0.0596 —0.2172
0.0140—0.0445 0.0584 —0.2127 0.9905 — 1.0000

0.9736 —0.9744 0.2247 —0.2260 0.0098 —0.0331
Vekm = | 0.2226 —0.2278  0.9549 —0.9719 0.0659 — 0.1937
0.00007 —0.0340 0.0694 —0.1928 0.9810 —0.9976

e These matrices show no compatibility with the latest quark mixing data.
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The plotted values of element V4, have no overlap with its experimental
range, therefore, these matrices can be considered to be non viable.

The above discussion clearly brings out that only the texture 4 zero quark
mass matrices belonging to category 1 of the table are found to be viable.
Interestingly, the matrices considered here are quite similar to the original
Fritzsch ansatze, except for their (2,2) element being non zero for both My
and Mp.

In case one considers more than 4 texture zero mass matrices, we find that
the present data rules out texture 5 and 6 zero quark mass matrices,
confirming our earlier conclusions in this regard.

In conclusion, we would like to state that texture 4 zero quark mass
matrices, similar to the original Fritzsch ansatze, and its permutations seem
to be a unique finite set of quark mass matrices which are in agreement
with the present mixing data.
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Texture specific lepton mass matrices

@ In line with our treatment of quark mass matrices, using the facility of WB
transformations, one can obtain texture specific mass matrices in the lepton sector
as well without any loss of generality, viz.

C,I' A,I' D C].-" -’q L D
M=\ Al D B |. M.p = A, D, B, |, (1)
l:' B,T E.I' D B:-' E 7

where M; and M, correspond to the charged lepton and the Dirac neutrino mass
matrices respectively.

@ For the case of Majorana neutrinos, the effective neutrino mass maitrix is obtained
by the famous Seesaw mechanism

M, = —M Mz "M, p. (2)

where Mg corresponds to the right handed Majorana neutrino mass matrix.
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@ It is well known that texture five zero as well as texture four zero mass matrices

are able to accommodate the lepton mixing data quite well. However, it is
interesting to note if one obtain some constraints on the unknown parameters in

the neutrino sector using these most general mass matrices.

@ One can carry out diagonalization of the mass matrices given in egn. (1) by

expressing it as
My = QMiPx. k=1, vD, (3)

where Q, P, are diagonal phase matrices given as Diag(e"“*’ 1, e“'-ﬂk} and Diag
(e~ '*k 1, €"F) respectively and M}, is a real symmetric matrix. Mj can be
diagonalized by an orthogonal transformation O, e.g.,

M= = o] M; O (4)
which can be rewritten as

MZ%9 = Of QI Mk P} Ox. (5)
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@ The elements of the general diagonalizing transformation Ok for the mass
matrices given in eqn. (1) are

I'I {Ek — My :HD'I.;- +E|"C' —Imy _mE}':DH_EH — My —.'TIE} I.'I ':Ek' —m2}|m3 —Gk]{m1 —I_'-:k:l I.'I[—I_'-:k—.".l'l1 ::{—Ek—.".l'la}l:l:k —|'T.|\2:|
\ re2E g g ) my )\ B G lm, —malmy—ma) || Ty —m (g~ ) (T~ Eil
I.' [.".I'I-I —I:k;'ll:l'?'.'a —Ek;'l _ I,'I I:Ek _mE:”:Gk—mE} I,'I{—l'?'.'a — CH'}[EH_"?S:'
\| Tmy —mg J{my —ms] | (my —my)(my —my)  (my —mg){m3 —ma]
_ I-I I:EH—J'T?E:II:EH—I'TJS][.H'I-I —I:k;'l I.'I ':—Ek—m-l ]["'—:n'-:'_mE][Ek’ —I'T-|3:| I.'I [Ek — My ]!:Ek' _mE}{"?S_Gk]
\ (mq —mg){my —mg)(Ex —Cy} V (my —mg){ma —m3){Ex —Ci) V (Ck —Ek)(mq —mg){mg —ma)

with my, —ms, my being the eigen values of M.

@ Inthe case of charged leptons, because of the hierarchy m. << m, <2 m., the
mass eigenstates can be approximated respectively to the flavor eigenstates. In
this approximation, my =~ me, miz >~ m, and myz ~ m-, one can obtain the
elements of the diagonalizing matrix O from the equation (3), by replacing my, mo,
ma by me, —my, m-.

@ The diagonalizing transformation for Majorana neutrinos, assuming normal
hierarchy, defined as m., < m., < m,, as well as the corresponding degenerate
case defined as m,, = m,, ~ m,,, can be obtained by replacing my, mz, ms by
v My1MRA, / Mu2Mpg, \/Myampg, where m,,, m., and m,, are neutrino masses.

@ Here mp represents the eigenvalue of the right handed Majorana neutrino mass
matrix, which for the purpose of present work has been chosen to be of the form

Mg = mg . Diag(1,1,1), (6)

however our conclusion remain unaltered even on considering a more general
form for Mg.
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@ In the same manner, one can obtain the elements of diagonalizing transformation
for the inverted hierarchy case, defined as m,, << m., < m.,, by replacing my, ms,

ms in equation (3) with ,/m, mg, —,/m.,mg, —,/M,, Mg.

@ The lepton mixing matrix, the Pontecorvo Maki Nakagawa Sakata (PMNS) matrix,
in terms of the matrices used for diagonalizing the mass matrices M, and M., is

expressed as
U= (Q0&) (P.oOup), (7)

wherein, to facilitate the construction of diagonalizing transformations for different
neutrino mass hierarchies, we have introduced ¢ defined as diag(1, €™, 1) for the
case of normal hierarchy and as diag(1, €™, €'™) for the case of inverted hierarchy.

@ Eliminating the phase matrix & by redefinition of the charged lepton phases, the
above equation becomes
U = 'DJ:I- GIHJDGHD ) {8}

where Q,P,p, without loss of generality, can be taken as {e"*ﬁ‘ 1. e"‘-‘“E], @4 and ¢o
being related to the phases of mass matrices as ¢, = a,p — oy, &> = 3,p — 3 and
can be treated as free parameters.
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Inputs used for the analysis

Parameter 30 range

Am?, [10~"eV?] (6.99-8.18)
Ame, [10°eV?] | (2.19-2.62)(NH); (2.17-2.61)(IH)
sin“fi3 [107°] | (1.69-3.13)(NH); (1.71-3.15) (IH)
sin*fi2 [1077] (2.59-3.59)
Sin“tps [107] (3.31-6.37)(NH);(3.35-6.63)(IH)

@ While carrying out our analysis, the magnitudes of atmospheric and solar neutrino

2
mass square differences, defined as ms — m? and m5 — '[mﬁ%ﬂ] respectively, are
allowed full variation within their 3o ranges. The lightest neutrino mass, m, for the
case of NH and ms for the case of |H, is considered as the free parameter while

the other two masses are obtained using the following relations,

R 4
NH - 8 = A + 1k, 8 = Aty + 7). 9)

mg — E{fﬂg _ﬂnﬁfm}+&néﬂf= m? _ E(m‘g-l-ﬂmgrm)—ﬂmgm {1{]}

IH - 5 -
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@ Further, the phases ¢4, @2 and the elements Dy .., C; .. are considered to be free
parameters. For all the three possible mass hierarchies of neutrinos, the explored
range of the lightest neutrino mass is taken to be 10~ %eV — 10~ eV, our
conclusions remain unaffected even if the range is extended further. In the
absence of any constraint on the phases, ¢ and ¢z have been given full variation
from O to 2.

@ Although D;, and C;, are free parameters, however, they have been constrained
such that diagonalizing transformations O, and O, always remain real, ensuring
the mass matrices to be ‘natural’ as advocated by Peccei and Wang.

@ The solar as well as atmospheric neutrino mass squared differences have been
varied randomly within their 3o experimental ranges. The phases ¢4 and ¢z have
also been varied randomly within the interval [0, 27]. To facilitate the calculations
as well as to find the parameter space available to various parameters, we have
resorted to Monte Carlo simulations of various input parameters.

@ Following the methodology discussed above, we find that interesting bounds can
be obtained for the the parameter m.., the effective Majorana mass of the electron
neutrino, which determines the rate of NDBD and is given as

|Mee| = |my, Uzy + my, U3 + my, Uz, (11)
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Figure: Plots showing the parameter space corresponding to mee versus (a) ¢¢ and (b) ¢ for
texture two zero mass matrices (inverted hierarchy).

@ It can be seen from the above figure that the parameter mese hardly shows any

dependence on the phases ¢, and ¢., however an interesting lower bound of the
order of 0.08 eV can be obtained. This bound is well within the range of me. likely
to be explored by the the forthcoming experiments aiming to find a signal for

NDBD.
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Figure: Plot showing the parameter space corresponding to mee and the lightest neutrino mass for
texture two zero mass matrices (normal hierarchy).

@ Contrary to the observations in the |H case, here one finds that the parameter mee
shows considerable variation with the lightest neutrino mass. In particular, one
notices that larger values of me. are allowed for the smaller values of m, and vice
versa.
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Texture four zero lepton mass matrices

@ Keeping in mind the quark lepton unification, as advocated by Smirnov as well as
required by most of the grand unified theories, it becomes interesting to investigate

the implications of similar type of mass matrices, e.g.

D Alr O O AJ.-'
MJ' = A? DJ' EJ' , MJHD = A:: Du
0 B E 0 B

for the parameter mse and different neutrino mass hierarchies.

1 —

0.01 b

0.001

0.0001 | ]

mE'E'

18-005 | -

1e-006

16-007 L i

1e_|:||:|8 | 1 1111 | 1 Ll

0.0001 0.001 0.01 0.1

0
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SO(10) inspired texture specific mass matrices

e SO(10) GUT is probably the best motivated candidate for the unification of
strong and electroweak interactions.

e It unifies the family of fermions: includes SU(4). quark-lepton symmetry
and left-right (LR) symmetry.

e It includes the right handed neutrinos and through the Seesaw mechanism
offers an appealing explanation for the smallness of neutrino masses.

Symmetry breaking and fermion mass matrices in SO(10)

e Since SO(10) is a rank 5 group and SM gauge group has rank 4, so there
are different possible chains of symmetry breaking.

e Chain 1: SO(10) —>SU(5) x U(1) —>SU(5) —> Ggtq (ruled out by
experiments)

e Chain 2 : SO(10) —> SU(4)xSU(2).xSU(2)r(Gps)
—> SU(3)c SU(2)L SU(2)r U(1)s-L (Gr)
—> Gstd
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e Since the fermions of each generation belong to the 16 dimensional spinor
representation of SO(10), the Higgs scalars which can couple to the
fermions are contained in the product 16 x 16.

e Since 16 x 16 = 105+ 120, + 1265 the fermion masses are generated when
the Higgs fields of 10, 120, 126 dimensional representations of SO(10)
develop non-vanishing VEVs.

e 16 = (4,2,1) + (4,1,2) and (4,2,1) (4,1, 2) =(15,2,2) + (1, 2, 2),
the Dirac masses for quarks and leptons are generated when neutral
components in a (1,2,2) multiplet in 10, (1,2,2) and (15,2,2) in 120 and
(15,2,2) in 126 dimensional representations acquire non vanishing VEVs.

e The (10,3,1) and (10,1,3) components in 126 dimensional Higgs break the
SU(2). and SU(2)r symmetries and hence are responsible for the left and
right handed Majorana neutrino masses.
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e Depending upon the different choices of Higgs, numerous models of SO(10)
can be constructed leading to various forms of fermion mass matrices.

e However, it can be shown that the most general mass matrices in any
renormalizable SO(10) model can be given by the relations:

Mg =H+ F +iG

My = r( H +sF + it, G)
M=H-3F+it G

Mo = r(H-3sF +itp G)
M, =r_F - re MpF'Mp'

[Grimus and Kuhbock,hep-ph/0607197]
[ Joshipura et al,0903.2161]
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Mg, My, M, Mp, M, stand for the down, up, charged lepton, dirac and the
effective neutrino mass matrices respectively.

Here (G), H, F are complex (anti)symmetric matrices corresponding to 120,
10, 126 dimensional Higgs respectively and r, s, t, ,t, ,tp, r_ ,rrare
dimensionless complex parameters out of which r, r_, rr can be chosen to
be real without loss of generality.

The Yukawa sector in SO(10) involves a large number of free parameters :
6inH; 6inF; 3inG, alongwithr, s, t,, te, tp, r. and rr.

This implies a total of 22 such parameters for type-II seesaw and 21
parameters for type-I seesaw.

Only 18 experimentally observable parameters namely 6 quark masses, 3
quark mixing angles, 1 CP-violating phase in CKM matrix, 3 charged lepton
masses, 3 lepton mixing angles and 2 neutrino mass square differences.

The parameter space of the SO (10) Yukawa sector can be significantly
reduced by using phenomenological structures for these fermion mass
matrices.

43




e The "texture zero" approach involving Hermitian mass matrices has been
very promising, in particular, as shown earlier, texture 4 zero mass
matrices explain the recent precision experimental data for the quark and
lepton mixings independently at the electro weak scale.

e Motivated by this idea, we impose the texture 2-zero structure on the
fundamental Yukawa coupling matrices H, F and G in SO (10). This ensures
texture 2-zero Hermitian Fritzsch-like structures for the mass matrices M,
My4, Me and Mp while M. and Mg remain texture 2-zero Fritzsch-like real

symmetric mass matrices, and these may, in general, be described by the
following forms:

0 age™ 0 | [ 0 ae™ ] 0 ae™ 0 |
M,=|ae™ d, beP| M=|ae™ d, be®|, M=|ae™ d  be®
0 be™ ¢ 0 be 0 be’ ¢
B o ] B B
0 ae™ O 0 a O 0 a;, O
_ ] 8 _ _
My=1a,e™ d, be™|,M=1a d b | ,M=|a, d. b,
_|B
0 be™ ¢y 0 b ¢ 0 by ¢
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0 a, 0 0 a O 0 iag 0]
H=|a, d, b,|;F=]a, d. b |;G=|-ia;, 0 b
0 b, ¢, 0 b ¢ 0 -iby O |

r(1-s)a,Cosa, =4a,Cosa, — (3+s)ra,Cos a,
r(1—s)b,CospB, =4b,Cos B, — (3+s)rb,Cos B,
r(1-s)d, =4d, — (3+s)rd,

r(1-s)c,=4c, — (3+s)rc,

a, Cosa,=a, Cosa,—-rs(a; Cosa,—a, Cosa,)

b, Cos B,=b, Cos B, —1s (b, CosB,—b, Cosf,)
d, =d, —rs(d, —d,)
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Cp =C, _rS(Cd —C, )
a, Sino,=t,a, Sin o,

b, Sin B,=t.b, Sin P,

a, Sina,=rt,a, Sin a,

b, SinB,=rt,b, Sin f3,
ay, SIino,=rtya, Sin o

b, Sin B,=rtyb, Sin B,
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The GUT (My = 2 x 10%® GeV ) scale values of the masses and mixing
[parameters used either as inputs or as constraints in the calculations.

m,= 1147 MeV ; m =227 MeV ; m,=1.003, GeV
m,= 04872 MeV ; m =0.2357" GeV ; m =74.03" GeV

m,=0.469652046 £0.000000041 MeV ; m =99.1466226+0.0000089 MeV
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m_= 1.68558+0.00019 GeV ; Am’, = (6.99-8.18)x10"°eV?; Am’, = (2.06-2.67)x10 eV’
sin® 0,, = 0.265-0.364 ; sin” 0, = 0.005-0.05 ; sin® 0., = 0.34-0.64
sin 07, =0.2235-0.2274 ; sin 67, = 0.00300-0.00455 ; sin 63, = 0.0401-0.0433

V,|=0.2234-0.2274 , |V, =0.008-0.00455 ; |V | =0.0404-0.0433 ; Sin 2B =0.636-0.706
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Results of the analysis

M, = (0-0076—0.0089) o i(47.1-97.65)

(0.0094-0.0157) "™
13-30
( 28 4129 —-36.473 6) o (-02-0.03)

(0,0076 — 0.0089) ! (47:1-97.65)
0.25-0.61
(0_7()75 — 0.8963) o i(2517-31.75)

(0.0042—0.0073) ™
0.14-0.36
( 0.3685—0.491 9) e_i (-5.12+-1.99))
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0.9769—-1.3369

0
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(—114 ( 187)) o i(825-872)

0

0

0

(—1.14 (- ]_87)) i(825-87.2)
~72.68(~31.57)
(—89..83 ( —62. 67)) —|124 ~8.46)

(5.22-8.95)x10™

(—8983 ( 62. 67)) i(1.24-8.46)
149,21~ (-91.44)

0

0

(5.22-8.95)x10™ (0.4426-7.371)x10"*'*®9  (0.2664-1.911)x107'****9

0

(—1.382—-5.788)x10°3

0

0

(O 2664 1. 911))(10 114(-89.9-899)

(—1.382-5.788)x10°°
0.1675—0.4225
0.4261—0.5662
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F=|(-0.6396

VCKM =

0 (-
~1.1615)x10™
0

0.6396-1.1615)x10"*
~0.0625 — (—0.0275)
~0.0746 — (—0.0585)

0 (—1.651-4.5289)x10"
M, =| (~1.651-4.5289)x10"  (~1.875—(-0.909))x10" (-2.802—(~1.548))x10" |GeV

0 (—2.802—(~1.548)) <10  (—4.995—(~1.833))x10" |

(0.9738-0.9747
0.2234-0.2273

1 0.0061-0.0117

0.2235-0.2274
0.9729-0.9739
0.03917-0.0427

0
~0.0746 — (-0.0585) |GeV
~0.1249 — (—0.0880)

0

0.003-0.00454 |
0.0404 - 0.0431
0.9991-0.9992 |

Sin 2B =0.656-0.706 ; J_ = (2.089 - 4.035)x10~°
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(0.7778-0.8549 0.5020-0.5991 0.0708-0.2236 |
Viouns =1 0.4217-0.5688 0.4901-0.6877 0.5708-0.7457
10.1984-0.3578 0.4770-0.7069 0.6311-0.8095 |

s2, =0.265-0.364 ;5% =0.005-0.05;s2, =0.34-0.58 ;
A, =(6.99-8.18)x102GeV ; A, =(2.06—2.67)x10% GeV ;
m, =(3.04-6.76)x10°GeV ; m,=(0.89-1.12)x10"'GeV ; m ,=(4.55-5.21)x10"'GeV

5 =-87.16-71.31;J, =-0.0428—0.0353
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Summary and conclusions

Clues towards unique textures for quarks

Our unitarity based analysis shows that the larger CKM picture remains
intact and in case the NP effects are there, these are at the level of only a
few percent.

A precise value of sin2p along with other well known CKM matrix elements
and unitarity allows one to find a precisely known CKM matrix and CP
violating phase.

Starting with the most general mass matrices, using the concept of weak
basis transformations, one first obtains texture 2 zero quark mass matrices.
Analysis of these matrices, carried out by incorporating the naturalness
condition, reveals that certain elements are essentially redundant, therefore
can be discarded, reducing the matrices to texture 4 zero type.

Numerical analysis of all the texture 4 zero mass matrices, related through
WB transformations, leads to a particular texture for the quark mass
matrices which seems to be the unique viable option. This unique texture
for quarks could be the first step towards unified textures for all fermions.
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Texture specific lepton mass matrices

@ To summarize, we have carried out a detailed analysis of the most general lepton
mass matrices within the framework of SM, in order to examine their predictions
for the effective Majorana mass in the neutrinoless double beta decay m., as well
as the lightest neutrino mass pertaining to normal as well as inverted hierarchy of
neutrino masses.

@ We find that for the inverted hierarchy of neutrino masses a lower bound of
approximately 0.08 eV for me. In case the forthcoming experiments do not find a
signal for NDBD, the inverted hierarchy scenario for the neutrino masses would be
directly ruled out.

@ Even for the normal hierarchy case, the non observation of NDBD would put
severe constraints on the lightest neutrino mass. In case, the experiments find a
signal for NDBD, then also we are likely to establish the neutrino mass hierarchy
as the ranges for mg. obtained for normal and inverted hierarchies overlap for a
very narrow window of the lightest neutrino mass.

@ In conclusion, we would like to state that currently we are in an exciting era of
neutrino oscillation phenomenology aided by the series of experiments aiming to
measure mege and the lightest neutrino mass. The bounds obtained in the present
work would not only act as milestones for model builders, but would also provide
motivation for the experimentists to push the sensitivity of the measurements
further.
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SO(10) inspired texture specific mass matrices

Interestingly, the texture 4 zero fermion mass matrices are compatible with
the SO(10) mass matrices with and without super symmetry.

However, the parameter space available gets highly restricted with severe
constraints on the phase structure of the mass matrices. A measurement of
the leptonic CP violating phase would have deep implications for the
formulation of mass matrices within GUTs.

SO(10) constraints allow natural hierarchy for the quark sector whereas the
same need not be there in the case of leptons.

Finally, we would like to state that the compatibility of texture specific mass
matrices with SO(10) constraints motivates one to integrate the present
approach with the horizontal / Abelian symmetries to have a comprehensive
description of fermion masses and mixings.
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