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@ Introduction The Anomalous Magnetic Moment of the Muon
Magnetic moment

e relation of spin and magnetic moment of a lepton:

— € —
= —3S
He = Ge 2y

ge: Landé factor, gyromagnetic ratio

e Dirac theory predicted ¢. = 2, twice the value of the
gyromagnetic ratio for orbital angular momentum

e anomalous magnetic moment: a, = (g, — 2)/2



@ Introduction The Anomalous Magnetic Moment of the Muon

Anomalous magnetic moments: a bit of history

e 1928, Dirac: g. = 2

e 1934, Kinster & Houston: experimental confirmation
(large errors)

e 1948, Kusch & Foley, hyperfine structure of atomic
spectra: g. = 2.00238(10) = a. = 0.00119(5)

¢ 1948, Schwinger: a; = aqep/(27) ~ 0.00116
¢ helped to establish QED and QFT as the framework
for elementary particle physics



@ Introduction The Anomalous Magnetic Moment of the Muon

Anomalous magnetic moments: a bit of history

1957, Lee & Yang: parity violation
= 1" — utv, produces polarised muons

1957: g, through spin precession experiments

1960, Columbia: a, = 0.00122(8)

1961, CERN: establishing muon as a ‘heavy electron’
1969-1976, CERN muon storage ring: 7 ppm
2000-2004, BNL E821: 0.54 ppm

probing not only QED but entire SM



@ Introduction The Anomalous Magnetic Moment of the Muon

Electron vs. muon magnetic moments

influence of heavier virtual particles of mass M
scales as

Aa;,  m?
[ O( —_—
Qy M?
e a. used to determine aqgp

e (m,/me)* ~4-10* = muon is much more sensitive to
new physics, but also to EW and hadronic
contributions

e a, experimentally not yet known precisely enough



@ Introduction Status of Theory and Experiment

a,,: comparison of theory and experiment
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@ Standard Model vs. Experiment

Interaction of a muon with an external
electromagnetic field

Anomalous magnetic moment given by one particular
form factor



@ Standard Model vs. Experiment

QED at O(«)

QED Contribution

Schwinger term:

QQED
a, = 2QED
2T



@ Standard Model vs. Experiment QED Contribution

QED at O(a?)

e 7 diagrams

e Petermann and
Sommerfeld 1957:
universal part

o full calculation
1966



@ Standard Model vs. Experiment

13

QED at O(a?)
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— figure taken from Jegerlehner 2007

QED Contribution

e 72 diagrams

e Remiddi et al. 1969:
universal part

e Laporta, Remiddi 1996:
full calculation



@ Standard Model vs. Experiment QED Contribution

QED at O(a*) and O(a®)

» complete numerical calculation of O(a?) contribution
by Kinoshita et al. (took about 30 years)

o full O(a®) calculation by Kinoshita et al. 2012
(involves 12672 diagrams!)

10" - a, 10 - Aay,

QED total 116584 718.95 0.08

Theory total 116 591 855 99




@ Standard Model vs. Experiment Electroweak Contribution

Electroweak

e contributions with EW gauge bosons and Higgs
e calculated to two loops

e three-loop terms estimated to be negligible

10 - a, 101 - Aa,

EW 153.6 1.0

Theory total 116591855 99




@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

e problem: QCD is
non-perturbative at low
energies

e first principle calculations
(lattice QCD) may become

competitive in the future
had.
e current evaluations based on

dispersion relations and data



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

Photon hadronic vacuum polarisation function:

WWQMM - —z'(ngW - qﬂqV)H(QQ)

Unitarity of the S-matrix implies the optical theorem:

ImII(s) = Latot(eJre_ — 7" — hadrons)

e(s)?



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Dispersion relation

Causality implies analyticity:

TIm(s)
Cauchy integral formula:

I(s) = = }{/ Mals'

211 s —s

Deform integration path:

TI(s) — 1(0) = f/:o _ImlI(s)

T Janz (8" — s —ie)s’




@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

WMQWW

e basic principles: unitarity and analyticity
e direct relation to experiment: total hadronic cross
section oy, (eTe” — 4* — hadrons)

e one Lorentz structure, one kinematic variable



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

¢ at present: dominant theoretical uncertainty
e theory error due to experimental input

e can be systematically improved: dedicated ete~
program (BaBar, Belle, BESIIl, CMD3, KLOE2, SND)

1011 . ay, 1011 . Aay,
LO HVP 6949 43

Theory total 116 591855 99

20



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

21

Higher order hadronic contributions: O(«

1011 . ay, 1011 . Aay,
NLO HVP -98 1

Theory total 116 591 855 59




@ Standard Model vs. Experiment Hadronic Light-by-Light Scattering

22

Higher order hadronic contributions: O(a?)
Hadronic light-by-light (HLbL) scattering

¢ hadronic matrix element of
four EM currents

e up to now, only model
calculations

e lattice QCD not yet
competitive



@ Standard Model vs. Experiment Hadronic Light-by-Light Scattering

Higher order hadronic contributions: O(a?)
Hadronic light-by-light (HLbL) scattering

e uncertainty estimate based
rather on consensus than on a
systematic method

e will dominate theory error in a
few years

e "dispersive treatment
impossible"

23



@ Standard Model vs. Experiment

24

Summary and Prospects

10t . ay 1011 . Aay,
BNL E821 116592091 63 — PDG 2013
QED O(«) 116 140973.32 0.08
QED 0O(a?) 413217.63 0.01
QED 0O(a?) 30141.90 0.00
QED O(a*) 381.01 0.02
QED O(a®) 5.09 0.01
QED total 116 584 718.95 0.08 — Kinoshita et al. 2012
EW 153.6 1.0
Hadronic total 6982 59
Theory total 116 591 855 59




@ Standard Model vs. Experiment Summary and Prospects
10 - aq, 10 - Aaq,

BNL E821 116 592 091 63 — PDG 2013
QED total 116 584 718.95 0.08 —s Kinoshita et al. 2012
EW 153.6 1.0

LO HVP 6949 43 — Hagiwara et al. 2011
NLO HVP —98 1 — Hagiwara et al. 2011
NNLO HVP 12.4 0.1 — Kurz et al. 2014
LO HLbL 116 40 —s Jegerlehner, Nyffeler 2009
NLO HLbL 3 2 — Colangelo et al. 2014
Hadronic total 6982 59

Theory total 116 591 855 59

25




@ Standard Model vs. Experiment Summary and Prospects

a,: theory vs. experiment

e theory error completely dominated by hadronic
effects

e discrepancy between Standard Model and
experiment ~ 3o

e hint to new physics?

26



@ Standard Model vs. Experiment Summary and Prospects

Future experiments

current experimental determination is limited by
statistical error

new experiments aim at reducing the experimental
error by a factor of 4

FNAL: reuses BNL storage ring

J-PARC: completely different systematics

27



@ Standard Model vs. Experiment Summary and Prospects

BNL storage ring moves to FNAL

June 22, 2013 — credit: Brookhaven National Laboratory




@ Standard Model vs. Experiment

BNL storage ring moves to FNAL

Summary and Prospects

— photo: Darin Clifton/Ceres Barge
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@ Standard Model vs. Experiment

BNL storage ring moves to FNAL

Summary and Prospects

July 26, 2013

30

— credit: Fermilab
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@ Dispersive Approach to HLbL Scattering

32

How to improve HLbL calculation?

e "dispersive treatment
impossible": no!

e relate HLbL to experimentally
accessible quantities

e make use of unitarity,
analyticity, gauge invariance
and crossing symmetry



@ HLbL Scattering Lorentz Structure of the HLbL Tensor

33

The HLbL tensor

object in question: T1**?(qy, go, q3)
a priori 138 Lorentz structures

gauge invariance: 95 linear relations
= (off-shell) basis: 43 independent structures

six dynamical variables, e.g. two Mandelstam

variables ) )
s=(n+q), t=(qn+aq)

and the photon virtualities ¢, ¢, ¢2, ¢3

complicated analytic structure



@ HLbL Scattering Lorentz Structure of the HLbL Tensor

34

HLbL tensor: Lorentz decomposition

Problem: find a decomposition

127 (g1, g2, q3) ZT’M‘U s, t,u;q))

with the following properties:

UVAC

e Lorentz structures 7} manifestly gauge invariant

e scalar functions II; free of kinematic singularities and
zeros



@ HLbL Scattering

35

HLDbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):
e apply gauge projectors to the 138 initial structures:

]l“’ — g,ltll _ ngly ]/\0' — Ao qéi\ng
12 ) 34
q1 - 42 g3 g4

e remove poles taking appropriate linear combinations

e Tarrach: no kinematic-free basis of 43 elements
exists

e extend basis by additional structures taking care of
remaining kinematic singularities

Lorentz Structure of the HLbL Tensor



@ HLbL Scattering Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

54
H/‘l/)‘o(q17 q27 q3) — Z 7—;“”)\0—1—.[1'<S7 t; u? Q?)

i=1

e Lorentz structures manifestly gauge invariant
e crossing symmetry manifest

e scalar functions 11, free of kinematics
= ideal quantities for a dispersive treatment

36



@ HLbL Scattering Lorentz Structure of the HLbL Tensor

37

Master formula: contribution to (¢ — 2),,

12 ~
CFZ‘ ) 5 Hz P sy T -
LB 66/ diq d*q ; (q1, 42 P)i(q1, @2, =1 — G2)
g (2m)* (2m)* gig3 (a1 + @2)*[(p + @1)? — m2][(p — q2)> — m?]

« T;: known integration kernel functions
e II;: linear combinations of the scalar functions II;

o five loop integrals can be performed with
Gegenbauer polynomial techniques



@ Dispersive Approach to HLbL Scattering Mandelstam Representation

38

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

__ ym°-pole box 3
HMVAU - H;U//\a' + H,ul/)\a + HMVA‘T +.



@ Dispersive Approach to HLbL Scattering Mandelstam Representation

38

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

__ ym%-pole box 3
HMVAU - H;u/)\a + H,ul/)\a + HMVA‘T +.

one-pion intermediate state:




@ Dispersive Approach to HLbL Scattering Mandelstam Representation

38

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ yn%-pole box 3
HMVAU - H;U//\a' + H;u/)\cr + HMVA‘T +.

two-pion intermediate state in both channels:




@ Dispersive Approach to HLbL Scattering Mandelstam Representation

38

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

__ ym°-pole box a
HMVAU - H;U//\a' + H,ul/)\a + HN”)\U +..

two-pion intermediate state in first channel:



@ Dispersive Approach to HLbL Scattering Mandelstam Representation

38

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ yn%-pole box 3
HMVAU - H;U//\a' + H,ul/)\a + HMVA‘T Tt

neglected: higher intermediate states



@ Dispersive Approach to HLbL Scattering Mandelstam Representation

Pion pole

e input the doubly-virtual and
singly-virtual pion transition form
| factors F. .0 and F, .. o
e dispersive analysis of transition
form factor:

— Hoferichter et al., arXiv:1410.4691 [hep-ph]

39



@ Dispersive Approach to HLbL Scattering Mandelstam Representation
Box contributions

e simultaneous two-pion cuts in
two channels

e analytic properties correspond to
sQED loop

e ¢*-dependence given by
multiplication with pion vector
form factor £V (¢?) for each
off-shell photon (= ‘FsQED’)

40



@ Dispersive Approach to HLbL Scattering Mandelstam Representation

Rescattering contribution

o multi-particle intermediate states
in crossed channel approximated
by polynomial

e two-pion cut in only one channel
1 e expand into partial waves

e unitarity relates it to the helicity
amplitudes of the subprocess
7*7(*) — T

41



@ Introduction
@ Standard Model vs. Experiment
@ Dispersive Approach to HLbL Scattering

@ Conclusion and Outlook

42



@ Conclusion and Outlook

Summary

e our dispersive approach to HLbL scattering is based
on fundamental principles:
e gauge invariance, crossing symmetry
e unitarity, analyticity

we take into account the lowest intermediate states:
n%-pole and wr-cuts

relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

a step towards a model-independent calculation of a,

numerical evaluation is work in progress

43



@ Conclusion and Outlook

A roadmap for HLbL

Pion transition form factor
Froyeys (a3,43)

Pion vector
form factor Fy;

44

@, 6 W}—@e- - mj
N/

Partial waves for
YY* = 7

Gion poIarizabiIiti%(—CWr — 'ya

— Flowchart by M. Hoferichter
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Backup



@ Backup

Interaction of a muon with an external
electromagnetic field

(—ie) (1 (P2, $2) |36 (0) [ (p1, 51))
(—ie)u(p2) " (p1, p2)u(p:1)

['*(py, p2): vertex function

46



@ Backup

47

Form factors of the vertex function

Lorentz decomposition:

ok,
(p1,p2) = ’Y“FE(]‘JQ) -1 om FM(k2)
ok, 2mkH
- TPl + (1 + T ) wFa(k?)

Form factors depend only on k% = (p; — po)2.



@ Backup

47

Form factors of the vertex function

Lorentz decomposition:

ok,
(p1,p2) = ’Y“FE(k2) -1 om FM(k2)
oMk, 2mkH
- TPl + (1 + T ) wFa(k?)

Form factors depend only on k% = (p; — po)2.

electric charge or Dirac form factor, Fz(0) =1



@ Backup

47

Form factors of the vertex function

Lorentz decomposition:

ok,
(p1,p2) = ’Y“FE(]‘JQ) -1 om FM(kZ)
ok, 2mkH
- TPl + (1 + 2 ) wEa(k?)

Form factors depend only on &% = (p; — po)2.

magnetic or Pauli form factor, F,(0) = a,



@ Backup

47

Form factors of the vertex function

Lorentz decomposition:

ok,
(p1,p2) = ’Y“FE(k’Q) -1 om FM(k2)
ok, 2mkH
- Tt + (2 + 5 ) wFa(k?)

Form factors depend only on k% = (p; — po)2.

electric dipole form factor, Fp(0) gives the C P-violating EDM



@ Backup

47

Form factors of the vertex function

Lorentz decomposition:

ok,
(p1,p2) = ’Y“FE(]‘JQ) -1 om FM(k2)
ok, 2mkH
~ om Y5 Fp(k?) + <’Y“+ 12 >V5FA(/€2)

Form factors depend only on k% = (p; —p,)?.

anapole form factor, P-violating



@ Backup

Model calculations of HLbL

Table 13

. - Lk
Summary of the most recent results for the various contributions to a;;”
our new evaluation for the pseudoscalars and some of the other results.

Lihad . .
8% % 10!, The last column is our estimate based on

Contribution BPP HKS KN MV BP PdRV  N/JN

7r0‘77.n’ 85+13 82.7+6.4 83+12  114+10 - 1144+13  99+16

7, K loops —19+13 —4.5%8.1 - — - —19+19 —19+13

7, K loops + other subleading in N, — - - 0+10 - - -

axial vectors 2.5+1.0 1.7+1.7 - 22+5 - 15410 2245

scalars —6.84£2.0 - - - - —T£7  —T£2

quark loops 2143 9.7+11.1 - - - 2.3 21+3
total 83+32  89.6+£15.4  80+40 136+25 110440 105+26 116439

— Jegerlehner, Nyffeler 2009
e pseudoscalar pole contribution most important
e pion-loop second most important

e differences between models, large uncertainties

48
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