Dispersive Approach to Hadronic Light-by-Light Scattering and the Muon g - 2

Peter Stoffer

arXiv:1402.7081 in collaboration with

G. Colangelo, M. Hoferichter and M. Procura

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

2nd December 2014

Seminar on Particle Physics, University of Vienna

1

- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
- **4** Conclusion and Outlook

1 Introduction

The Anomalous Magnetic Moment of the Muon Status of Theory and Experiment

2 Standard Model vs. Experiment

- Oispersive Approach to HLbL Scattering
- **4** Conclusion and Outlook

Magnetic moment

Introduction

• relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}} \vec{s}$$

 g_ℓ : Landé factor, gyromagnetic ratio

- Dirac theory predicted $g_e = 2$, twice the value of the gyromagnetic ratio for orbital angular momentum
- anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$

Anomalous magnetic moments: a bit of history

• 1928, Dirac: $g_e = 2$

- 1934, Kinster & Houston: experimental confirmation (large errors)
- 1948, Kusch & Foley, hyperfine structure of atomic spectra: g_e = 2.00238(10) ⇒ a_e = 0.00119(5)
- 1948, Schwinger: $a_{\ell} = \alpha_{\rm QED}/(2\pi) \approx 0.00116$
- helped to establish QED and QFT as the framework for elementary particle physics

Anomalous magnetic moments: a bit of history

- 1957, Lee & Yang: parity violation $\Rightarrow \pi^+ \rightarrow \mu^+ \nu_\mu$ produces polarised muons
- 1957: g_{μ} through spin precession experiments
- 1960, Columbia: $a_{\mu} = 0.00122(8)$
- 1961, CERN: establishing muon as a 'heavy electron'
- 1969-1976, CERN muon storage ring: 7 ppm
- 2000-2004, BNL E821: 0.54 ppm
- probing not only QED but entire SM

Electron vs. muon magnetic moments

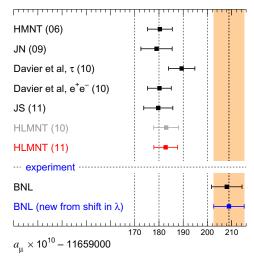
• influence of heavier virtual particles of mass *M* scales as

$$\frac{\Delta a_\ell}{a_\ell} \propto \frac{m_\ell^2}{M^2}$$

• a_e used to determine α_{QED}

- $(m_{\mu}/m_e)^2 \approx 4 \cdot 10^4 \Rightarrow$ muon is much more sensitive to new physics, but also to EW and hadronic contributions
- a_{τ} experimentally not yet known precisely enough

a_{μ} : comparison of theory and experiment



 \rightarrow Hagiwara et al. 2012

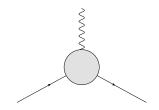
1 Introduction

2 Standard Model vs. Experiment QED Contribution Electroweak Contribution Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Summary and Prospects

3 Dispersive Approach to HLbL Scattering

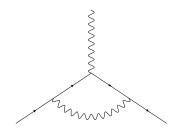
4 Conclusion and Outlook

Interaction of a muon with an external electromagnetic field



Anomalous magnetic moment given by one particular form factor

QED at $\mathcal{O}(\alpha)$

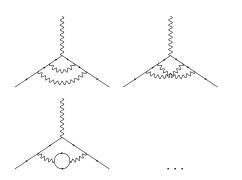


Schwinger term:

$$a_{\mu} = \frac{\alpha_{\rm QED}}{2\pi}$$

QED Contribution

QED at $\mathcal{O}(\alpha^2)$



- 7 diagrams
- Petermann and Sommerfeld 1957: universal part
- full calculation
 1966

QED at $\mathcal{O}(\alpha^3)$

 \rightarrow figure taken from Jegerlehner 2007

- 72 diagrams
- Remiddi et al. 1969: universal part
- Laporta, Remiddi 1996: full calculation

2

QED at $\mathcal{O}(\alpha^4)$ and $\mathcal{O}(\alpha^5)$

- complete numerical calculation of *O*(α⁴) contribution by Kinoshita et al. (took about 30 years)
- full $\mathcal{O}(\alpha^5)$ calculation by Kinoshita et al. 2012 (involves 12672 diagrams!)

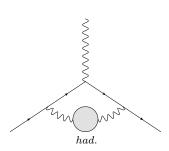
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116584718.95	0.08
Theory total	116591855	59

Electroweak

- contributions with EW gauge bosons and Higgs
- calculated to two loops
- three-loop terms estimated to be negligible

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
EW	153.6	1.0
Theory total	116591855	59

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$



- problem: QCD is non-perturbative at low energies
- first principle calculations (lattice QCD) may become competitive in the future
- current evaluations based on dispersion relations and data

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$

Photon hadronic vacuum polarisation function:

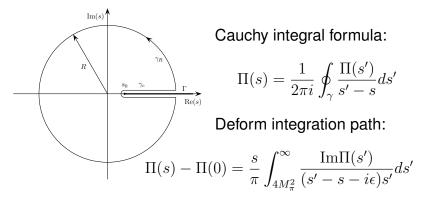
$$\cdots = -i(q^2 g_{\mu\nu} - q_\mu q_\nu) \Pi(q^2)$$

Unitarity of the *S*-matrix implies the optical theorem:

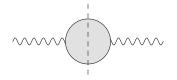
Im
$$\Pi(s) = \frac{s}{e(s)^2} \sigma_{\text{tot}}(e^+e^- \to \gamma^* \to \text{hadrons})$$

Dispersion relation

Causality implies analyticity:



Leading hadronic contribution: $\mathcal{O}(\alpha^2)$



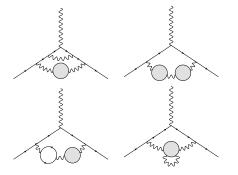
- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section σ_{tot}(e⁺e⁻ → γ^{*} → hadrons)
- one Lorentz structure, one kinematic variable

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$

- at present: dominant theoretical uncertainty
- theory error due to experimental input
- can be systematically improved: dedicated e⁺e⁻
 program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)

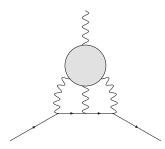
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
LO HVP	6949	43
Theory total	116591855	59

Higher order hadronic contributions: $\mathcal{O}(\alpha^3)$



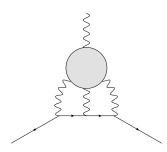
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
NLO HVP	-98	1
Theory total	116591855	59

Higher order hadronic contributions: $O(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- hadronic matrix element of four EM currents
- up to now, only model calculations
- lattice QCD not yet competitive

Higher order hadronic contributions: $\mathcal{O}(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- uncertainty estimate based rather on consensus than on a systematic method
- will dominate theory error in a few years
- "dispersive treatment

impossible"

Standard Model vs. Experiment

	$10^{11} \cdot a_{\mu}$	$10^{11}\cdot\Delta a_{\mu}$	
BNL E821	116592091	63	\rightarrow PDG 2013
QED $\mathcal{O}(\alpha)$	116140973.32	0.08	
$QED\ \mathcal{O}(\alpha^2)$	413217.63	0.01	
QED $\mathcal{O}(\alpha^3)$	30141.90	0.00	
$QED\ \mathcal{O}(\alpha^4)$	381.01	0.02	
$QED\ \mathcal{O}(\alpha^5)$	5.09	0.01	
QED total	116584718.95	0.08	\rightarrow Kinoshita et al. 2012
EW	153.6	1.0	
Hadronic total	6982	59	
Theory total	116591855	59	

2

	$10^{11} \cdot a_{\mu}$	$10^{11}\cdot\Delta a_{\mu}$	
BNL E821	116592091	63	\rightarrow PDG 2013
QED total	116584718.95	0.08	\rightarrow Kinoshita et al. 2012
EW	153.6	1.0	
LO HVP	6949	43	\rightarrow Hagiwara et al. 2011
NLO HVP	-98	1	\rightarrow Hagiwara et al. 2011
NNLO HVP	12.4	0.1	\rightarrow Kurz et al. 2014
LO HLbL	116	40	\rightarrow Jegerlehner, Nyffeler 2009
NLO HLbL	3	2	\rightarrow Colangelo et al. 2014
Hadronic total	6982	59	
Theory total	116591855	59	

a_{μ} : theory vs. experiment

- theory error completely dominated by hadronic effects
- discrepancy between Standard Model and experiment $\sim 3\sigma$
- hint to new physics?

Future experiments

- current experimental determination is limited by statistical error
- new experiments aim at reducing the experimental error by a factor of 4
- FNAL: reuses BNL storage ring
- J-PARC: completely different systematics

BNL storage ring moves to FNAL

BNL storage ring moves to FNAL

 \rightarrow photo: Darin Clifton/Ceres Barge

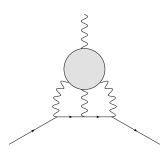
BNL storage ring moves to FNAL

July 26, 2013

→ credit: Fermilab

- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering Lorentz Structure of the HLbL Tensor Mandelstam Representation

How to improve HLbL calculation?



- "dispersive treatment impossible": no!
- relate HLbL to experimentally accessible quantities
- make use of unitarity, analyticity, gauge invariance and crossing symmetry

The HLbL tensor

HLbL Scattering

- object in question: $\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)$
- a priori 138 Lorentz structures
- gauge invariance: 95 linear relations
 ⇒ (off-shell) basis: 43 independent structures
- six dynamical variables, e.g. two Mandelstam variables

$$s = (q_1 + q_2)^2, \quad t = (q_1 + q_3)^2$$

and the photon virtualities q_1^2 , q_2^2 , q_3^2 , q_4^2

complicated analytic structure

HLbL tensor: Lorentz decomposition

Problem: find a decomposition

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

with the following properties:

- Lorentz structures $T_i^{\mu\nu\lambda\sigma}$ manifestly gauge invariant
- scalar functions Π_i free of kinematic singularities and zeros

HLbL tensor: Lorentz decomposition

HLbL Scattering

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

apply gauge projectors to the 138 initial structures:

$$I_{12}^{\mu\nu} = g^{\mu\nu} - \frac{q_2^{\mu}q_1^{\nu}}{q_1 \cdot q_2}, \quad I_{34}^{\lambda\sigma} = g^{\lambda\sigma} - \frac{q_4^{\lambda}q_3^{\sigma}}{q_3 \cdot q_4}$$

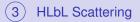
- remove poles taking appropriate linear combinations
- Tarrach: no kinematic-free basis of 43 elements exists
- extend basis by additional structures taking care of remaining kinematic singularities

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- · Lorentz structures manifestly gauge invariant
- crossing symmetry manifest
- scalar functions Π_i free of kinematics
 ⇒ ideal quantities for a dispersive treatment



Master formula: contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\text{HLbL}} = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- \hat{T}_i : known integration kernel functions
- $\hat{\Pi}_i$: linear combinations of the scalar functions Π_i
- five loop integrals can be performed with Gegenbauer polynomial techniques

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

one-pion intermediate state:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

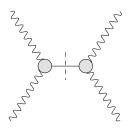
two-pion intermediate state in first channel:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

neglected: higher intermediate states

Pion pole

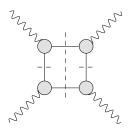


- input the doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$
- dispersive analysis of transition form factor:

→ Hoferichter et al., arXiv:1410.4691 [hep-ph]

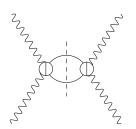
3

Box contributions



- simultaneous two-pion cuts in two channels
- analytic properties correspond to sQED loop
- q²-dependence given by multiplication with pion vector form factor F^V_π(q²) for each off-shell photon (⇒ 'FsQED')

Rescattering contribution



- multi-particle intermediate states in crossed channel approximated by polynomial
- two-pion cut in only one channel
- expand into partial waves
- unitarity relates it to the helicity amplitudes of the subprocess $\gamma^* \gamma^{(*)} \rightarrow \pi \pi$

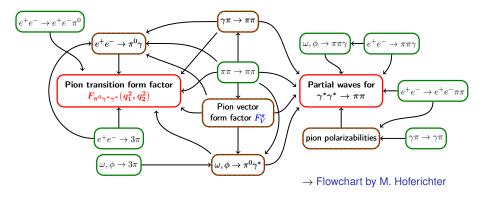
Introduction

- 2 Standard Model vs. Experiment
- **3** Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Summary

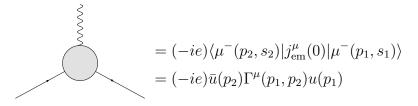
- our dispersive approach to HLbL scattering is based on fundamental principles:
 - gauge invariance, crossing symmetry
 - unitarity, analyticity
- we take into account the lowest intermediate states: π^0 -pole and $\pi\pi$ -cuts
- relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- a step towards a model-independent calculation of a_µ
- numerical evaluation is work in progress

A roadmap for HLbL



Backup

Interaction of a muon with an external electromagnetic field



 $\Gamma^{\mu}(p_1, p_2)$: vertex function

Form factors of the vertex function

Lorentz decomposition:

Backup

5

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

Lorentz decomposition:

Backup

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

electric charge or Dirac form factor, $F_E(0) = 1$

Form factors of the vertex function

Lorentz decomposition:

Backup

$$\begin{split} \Gamma^{\mu}(p_1, p_2) &= \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) \\ &- \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2) \end{split}$$

Form factors depend only on $k^2 = (p_1 - p_2)^2.$

magnetic or Pauli form factor, $F_M(0) = a_\mu$

Lorentz decomposition:

Backup

$$\begin{split} \Gamma^{\mu}(p_1,p_2) &= \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) \\ &- \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2) \end{split}$$

Form factors depend only on $k^2 = (p_1 - p_2)^2.$

electric dipole form factor, $F_D(0)$ gives the *CP*-violating EDM

Lorentz decomposition:

Backup

5

$$\begin{split} \Gamma^{\mu}(p_1, p_2) &= \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) \\ &- \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2) \end{split}$$

Form factors depend only on $k^2 = (p_1 - p_2)^2.$

anapole form factor, P-violating

Model calculations of HLbL

Table 13

Summary of the most recent results for the various contributions to $a_{\mu}^{\text{lbL},\text{had}} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	$_{\rm BP}$	PdRV	N/JN
π^0,η,η^\prime	85 ± 13	$82.7{\pm}6.4$	83 ± 12	$114{\pm}10$	-	$114{\pm}13$	$99{\pm}16$
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	-	-	-	-19 ± 19	$-19{\pm}13$
π, K loops + other subleading in N_c	-	-	-	0 ± 10	-	-	-
axial vectors	$2.5 {\pm} 1.0$	$1.7{\pm}1.7$	-	22 ± 5	-	$15{\pm}10$	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
quark loops	$21\!\pm3$	$9.7{\pm}11.1$	-	-	-	2.3	$21{\pm}3$
total	83 ± 32	$89.6{\pm}15.4$	$80{\pm}40$	$136{\pm}25$	110 ± 40	105 ± 26	116 ± 39

 \rightarrow Jegerlehner, Nyffeler 2009

- pseudoscalar pole contribution most important
- pion-loop second most important
- differences between models, large uncertainties