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Some motivation: value of special angles

It is well known that the

cosine function takes peculiar
values for special angles 9

0<0<w/2)

Are there more such angles?

To be precise, what are the
solutions to the equation

cos (1) = /g2 for q1,¢2 € Q

This is a Diophantine equation ...
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Diophantine equations

Even simple Diophantine equations
can be very hard to solve:

These are equations where the

variables are only allowed to

take discrete values am bt = o

/ a,b,e,n € N

There are infinite solutions for n=1,2 but none
for n>3 according to Fermat’s Last Theorem

In Physics, we deal mostly

with continuous parameters However, there are exceptions
(derivatives, integrations, ...)

As I will point out latter, discrete groups are related to Diophantine
equations, and they have been used in particle physics (for example)
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cos{gqim) — /o5 for g1,05 € B

Coming back to our equation

cos (1) = 5 (€+&*)  where € = exp (iq17) is a root of unity

7 As a formal sum of roots of
cos (17) = /¢ unity, this can only be s

g 0=0 0 (1 2)=0
E+E =2/0 so\ox,\o“ or g (1+w+w?)
o )

|2—4QQ‘:1$C]2:

Tl = kg b et Ty S R Ry

The root of unity £ plus the

root of unity £*2 plus (2 — 4q2)
times the root of wunity 1
equals zero. R\

£2 = —£% 1 2—4g; = 0 =]|qo
\
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Vanishing sums of roots of unity
(1)

This is a problem that has received
the attention of mathematicians

c1§1+cbo + -+, =0

(&; =roots of unity; ¢; =some coefficients)

For it to make sense, the coefficients _
must be restricted to some set (ring) Consider henceforth ¢; € Z (88

L k.
Y ~2 g 3 = We know of course of some vanishing sums of
S v roots of unity with integer coefficients:
$ 52 \ 2
73 . 1—1:0 1+w+w :O
i X ‘ [ R e e e e s
74
o 63 S
2t 6 Are there more vanishing sums?
. 2
‘~..w ”)”53'354‘»
.'-,. Hin --—.-‘ Th . TiE] 71’:)/ et 71_
S w:exp(%) 8= exp (QT) == NG (%)
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Vanishing sums of roots of unity
(1)

Consider formal
sums of roots of — S = Z Giks
unity i=1

should be seen as a vector, with the
basis vectors given by the &;

In this way, S =14+ w+w” and S’ =1+ i+ i%+i° are different,
even thought they have the same value.

If S is a vanishing sum of roots of unity, Factor out rotations
then so is cfS for any root of unity 0, of § and multiplica-
and c € Q tions by ¢ € Q

If S and S’ are vanishing
sums, then so is S + S’ \ Consider only minimal* sums
E (those which do not have any
el e e v vanishing [proper| subsum)
l+i4+¢*+i2=0 X

148+ 52 -+ ,83 i 54 =) / *Not to be confused

with primitive sums

Renato Fonseca



Vanishing sums of roots of unity
(I11)

In Physics, see

Grimus (2013)
It turns out that there are not that

many primitive vanishing sums ...

Theorem. Let S be a non-empty vanishing sum of length at most 9. Then
either S involves 0, Ow and Ow? for some root 0, or S is similar to one of

R; B e
5 5 A A Detail: in this theorem, a root —«
—R3 + Rs b) =w=w 4 B+ B+ 8 +87, is considered to be the same as —1 x («)
Ity c) 1+ v+ + v+ +9° +15,

e L T e T S e S R T e,
LT e R e T N e Bl v
R e G e e R R TS S e B

Bi-(y+9°) R ) 1+ +9° +9° +97 — (wH+w?)(7+19°),

Curiosity: the coefficients of the

roots in these sums are always +1

Ry— (w+w?)Rs h) 1— (w+w?)(B+ 8%+ 8%+ 5. Conway, Jones 1976
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Cyclotomic polynomial

It is known that there are primitive sums of roots of unity
with coefficients different from +1: for example nth cyclotomic
polynomial for big n’s.

P, (z) = 11 )

nth primitive

roots & =——_ 4 is the smallest positive
integer such that (&;)" =

For any primitive n-th root of unity &;,

®,, (&;) is a primitive vanishing sum of roots of unity

e el L e e DT s M et T e
yet ... 4334 820 0810 28 026 040 022 2200 1Ty 16 ) 15
T T L R b e B S ) e i e L B

... S0 there are for sure primitive vanishing sums of roots of unity with length >32

and with coefficients of modulus different from one
Renato Fonseca
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Deciding if a number is a root of unity
(D)
¥y Clearly l¢| =1
V8 But is this number a root of unity?

Consider the number ¢ =

For ¥ to be a root of unity, its complex phase

But is it? How can we check?
must be of the form ¢m, ¢ € Q

% arg o = —0.384973271918 - - :
Sr2upike
—3 = —0.375
—2 = —0.384615 - - -
Lo ol
— 4088 — —().384973249 - - -

Use the polynomial P for which P (p) =0
to extract information on ¢
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Deciding if a number is a root of umty
(II) Changing the sign of the real and/oz

imaginary part of ¢ will always be allowed

1 — /7 ; ;/_+z\/_

In fact, instead of ———— consider the more general case £ =
VN1 + no

V8
[n/,; € Ng with (n1,n2) # (0,0) ]

5 This is a very simple vanishing sum of
ny + ne ; ¢ BiCap b o]
(m 2) (5 1 ) g 1) roots of unity with integer coefficients
(very similar to the one in slide 6)

Solutions: (n1,m2) = (n,0),(0,n), (n,n), (n, %n) : (%n, -n)

Considering — signs in the Re/Im parts,
we get all 8th- and 12th-roots of unity:

L R I B e R e

] B e B T 5 ; 5

One can show this in other ways Bu (2014)
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Lepton mixing

{ AT 0
Uit (6o 503
[lEssghncon

Parameterization

O1s = 34.6° 2 1,0°
05 = 48.9°L9

013 = 8.8° £ 0.4°

-+
—
—
R
Q
—
—
r—
—

i
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kg:n b= g sl et Ve Uel UeZ UeS 41
o0 T R 178 e ( v

= B U U U

5 © Vr 71 T2 T3 3

if neutrinos are Majorana particles

C13 0 8136_7:6 GitunSq o 0 1: 0 0
s e —s12 12 0 | | 0 €75 0
~+8136i5 0 e ) 0 Q= 0 0 eiagl

Xy P A e S b el
Ay | = 248088 (x10-2 oV?)

o/m = 1.34J_r8:g§ Forero, Tértola,
Valle (2014)
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Flavour symmetries

We do not understand family replication
and the flavour structure of the Standard
Model (both of quarks and leptons)

Given that symmetry has such an
importance in fundamental physics,
maybe it plays a role in this too ...

What kind of symmetry group?

Discrete Continuous

Global
ety 7 :
é’” g A SU2) SU(3) SU(3)"
n o) 7 2
? SO(18
T'  A(3n?) SO(3) (18)
A(6n?)
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Residual lepton flavour symmetry

(I) Lam 2008

Tell us assume that neutrinos

7 I i
e T 3 My h. :
are Majorana particles Zmass CpMlr + oYL ¢ v+ he

Ignore (p: a flavour

€L - TEL |25 0 an 5 ST/L
symmetry transforms ...
g
' 5 it (0)
There is always a [/(1)? symmetry leRried skl =2 e Eies 0 A (00)
associated to I, = ]L/Igfwg: 0 [t € e, P

in the basis where 71, is diagonal

ol T et €
There is always a Z; symmetry ol Ao e S B s e
associated to M ,: B ] e

in the basis where M, is diagonal
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Residual lepton flavour symmetry
(1)

However, lepton mixing implies that //, and M, are not
simultaneously diagonal, so either 7" or S must be rotated by U/

Without loss of generality /\SO) Gt
take ... b 0
we can take APi i E 0 )\g) 0 S
e
$1- 5000 -1 0 0 —1.0 0
S Q=100 G ez 0 +1:0 Sz = 0:i=100

0 0 =1 0 0 -1 b G e
Importantly, with these matrices the But for that to happen, the eigenvalues
symmetry enforces® U as the lepton of 7' must be distinct, otherwise we can
mixing matrix use two I’ matrices

*It can be shown that only |U\z is enforced,
and only up to row/column permutations

When does {7, S;} ?
generate a finite group? ®
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Example: tri-bimaximal mixing (TBM)

Until the conclusive Daya Bay/RENO measurement of a non-zero An et al. 2012
reactor angle, the tri-bimaximal mixing ansatz was quite good: Ahn et al. 2012
BERni]
e
Urpm = ? ? TZ{ Harrison, Perkins, Scott 2002
AR AB D

What is the symmetry group associated to TBM?

In the paper “The unique horizontal symmetry of leptons”, C.S. Lam (2008),
the answer given is S

Let us pause to discuss why this is a non-trivial result: to arrive at this answer
one needs to make a scan over all possible eigenvalues of the I' generator. These
must be roots of unity (so there is a “discreteness” in the problem)

Renato Fonseca
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The finite symmetry group of TBM
(D)
The author carefully searched all the irreducible

representations of all the finite subgroups of SU(2)
and SU(3) to find adequate representations

How was this result
proven?

The list of groups and representations was
taken from the following references:

There are subtleties to this
Miller, Blichfeldt, Dickson (1916) classification of groups
Blichfeldt (1917)
Fairbairn, Fulton, Klink (1964)
Bovier, Liiling, Wyler (1981)
Luhn, Nasri, Ramond (2007)

Ludl (2009, 2010, 2011)
Zwicky, Fischbacher (2009)
Grimus, Ludl (2013)

Various models had been proposed So what is going on? S4 should be
with TBM using the group A, seen as the effective symmetry
(which does not contain 5. ) associated to TBM

Grimus, Lavoura, Ludl (2009); Lam (2009)
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The finite symmetry group of TBM
(1)

There is no easy way to present the
original proof of the connections However, there is a quick '
between TBM and S, alternative demonstration

Fonseca, Grimus (2014)

The eigenvalues of all group matrices must be roots of unity:
the reason is that for any ¢ € GG finite, g" = .
Then consider the matrices 1'S; with eigenvalues = )\EJ )

From the trace of 1'S>, we get the following vanishing sum of roots of unity:

X0 +20 420 4307 +20 + () =0

eigenvalues of T’ eigenvalues of  T'S

The solutions are (according to what was discussed previously):
@ = B S G e g X

(b) (Alo)v)\QO)?ABO)) i g (1,&),&) ) and ()\52 :/\52 )\(32)) o 5’ (liw:wz) /

Plugging in these eigenvalues in 7 yields the S4 group

Renato Fonseca b O T B ) 20



Classitying all mixing patterns
The challenge

A i
PR i)

Just now, we have fixed the mixing matrix U

and scanned over the eigenvalues of 7T’
We wanted to scan over everything:

both U and the eigenvalues of T’

How to do it? One could try again to search through all SU(3) finite subgroups.

However, we realized that the complete list of possibilities could be found relying

just of some mathematical results related to roots of unity.
Fonseca, Grimus (2014)

Advantages: there is no need to rely on (I) previous listings of groups and
representations nor (II) group/representation theory in general (e.g., that
irreducible an 3-dimensional representation is needed, ...).

The result can be understood in an analytical, self-contained way.

Renato Fonseca 21k



sin?(6;3)

Computer scans

Computer scans have been made, using the GAP program

to try and catalogue the possible lepton mixing patterns

Parattu, Wingerter (2011)
Holthausen, Lim, Lindner (2013)

From a scan of all groups with
order smaller than 511 (1536)
More than a million groups in total

0.1 02 0.3 0.4 0.5 0.6
LS REE I i OSSP B4 N e 020

0.8

0.15 -

0.6

0.10

]
sin’(6;3)
| 2

0.4

0.05

02

Still, these scan are not

complete and they do not
provide an analytical

understanding of the problem |

-
0'0%‘1 0.2 03 04 0.5
A 5
sin(6,) sin?(6;2)

Renato Fonseca
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Obtaining the |75,

Consider the 9 matrices Y (%) — TTSZ-TSJ- (i5)
detyr o sl

The eigenvalues of Y "7) are 1, \() (A(1))* because ... i L
Sily g, — (wm)

1
It is easily seen that |T,,;J,'|2 = (1 +-Re )\(”))

In other words, from the eigenvalues of Y (%)
we get the absolute value of the entries of 7'

]«

(/\(kj) i )\(kj)*) L )

3
N e

But there is a way PR k=1
to get the A7), 3 . s : i
N Tl N (/\(@k) + \08) ) £2:=0
k=1 k=1
These are sums of roots of unity of the form _
(2, w, w)
Z Ak+)\k +2—0 s ()\17)\27 )\3): W, /83 62)
3 Solutions (=1, A\, =X)

Renato Fonseca 24



Obtaining the |75,

Taking into account that 7" is a unitary, we Column and row
get just 5 possible basic forms for |7| permutations are allowed
5 Gl Gl 0 % % 1 V5-1 V541
Dt BB 2 1 4
e \ii plej ok T) = f et 1T = | 56+ 1 61
‘ | fat RO D £ A 3 4 o 4
iRy SE ey P A ]
2 7 S At D 2 4 4 2
e
2 e 42
o) 2 Jeip) 0
Tl =1 3 \/Z_l \[1“ T|=1 0 cosf sinf 0 =qm, g€ Q
By i ey e 0 sin@ cos@
2 4 4 Reminder
. hiz : AN ioghE
However, |7'| is To get the mixing matrix [/ Fi it E) ZO o |
not enough we need the missing phases of 7' ek AL
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All (representation of the) elements of

the group must have one of these forms




Different row/column permutations

ﬂ

=
N
i

i
W
I

giride
Daifl)
o
G ot f bt W 4
St e
SR L R
g T
2 )/
Wiy e
D A )
FUINE
Bhacks A Oy [k 2

—

\T|A T

\T|B o

dETTE L 0
0 cosf sind
0 sinf cosé@

0 (il
cosfl sinf 0
sinf} cosf 0

T R e T ST
T fhgad el et A e S ) Dbl ie/B L
e e s e
PRCHE e e Enphlbisl, Y Rt e
PRlmgts S H e, P T S
Pk T e T 1 V541 V51
2 4 2 4 4
VB Falit bl B raliin ik
4 2 4 4 4 2
A TS e e e e Tl el
1 1 2 7} 2 1
R e e \/54—1 \/54+1 %
4 2 4
VE-1l B+l 1 Hales % \/54—1 \/54+1
e VBl L/
5 5 7} 2 1
1 1 1 i 1 A
g 5 it it 3 )
= | T ga | | T s s
e \ 150 /5—1 \/5+1)
2 1 4 2 4 4
i 1 1 T S
R e i et
R e
4 2 4
ST b T h \\/5—1 1 \/§+1)
4 2 A 4 2 4
It is enough to consider these cases

Renato Fonseca

26



Adding internal phases

To make T unitary

It is easy to figure out the internal phases which will make 7" unitary

i el 1 il s o el R S N T Y
e e s e
e 2 A, = el a3 5+1 1 Bty
TA_ 290 \/§ 299 TA_ \/5 2 ) TA_ 4 5 q
N i e o e e VBl B i
5P e /B 5) : : )
LPO 1 : B i 0 0
e V2 2 2 T : i
s B A e L= 0 CO.bQ sin 0
E £ 4 0 —sinf cosf
1,2 +5+1 AT
2(,<J 4 W 4

.. and the same for the s 1 ‘“\/@g\ﬁ i %g

other permutations

Recall that these are not roots of unity
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But ... not all forms are allowed

With extra considerations, we will see that form 1 and 4 (all
row/column permutations) do not generate finite groups

1 A/6-1 _ /541
i \/_2 4 \f4
nl 541 1 e
La 4 2 4
G bR ) iy
4 4 2
1 0 0

0 cos@ sinf
0 —sinf cost

Interestingly, we are then left with 7”s with no internal complex phases

Renato Fonseca
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Forms 1 and 4: not valid

S 1
S o Some external phases
% o’ % £ % 2 | diag (K1, k2, k3) I (no need to consider an extra
lp -1 % phase matrix on the left)

A priori these x; complex phases are completely general

Theorem. Let G be a finite group with T' € Gy and let ¢ be one of the numbers
1/2, (/5 +1)/4 or (v/5 —1)/4. Moreover, T;; is a diagonal element and Ty,
Ty are off-diagonal elements of T'. Then the following holds:

1 /
‘Tjj| =C. = Tjj = c§, |Tle2kl = Z =TTy = %

o H /
with roots of unity £, £ (we shall see a sketch of the proof shortly)

Kikow® F £, Not a root of unity

What does this imply ikt —

for form 1A? Hm?’(i 1 5}3 —> (det 7y 1+3\/_ x (root of unity)
koksp® F E5a

1

Some roots of unity Contradiction
Renato Fonseca




Forms 1 and 4: not valid

&
S
Q)@ Theorem. Let G be a finite group with T’ € Gy and let ¢ be one of the numbers
& 1/2, (/5 + 1)/4 or (v/5 — 1)/4. Moreover, T;; is a diagonal element and Ty,
T are off-diagonal elements of T'. Then the following holds:
1 &

|Tjj| =Cc = Tjj R CS, |TleZk‘ i Z = Tyl = Z

with roots of unity &, &'.

Theorem. Let ¢ be an n-th root of unity, i€ ¢ = e2™/™ andNet S = ZZ;S apCk
be a sum with integer coefficients ay. S| =1, then S is itsXlf a root of unity.

Sum of roots of unity

| s, + o7} 213,

1 *
I A T S NS SR

(\/gil) [TT(TSj)+TfT]—2Tjj(\/gil) o

2 9 (because 7’ is unitary)

Sum of two 5th-roots of unity Forms 1A. 1B. 1C. 4A. 4B. 4C. 4D
B e can all be shown to be invalid ‘ :
enato Fonseca : 7 7 7 30




The valid cases

We can obtain these phases

because we know what forms
both |7 and |T'|° can take

Corresponding to three flavour mixing, we get 17
sporadic mixing patterns, and one infinite family
Infinite family

For the remaining forms, we
still need the external phases

Wi Zm/g) x S3, m = lem(2,n)

Sporadic cases o
when 9 divides n

Associated

groups: Ay 51 As

PSL(2,7) % (360 x 3) A(6m?), m = lem(6,n)/3

otherwise

About the sporadic cases:
~ 0.035

\ Smallest non-zero ... too large to be
value in all sin® 614
sporadic cases...

1 2
P = [T6 - va) Liat o 4
13 (0T 15 (5 v21)

DY | =

°K\_
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The infinite family

1 1 1+ Reo 1 —Reo
e 3 1 1+Re(wo) 1-—Re(wo)
1 1+ Re (wza) 1 — Re (QJQO')

o : any root of unity

Mentioned before in the literature:

Taking into account that we can make 36
row/column permutations of |U |2, not all
distinct o’s will lead to distinct |U|?

Tri-bimaximal mixing
is a special case of this Re (06) =
family of patterns

Renato Fonseca
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1
L& s Loy
3

This is the only infinite
family of mixing patterns
involving three flavours

Toorop, Feruglio, Hagedorn (2012)
Holthausen, Lim, Lindner (2013)
Grimus, Lavoura (2014)

Indeed, & and 5’ will only
lead to distinct mixing
patterns if and only if

Re (0°) # Re (07°)

el O
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All mixing patterns in plots

1

[~p]
<
o™
g
W
0 0.2 0.4 0.6 0.8 1
sin? 015
Dots: sporadic cases
Red/Green/Blue lines: different column : bors Rea it e
T Ca e e 3 1 1+Re(wo) 1—Re(wo)
; REEETRe (wga) Ti=iRe (w‘)n)

permutations of the infinite series
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All mixing patterns in plots

0.7 0.0275
1_07
0.6
0.6
<
R
s}
05
0.4 L 0.4
{03
i A3, 0.36 0.40

0.28
SiIl2 912

Numbers on red line: Re (U 6)

_ 1 1-floReg 1—Reo
(| 2 1 1+Re(we) 1-—Re(wo)

Concrete prediction:
053 is not maximal

30 allowed

[

1 1+ Re (wgcr) 1 — Re (wzcr)
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Summary

Finite symmetries have been
used to constrain the lepton
mixing matrix to a mass

The flavour structure of the
SM remains a mystery

independent form

In a recent work, we did such
an analysis, relying on simple
mathematical results related to
roots of unity

There was no systematic

study of all mixing matrices
achievable in this way

The only phenomenologically viable case is the infinite series of mixing patterns with ...
v 8 = 0, sin? 055 ~ 0.4, 0.6

72&/(% %ﬂa 36
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