

Semileptonic B decays at the Belle experiment

Christoph Schwanda Institute of High Energy Physics Austrian Academy of Sciences

Seminar on Particle Physics SS 2014 Vienna University, March 4, 2014

- A short introduction to the Belle experiment at KEK
- Measurements of semileptonic B decays at the B factories and determination of |V_{cb}| and |V_{ub}|
- The Belle II upgrade
- Prospects for semileptonic B decays at Belle II

The Belle experiment at KEK

1999 – 2010: B factory at KEK (Japan) Linac **KEKB** double ring e⁺e⁻ collider $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ **Belle detector** • World largest B meson sample ~771 million BB events

~400 Belle physics publications

Luminosity at B factories

Cabibbo-Kobayashi-Maskawa quark mixing

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) \, = \, {f V} \, \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$$

- W couples to the weak eigenstates
- Charged current processes can change quark flavour
- CKM matrix elements appears at the quark-W vertex

 $-\mathcal{L}_{W^{\pm}} = rac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\mathrm{CKM}})_{ij} \ d_{Lj} \ W^{+}_{\mu} + \mathrm{h.c.}$

The main goal of the B factories was...

... to confirm the CKM mechanism, as established by M. Kobayashi and T. Maskawa in the year 1973

$$\begin{split} V_{\rm CKM} &= & \text{Wolfenstein parametrization of V}_{\rm CKM} \\ \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{split}$$

- V_{CKM} contains not only coupling constants of weak transitions
- But also a complex phase, responsible for all CP-violating phenomena in the SM

The CKM unitarity triangle

Review of semileptonic B decays

March 4, 2014

Leptonic B decay

Why study semileptonic B decays...

... because they are the best way to measure the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$, two fundamental parameters of the SM

 $d\Gamma \propto G_F^2 |V_{qb}|^2 \left| L_\mu \langle X | \bar{q} \gamma_\mu P_L b | B \rangle \right|^2$

|V_{cb}| from exclusive decays

$$w = \frac{P_B \cdot P_{D^{(*)}}}{m_B m_{D^{(*)}}} = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$$

$$\mathsf{B} \to \mathsf{D}^* \mathsf{I}_{\mathcal{V}} \qquad \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \sqrt{w^2 - 1} \, \chi(w) \mathcal{F}^2(w) |V_{cb}|^2$$

$$\mathsf{B} \to \mathsf{DIv} \qquad \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \mathcal{G}^2(w) |V_{cb}|^2$$

- Theory input: Form factors F(1) and G(1) at zero recoil (w=1) from lattice QCD calculations
- Experimental method: Measure the differential width dΓ as a function of w and extrapolate to zero recoil (typically assuming a parameterization of the form factors)

 $B^0 \rightarrow D^{*-}I^+\nu$ at Belle

[W. Dungel, CS, PRD 82, 112007 (2010)]

BELLE

- 711/fb of Belle Y(4S) data
- About 120,000 reconstructed $B^0 \rightarrow D^{*-}l^+\nu$ decays
- Fit in 40 bins of w, cos $\theta_{\rm I}$, $\theta_{\rm V}$ and χ to obtain HQET F.F. parameters
- Dominant experimental systematics: tracking

 $\begin{array}{rcl} \mathcal{F}(1)|V_{cb}| &=& (34.6\pm0.2\pm1.0)\times10^{-3}\\ &\rho^2 &=& 1.214\pm0.034\pm0.009\\ R_1(1) &=& 1.401\pm0.034\pm0.018\\ R_2(1) &=& 0.864\pm0.024\pm0.008\\ &\chi^2/ndf &=& 138.8/155 \end{array}$

|V_{cb}| from inclusive decays

$$\mathbf{B} \to \mathbf{X} \mathbf{I} \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative)
 c_i: coefficients (perturbative)
- Parton-hadron duality → the hadronic ME depend only on the initial state

	Kinetic scheme	1S scheme
	[JHEP 1109 (2011) 055]	[PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	$λ_1$, $λ_2$
O(1/m ³ _b)	$ρ_{D}^{3}$, $ρ_{LS}^{3}$	ρ ₁ , τ ₁₋₃

Moments of the E₁ and M²_X spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

• The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \, \mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• The nth moment of the (truncated) M²_x spectrum

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}{\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine $|V_{cb}|$ from the semileptonic branching fraction

Global fit (kinetic scheme)

[Phys.Rev.D89, 014022 (2014)]

th. corr. scenario	m_b^{kin}	m_c	μ_π^2	$ ho_D^3$	μ_G^2	$ ho_{LS}^3$	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
D [11]	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
$\overline{m}_c(3 { m GeV})$	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86
A [11]	4.540	0.987	0.454	0.167	0.234	-0.078	10.45	41.85
$\overline{m}_c(3{ m GeV})$	0.014	0.013	0.035	0.022	0.040	0.085	0.13	0.74
B [11]	4.542	0.987	0.457	0.184	0.290	-0.135	10.51	42.15
$\overline{m}_c(3{ m GeV})$	0.017	0.013	0.056	0.035	0.056	0.095	0.14	0.77
C [11]	4.539	0.987	0.415	0.155	0.336	-0.147	10.65	42.45
$\overline{m}_c(3{ m GeV})$	0.022	0.013	0.073	0.043	0.066	0.098	0.16	0.86
D [11]	4.538	0.986	0.415	0.153	0.336	-0.145	10.65	42.46
$\overline{m}_c(3 { m GeV}), m_b$	0.018	0.012	0.078	0.045	0.064	0.098	0.16	0.84
D [13]	4.549	0.996	0.413	0.154	0.339	-0.146	10.65	42.40
$\overline{m}_c(3{ m GeV})$	0.029	0.026	0.078	0.045	0.066	0.098	0.16	0.87
D [11]	4.548	1.092	0.428	0.158	0.344	-0.146	10.66	42.24
m_c^{kin}	0.023	0.020	0.079	0.045	0.066	0.098	0.16	0.85
D [11]	4.553	1.088	0.428	0.155	0.328	-0.139	10.67	42.42
$\overline{m}_c(2 \text{GeV}), m_b$	0.018	0.013	0.079	0.045	0.064	0.098	0.16	0.83

$\overline{m}_c(3{ m GeV})$	7)	$m_b^{kin}(1{ m GeV})$	$\overline{m}_b(\overline{m}_b)$
0.986(13)	11]	4.541(23)	4.171(38)
0.986(6)	12]	4.540(20)	4.170(36)
0.994(26)	13]	4.549(29)	4.179(42)

- [11] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110 [hep-ph]].
- I. Allison *et al.* [HPQCD Collaboration], Phys. Rev. D78, 054513 (2008)
 [arXiv:0805.2999 [hep-lat]]; C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel and G. P. Lepage, [HPQCD Collaboration] Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285 [hep-lat]].
- [13] B. Dehnadi, A. H. Hoang, V. Mateu and S. M. Zebarjad, JHEP 1309 (2013) 103 [arXiv:1102.2264 [hep-ph]].

V_{cb}|

Exclusive (D^*Iv)

 $|V_{cb}| = (39.48 + - 0.50_{exp} + - 0.74_{th}) \times 10^{-3}$ F(1) = (0.908 + - 0.017) [arXiv:1011.2166]

Inclusive (kinetic) $|V_{cb}| = (41.88 + /- 0.73) \times 10^{-3}$ HFAG preprint [arXiv:1207.1158]

 Exclusive and inclusive agree at the level of ~2 sigma

$B \rightarrow D^{**} lv$ mystery

Charm state X _c	$\mathcal{B}(B^+ o X_c \ \ell^+ \ u)$
D	$(2.31\pm 0.09)\%$
D *	$(5.63 \pm 0.18)\%$
$\sum D^{(*)}$	$(7.94 \pm 0.20)\%$
$D_0^* o D \pi$	$(0.41 \pm 0.08)\%$
$D_1^* o D^* \; \pi$	$(0.45\pm 0.09)\%$
$D_1 o D^* \ \pi$	$(0.43 \pm 0.03)\%$
$D_2^* ightarrow D^{(*)} \pi$	$(0.41 \pm 0.03)\%$
$\sum D^{**} o D^* \pi$	$(1.70 \pm 0.12)\%$
$D \pi$	$(0.66 \pm 0.08)\%$
$D^* \; \pi$	$(0.87 \pm 0.10)\%$
$\sum D^* \pi$	$(1.53 \pm 0.13)\%$
$\sum D^{(*)} + \sum D^* \pi$	$(9.47 \pm 0.24)\%$
$\sum D^{(*)} + \sum D^{**} \to D^{(*)}\pi$	$(9.64 \pm 0.23)\%$
Inclusive X _c	(10.92 \pm 0.16) %

Sascha Turczyk CKM 2012 workshop broad states $(0.86 \pm 0.12)\%$ narrow states $(0.84 \pm 0.04)\%$

- Inclusive-exclusive gap of (1.45 +/- 0.29)%
- 1/2 vs. 3/2 puzzle
- Belle II might clarify the situation by measuring $B \rightarrow D^{(*)}n\pi l\nu$

Determination of |V_{ub}|

Exclusive $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$

- Form factor f₊ from lattice QCD [PRD73, 074502; PRD79, 054507] or from QCD sum rules [PRD83, 094031; PRD 71, 014015]
- InclusiveAlso based on the OPE [NPB699, 335; JHEP01, 097; $B \rightarrow X_u lv$ JHEP10, 058]
 - Experimental selections can comprise the convergence of the OPE → shape function

$B \rightarrow \pi l \nu$ untagged

[PRD 86, 092004 (2012)]

- 416/fb of BaBar Y(4S) data
- Reconstruct only πe/πµ, infer neutrino momentum from p_{miss} (loose neutrino reconstruction technique)
- About 12,000 signal events, S/N ~0.1
- Partial branching fractions obtained in 12 q² bins
- Systematics: detector effects, b → u background

• FF parameterization: Boyd-Grinstein-Lebed

$$f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\phi(q^{2},q_{0}^{2})} \sum_{k=0}^{k_{max}} a_{k}(q_{0}^{2})[z(q^{2},q_{0}^{2})]^{k} \qquad z(q^{2},q_{0}^{2}) = \frac{\sqrt{m_{+}^{2}-q^{2}}-\sqrt{m_{+}^{2}-q_{0}^{2}}}{\sqrt{m_{+}^{2}-q^{2}}+\sqrt{m_{+}^{2}-q_{0}^{2}}}$$

- Combined fit with FNAL/MILC lattice data yields
 |V_{ub}| =
 (3.25 +/- 0.31) x 10⁻³
- Alternative extractions of |V_{ub}| (using LCSR/LQCD in regions of q²) consistent with the combined fit

New Belle hadronic tag

$$\mathcal{I}_{\text{miss}}^2 = \left[p(\text{Beam}) - \left(p(B_{\text{tag}}) + p(\text{visible}) \right) \right]^2$$

[NIM A654, 432 (2011)]

- New hadronic tag based on Neurobayes
- 2-3x statistical gain over previous analyses

 $B \rightarrow \pi l v$ with hadronic tag

BELLE

• 703/fb of Belle Y(4S) data

• Hadronic tag

- Yield extracted from M^2_{miss} in 13 (7) bins of q^2 for $B^0 \rightarrow \pi^+ l \nu (B^+ \rightarrow \pi^0 l \nu)$
- Main systematics: tag calibration

Xu	Yield	\mathcal{B}	$\times 10^4$	
π^+	461±28	1.49 ± 0	0.09 ± 0.07	
π^0	230±22	0.80 ± 0	0.08 ± 0.04	
Xu	Theory	q^2 , GeV/ c^2	$ V_{ub} imes 1$.0 ³
	LCSR1	< 12	$3.30\pm0.22\pm$	$0.09^{+0.35}_{-0.30}$
π^0	LCSR2	< 16	$3.62\pm0.20\pm$	$0.10^{+0.60}_{-0.40}$
	HPQCD	> 16	$3.45\pm0.31\pm$	$0.09^{+0.58}_{-0.38}$
	FNAL/MILC	> 16	$3.30\pm0.30\pm$	$0.09\substack{+0.36\\-0.30}$
	LCSR1	< 12	$3.38\pm0.14\pm$	$0.09^{+0.36}_{-0.32}$
π^+	LCSR2	< 16	3.57 \pm 0.13 \pm	$0.09_{-0.39}^{+0.59}$
	HPQCD	> 16	3.86 \pm 0.23 \pm	$0.10^{+0.66}_{-0.44}$
	FNAL/MILC	> 16	$3.69\pm0.22\pm$	$0.09^{+0.41}_{-0.34}$

March 4, 2014

V_{ub}

Exclusive (BCL fit)

 $|V_{ub}| = (3.28 + - 0.29) \times 10^{-3}$

Inclusive (BLNP)

 $|V_{ub}| = (4.40 + - 0.15_{exp} + - 0.20_{th}) \times 10^{-3}$

HFAG preprint [arXiv:1207.1158] + web updates

 Exclusive and inclusive agree at the level of ~3 sigma

Right-handed currents

- Add right-handed currents $(|V_{ub}|=|V_{ub}^{L}|)$
 - $B \rightarrow \pi |v \text{ goes as } |V_{ub}^{L} + V_{ub}^{R}|^2$
 - B $\rightarrow \tau \nu$ goes as $|V_{ub}^{L} V_{ub}^{R}|^2$
 - B \rightarrow X_uIv goes as $|V_{ub}^{L}|^2 + |V_{ub}^{R}|^2$
- Can fit the data with ~17% RHC contribution

The Belle II upgrade

Energy Frontier

Belle II search channels for NP

Search for the charged Higgs boson with $B^+ \rightarrow \tau^+ \nu$

τ lepton flavor violation

- Neutral Higgs mediated decay
- Important when Msusy >> EW scale

mode	Br(τ → μγ)	$Br(\tau \rightarrow 3I)$
mSUGRA + seesaw	10-7	10 ⁻⁹
SUSY + SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM + seesaw	10 ⁻⁹	10-10
Non-universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY + Higgs	10 ⁻¹⁰	10 ⁻⁷

March The full range of τ LFV modes is only accessible at a Super B factory! 34

Belle II physics sensitivity [arXiv:1002.5012[hep-ex]]

Observable	Belle 2006	SuperK	EKB	†LI	ICb
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	(10 fb ⁻¹)
Leptonic/semileptonic B decays					
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 \mathcal{B}_{\mathrm{SM}}$	$4.3 { m ~ab^{-1}}$ for 3	5σ discovery	-	-
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%	-	-
${\cal B}(B^0 o D au u)$	-	30%	10%	-	-
LFV in τ decays (U.L. at 90% C.L.)					
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5	-	-
${\cal B}(au o \mu \eta) \; [10^{-9}]$	65	5	2	-	-
${\cal B}(au o \mu \mu \mu) \; [10^{-9}]$	21	3	1	-	-
Unitarity triangle parameters					
$\sin 2\phi_1$	0.026	0.016	0.012	~ 0.02	~ 0.01
$\phi_2 (\pi \pi)$	11°	10°	3°	-	-
$\phi_2 \ (\rho \pi)$	$68^{\circ} < \phi_2 < 95^{\circ}$	3°	1.5°	10°	4.5°
$\phi_2 \ (\rho \rho)$	$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-
ϕ_2 (combined)		2°	$\lesssim 1^{\circ}$	10°	4.5°
$\phi_3 (D^{(*)}K^{(*)})$ (Dalitz mod. ind.)	20°	7°	2°	8°	
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°	5-15°	
$\phi_3 \ (D^{(*)}\pi)$	-	18°	6°		
ϕ_3 (combined)		6°	1.5°	4.2°	2.4°
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)	-	-
$\bar{ ho}$	20.0%		3.4%		
$ar{m{\eta}}$ March 4, 2014	15.7%		1.7%		

March 4, 2014

Compare the Parameters for KEKB and SuperKEKB

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam	
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0	
β _y * (mm)	10/10	5.9/5.9	0.27/0.30	
β_x^* (mm)	330/330	1200/1200	32/25	
ε _x (nm)	18/18	18/24	3.2/5.3	
$\epsilon_{y}^{}/\epsilon_{x}^{}$ (%)	1	0.85/0.64	0.27/0.24	
σ _γ (μm)	1.9	0.94	0.048/0.062	
ξγ	0.052	0.129/0.090	0.09/0.081	
σ _z (mm)	4	6 - 7	6/5	
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6	
N _{bunches}	5000	1584	2500	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80	

Nano-beams are the key (vertical spot size is ~50nm !!) March 4, 2014 This is not a typo

Belle II Detector

We are here.

K. Akai

Belle II map (as of Nov 2013)

23 countries/regions, 97 institutions

~580 collaborators, ~220 from Europe

42

Prospects for semileptonic B decays

General comment

- Two aims at Belle II
 - Reduce the uncertainties on $|V_{cb}|$ and $|V_{ub}|$
 - Understand the reason of the discrepancy between inclusive and exclusive (or firmly establish it → NP)
- Strategy
 - Use only the theoretically/experimentally cleanest methods
 - Provide consistency checks for theory/experiment

Prospects for |V_{cb}| at Belle II

- Tagged measurement of $B \rightarrow D^* |v \text{ and } B \rightarrow D |v \text{ will}$ yield $|V_{cb}|$ with a similar level of precision
- Fit with lattice data at different kinematic points?

Expected relative uncertainty in $|V_{cb}|$ from $B \rightarrow D^* |v|$

Sample	Stat	Syst	Th	Total
711/fb	0.6	3.0	1.8	3.6
5/ab	0.2	1.5	1.5	2.2
50/ab	0.1	1.1	1.0	1.5

lattice prospects from http://www.usqcd.org/documents/13flavor.pdf

March 4, 2014

Prospects for |V_{ub}| exclusive at Belle II

• The tagged measurement of $B \rightarrow \pi l \nu$ reaches a similar precision than the untagged one

Expected relative uncertainty in $|V_{ub}|$ from $B \rightarrow \pi l v$

Sample	Stat	Syst	Th	Total	
605/fb	2.7	2.2	8.7	9.4	unt
5/ab	0.9	1.1	4.0	4.2	00 00 00
50/ab	0.3	0.8	2.0	2.2	ed
711/fb	5.8	2.5	8.7	10.8	t
5/ab	2.2	1.3	4.0	4.7	BBB
50/ab	0.7	1.0	2.0	2.4	d

lattice prospects from http://www.usqcd.org/documents/13flavor.pdf

Prospects for |V_{ub}| inclusive at Belle II

• We can measure inclusive observables in $b \rightarrow u$ and confirm the theory description (similar to $b \rightarrow c$)

Sample	Stat	Syst	Th	Total
605/fb	4.5	4.1	4.5	7.6
5/ab	1.6	2.6	4.5	5.4
50/ab	0.5	2.3	4.5	5.1

Expected relative uncertainty in |V_{ub}| inclusive

Measurement of $B \rightarrow \tau v$

- 703/fb of Y(4S) data
- 4 signal tau modes: $\tau \rightarrow e\nu\nu$, $\mu\nu\nu$, $\pi\nu$, $\rho\nu$
- New hadronic tag (sample x3 compared to 2006 analysis)
- 2d fit to E_{ECL} and M²_{miss} (2006: E_{ECL} only)
 - Improve sensitivity by 20%
 - More robust against peaking backgrounds

- Signal yield:
 62 +23/-22 +/- 6
 (3σ including systematics)
- Br(B $\rightarrow \tau \nu$) = (0.72 +0.27/-0.25 +/- 0.11) x 10⁻⁴

- Current analysis ~3 sigma evidence
- At Belle II, we expect to measure $|V_{ub}|$ from $B \rightarrow \tau v$ at the level of 3-5%

Summary

- Semileptonic B decays have allowed to determine the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ to the level of 1-2% and 6-10%, respectively
- However, there is a long-standing discrepancy between inclusive and exclusive measurements of |V_{cb}| and |V_{ub}|
- At Belle II we can address this issue with new experimental methods and provide crucial cross checks to confirm the OPE/lattice description

$\rho \ell \bar{\nu}_{\ell} X_{u} \ell \bar{\nu}_{\ell}$ cross feed $B \overline{B} q \bar{q}$

PRD 88, 032005 (2013)

Data - Unfolded

BB

BZ

MS

ISGW2

UKQCD

5

10

Data - Unfolded

UKQCD

10

вв

BZ MS ISGW2

5

BELLE

Belle

710 fb⁻¹

Preliminary

Stat. errors only

15 20 q², GeV²/c²

Preliminary

Stat. errors only

5 20 q², GeV²/c²

15

Belle

710 fb⁻¹

703/fb of Belle Y(4S) data \bullet

 $B \rightarrow \rho l v$ with hadronic tag

- Hadronic tag
- Yield extracted from M²_{miss} in 11 (6) bins of q^2 for $B^+ \rightarrow \rho^0 | \nu (B^0 \rightarrow \rho^+ | \nu)$

Xu	Yield	$\mathcal{B} imes 10^4$
ρ^+	338±28	$3.17 \pm 0.27 \pm 0.18$
ρ^0	632 ± 35	$1.86 \pm 0.10 \pm 0.09$

PRD 88, 032005 (2013)

Xu	Yield	$\mathcal{B} imes 10^4$
ω	$99{\pm}15$	$1.09 \pm 0.16 \pm 0.08$
η	$39{\pm}11$	$0.42 \pm 0.12 \pm 0.05$
η'	6.1 ± 4.7	< 0.57 @ 90% CL

• 703/fb of Belle Y(4S) data

$B \to D^* (\to D\pi) \ell \overline{\nu}_{\ell}$: angular distributions

$$\frac{d^2\Gamma}{dq^2d\chi} = a_{\chi}(q^2) + b_{\chi}^c(q^2)\cos\chi + b_{\chi}^s(q^2)\sin\chi + c_{\chi}^c(q^2)\cos 2\chi + \frac{c_{\chi}^s(q^2)\sin 2\chi}{dq^2d\chi}$$

$$\begin{aligned} a_{\chi}(q^2) &= \frac{G_F^2 |V_{cb}|^2}{384\pi^4 m_B^3} q^2 \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \sqrt{\lambda_{D^*}(q^2)} \times \left\{ \\ & \left[|H_+|^2 + |H_-|^2 + |H_0|^2\right] \left(1 + \frac{m_\ell^2}{2q^2}\right) + \frac{3}{2} \frac{m_\ell^2}{q^2} |H_t|^2 \right\} \\ c_{\chi}^c(q^2) &= -\frac{G_F^2 |V_{cb}|^2}{384\pi^4 m_B^3} q^2 \left(1 - \frac{m_\ell^2}{q^2}\right)^3 \sqrt{\lambda_{D^*}(q^2)} \times \mathcal{R}e \left[H_+ H_-^*\right] \\ c_{\chi}^s(q^2) &= -\frac{G_F^2 |V_{cb}|^2}{384\pi^4 m_B^3} q^2 \left(1 - \frac{m_\ell^2}{q^2}\right)^3 \sqrt{\lambda_{D^*}(q^2)} \times \mathcal{I}m \left[H_+ H_-^*\right] \end{aligned}$$

b^{c,s}_χ(q²) = 0 unless there is interference with (Dπ)_S amplitude [interesting!!!]
Two NEW NP-sensitive observables:

$$C_{\chi}^{(\ell)}(q^2) = \frac{c_{\chi}^c(q^2)}{a_{\chi}(q^2)}, \qquad S_{\chi}^{(\ell)}(q^2) = \frac{c_{\chi}^s(q^2)}{a_{\chi}(q^2)}.$$

March 4, 2014

56

Issues in |V_{cb}|

- $|V_{cb}|$ exclusive mainly comes from $B^0 \rightarrow D^{*-} |^+ v$
 - $|V_{cb}|$ from B⁺ \rightarrow D^{*0}bar I⁺ ν , B⁰ \rightarrow D⁻ I⁺ ν and B⁺ \rightarrow D⁰bar I⁺ ν is considerably less precise
 - Measurements of $B^0 \rightarrow D^{*-} I^+$ nu by different experiments are consistent but could be affected by common systematics (slow pion tracking)
- F(w) and G(w) form-factors
 - Calculated only at a single kinematic point (zero recoil w=1) can lattice predict the F.F. shape also in B decays?
 - Precise calculation of F(1) available only from a single lattice group (FNAL MILC)
 - Discrepancy with sum rule calculations (~1 sigma)
- Radiative and EW corrections?

Issues in |V_{ub}|

- $|V_{ub}|$ exclusive comes exclusively from $B \rightarrow \pi | v$
 - No precise F.F. calculations for $B \rightarrow \rho l \nu$ or other modes
 - Lattice and sum rule calculations of the F.F. apply to different q² regions and don't provide a mutual crosscheck
 - Can we claim that lattice predicts the F.F. shape?
- |V_{ub}| inclusive
 - Dominant experimental systematics: b → u signal modelling how well do we understand light quark fragmentation?
 - 5 theoretical frameworks but none of them provides a (convincing) internal cross-check

Leptonic B decays

$$\begin{array}{cccc} \bar{b} & & \\ f_B & V_{ub} & \\ B^+ & & W^+ & \\ u & & W^+ & \\ & & & \mathcal{B}(B \to e\nu)_{SM} \sim 10^{-11} \\ & & & \mathcal{B}(B \to \mu\nu)_{SM} \sim 3.5 \times 10^{-7} \\ & & & \mathcal{B}(B \to \tau\nu)_{SM} \sim 10^{-4} \end{array}$$

- Helicity suppression $\Gamma(ev) \ll \Gamma(\mu v) \ll \Gamma(\tau v)$
- Very clean theoretically, might be affected by NP (2HDM, lepto-quark)
- B \rightarrow ev and B $\rightarrow \mu v$ are also experimentally clean but beyond the reach of Belle
- B → τν has 2-3 neutrinos in the final state and kinematics cannot be fully reconstructed (high background measurement)

Search for the charged Higgs in $B \rightarrow \tau v$

2HDM Type II effect in $B \rightarrow D^{(*)}\tau v$

- Observables
 - $R(D^*) = Br(D^*\tau v)/Br(D^* | v)$
 - $R(D) = Br(D\tau v)/Br(D|v)$

0.4

tanβ / m_H [GeV⁻¹]

0.2

0

BaBar [PRL 109, 101802]

0.8