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background

• most (all?) interesting phenomena at the LHC involve heavy unstable particles
(SM: W±, Z, t, H and BSM Z′, Xsusy . . .)

• these particles are detected/studied through their decay products
(neither the Tevatron nor the LHC has seen a single top quark!!)

• for realistic applications need to include the decay of these particles in theoretical
description

• such particles are not proper external states in a QFT, but only intermediate states

• for most applications it is sufficient to ignore this and treat heavy particles as external
but:

• very precise determinations of observables (e.g. mt) require to have full control of
small effects

• it is also an interesting problem in QFT
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background

Production of an on-shell heavy (unstable) particle X: p2X = m2
X

• often this is a reasonable approximation but

• cuts on decay products not possible

• off-shell effects of X not taken into account
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background

Production of an on-shell heavy (unstable) particle X, including decay: p2X = m2
X

• (improved) narrow width approximation, M2
decay = m2

X

• NLO correction of production and decay included

• cuts on decay products possible but off-shell effects of X not taken into account
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background

Production of an off-shell heavy (unstable) particle X, including decay: p2X 6= m2
X

• tree-level background diagrams (no particle X, but same final state)

• virtual and real background diagrams

• valid for any p2X , (off-shell effects taken into account) but calculation complicated
(e.g. complex-mass scheme)
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background

Production of a resonant heavy (unstable) particle X, including decay: p2X ∼ m2
X

• tree-level background diagrams (no particle X, but same final state)

• use pole approximation (at one loop)
• factorizable corrections
• non-factorizable corrections

• real background diagrams

• valid for p2X ∼ m2
X , off-shell effects of X are taken into account, calculation simplified

ff

gauge invariant separation
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off-shell effects

non-factorizable corrections have been extensively studied
[Fadin et al; Melnikov et al; Beenakker et al; Denner et al; Bevilacqua et al; Jadach et al; . . .]
but are usually neglected at hadron colliders, because:

• they seem to be more difficult to compute (not really)

• they are generally small [Beenakker et al; Pittau]
• resonant → non-resonant propagator unless E . Γ is small (soft)
• cancellations for “inclusive” observables [Fadin, Khoze, Martin]

purpose of this work (part I):

• do not neglect non-factorizable corrections

• consistently combine with propagator corrections

• try to obtain an efficient way to identify and compute minimal amount required

• do this for fully differential cross section
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effective theory approach

• the feature: hierarchy of scales, exploit via effective theory (ET) approach
• hard k ∼ mX

• soft: k ∼ (p2X −m2
X)/mX ∼ δ mX ≪ mX

• expand in all small parameters α and δ = (p2X −m2
X)/m2

X → power counting:

α ∼
p2X −m2

X

m2
X

∼
ΓX

mX
∼ δ ≪ 1 for top: α ≡ αew ∼ α2

s

• integrate out hard modes: L(φ,A,ψ) → Leff(ci, φs, As, Ac, ψs, ψc)

UPET is nothing but a mix between SCET and H’Q’ET

• virtual corrections and total cross section
• expand integrand, method of regions [Beneke, Smirnov]
• new identification [Chapovsky, Khoze, AS, Stirling]

factorizable corrections = hard corrections (ET)
non-factorizable corrections = soft corrections (ET)

• applications for total cross section:
e+e− → tt̄ near threshold [Hoang et al; Beneke et al; Melnikov et al; . . .]
“Higgs” production in toy model [Beneke et al.]
e+e− →W+W− near threshold [Beneke et al.]

• arbitrary real corrections problematic (new scales from definition of observable)
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method of region: an example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral

Z

ddk

(k2 − p2)(k2 −M2)

=

Z

ddk

(k2 − p2)

X

n

(k2)n

(M2)n+1

| {z }

soft

+

Z

ddk

(k2 −M2)

X

n

(p2)n

(k2)n+1

| {z }

hard

• identify modes: soft (k ∼ p) and hard (k ∼ M)

(in general there are other modes, e.g. potential, collinear . . .)

• expand integrand in each region to whatever order required

• each term has a well-defined scaling in p2/M2 → power counting

• no explicit cutoff needed (dimensional regularization is important)

• the soft part generates UV singularities, the hard part generates IR singularites
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structure of effective theory

µh ∼ M

µs ≪M

“s”

h

k

EFT I. . .I

EFT I

L(φ)

underlying theory

L(∂, φ) = L(φh, φs, . . .)

effective theory I

L =
X

i

ci(h, µh)Oi(φs, . . . , {µs})

• UV divergences due to operators Oi

are compensated by IR singularities in
matching coefficients ci

• anomalous dimensions of Oi →

resummation of lnµh/µs

• outside region of validity of EFT match
to underlying theory
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virtual corrections

use method of regions [Beneke, Smirnov] and expand integrand (in principle to any order):

• hard corrections ℓ ∼ mX ( = factorizable corrections)

• soft corrections ℓ ∼ mX δ ( = non-factorizable corrections)

W W

q̄

q

Z

ddℓ

(p+ ℓ)2ℓ2

hard: full

soft:
Z

ddℓ(2p · ℓ)

p2ℓ2
= 0

W

W

W

γ
Z

ddℓ

(ℓ2 + 2p · ℓ+ ∆)ℓ2

hard:
Z

ddℓ

ℓ2(ℓ2 + 2p · ℓ)
6= 0

soft:
Z

ddℓ

ℓ2(2p · ℓ+ ∆)
6= 0

• leads to resummation of hard part ( = leading part in ∆) of self-energy insertions

Leff = 2mX φ†s

“

iv · ∂ −
cφφ

2

”

φs + . . .

• matching coefficients are gauge invariant (cφφ = −iΓ in pole scheme)
full result is gauge invariant at each order in δ, but gauge invariance is not an input
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structure of effective theory

integrate out hard modes → effective Lagrangian

L = φ†Bφ+ cp φ(Πψi) + cdφ(Πχj) + cb (Πψiχj) + ψ̄Dsψ + . . .

φ†Bφ

cdφv(Πχj)

cp φv(Πψi)

ψ̄Dsψ + . . .

cb (Πψiχj)

• matching coefficients ci contain effects of hard modes

• matching done on shell, p2X = s̄ = m2
X + O(δ), with s̄ the complex position of pole

• soft (and collinear . . .) d.o.f. still dynamical

• can be combined with further resummations (e.g. non-relativistic → ET has more
complicated structure)
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single top

single top: t-channel s-channel (W t not considered here)

u

d, s, b

d

t

W

u

d

d, s, b

t

W

d, s, b

g

W

t

t

• total rate and distributions for on-shell top quarks at NLO known [Bordes et al;
Stelzer et al; Harris et al; Campbell et al; Cao et al; . . . ]

• implemented in MC@NLO [Frixione et al.] and POWHEG [Alioli et al.]

• comparison 5-flavour scheme vs. 4-flavour scheme [Campbell et al.]

• EW corrections [Beccaria et al.]

• effects of BSM operators [Willenbrock et al.]

• resummation of threshold logs [Kidonakis, Wang et al.]

• full NLO calculation of pp̄→WJbJq in complex mass scheme [Papanastasiou et al.]
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single top

• consider t channel (i.e. pp̄→WJbJq)

• final state W (= ℓν) (treated in improved narrow-width approximation)

require Jb and Jq , apply whatever cuts

top window: 150 GeV <
p

(p(Jb) + p(ℓ) + p(ν))2 < 200 GeV

• small parameter: δ ∼
sWb −m2

t

m2
t

≡
D

m2
t

; counting: α2
s ∼ αew ∼

Γt

mt
∼ δ ≪ 1

• use 5 flavour scheme, mb = 0, and “fixed” order, i.e. no parton shower etc.

• resummation of “self-energies” is resummation of hard part of two-point function in
scheme X (operator φ†Bφ)

Lkin
EFT = 2m̂X φ†X

„

iv · ∂ −
ΩX

2

«

φX + . . .

• matching coefficient ΩX = (s̄− m̂2
X)/(2m̂X ), in pole scheme Ωpole = −iΓt

but can take any scheme X as long as ΩX ∼ δ

• propagator in ET
1

sWb −m2
t

=
1

D
⇒

1

sWb −m2
t + imtΓt

=
1

∆t
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single top

amplitude: Atree = δ31δ42

„

g3ew A
(3,0)
(−1)

| {z }

δ1/2

+ g3ew A
(3,0)
(0)

| {z }

δ3/2

+ . . .

«

+ Ta
31T

a
42 gewg

2
s A

(1,2)

| {z }

δ signal!

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

Z/γ

W

(d)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

g

(e)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

g

(f)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)Z/γ

(c)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)Z/γ

(b)(a)

t

b(p4)

W−(k)

b(p2)

q(p1) q′(p3)

amplitude squared: (no interference due to colour → no δ3/2 term)

|M |2 = g6ew N
2
c

˛

˛

˛

A
(3,0)
(−1)

˛

˛

˛

2

| {z }

δ

+ g6ew N
2
c 2Re

“

A
(3,0)
(−1)

[A
(3,0)
(0)

]∗
”

| {z }

δ2

+ g2ewg
4
s Nc CF /2

˛

˛

˛

A(1,2)
˛

˛

˛

2

| {z }

δ2

+ . . .
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single top

tree-level (squared) ∼ δ, compute all ∼ δ3/2 contributions to |M |2 ( ∼ O(αs) corrections)

consider subset of resonant virtual diagrams (before expansion in δ this is gauge dependent)

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

hard → cprod soft = 0 hard → cprod soft → non-fact

hard → cdec soft → non-fact hard ∼ δ2 soft → non-fact hard → cφφ resum

hard →֒∼ 0 soft → non-fact
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single top

QCD self energy

b

u d

t b

W +

p1 p3

p2

p5

p4

denominator D2 ℓ2 [(pt − ℓ)2 −m2
t ]

hard D2 ℓ2 [ℓ2 − 2ℓ · pt] ∼
g3ew · αs · 1

δ2 · 1 · 1
∼ 1

soft D2 ℓ2 [−2ℓ · pt +D] ∼
g3ew · αs · δ4

δ2 · δ2 · δ
∼ δ

• hard part of QCD self-energy is superleading, i.e. O(1) with LO amplitude ∼ δ1/2

• but in pole scheme the leading hard part is precisely cancelled by counter term

• can use another scheme, as long as this cancellation holds up to O(δ)

• soft and subleading hard part of QCD self-energy is NLO, i.e. O(δ3/2) for |M |2

• hard part of EW self-energy is leading, i.e. O(δ1/2) → resum
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real corrections

• real corrections for “arbitrary” differential cross section cannot be done in a strict ET
approach

• it is not even clear what the proper expansion parameter is (where is the gluon
attached?)

• ET relies on the fact that all scales are explicit, but observable can introduce new small
scale → change of structure of ET

• aim: compute real corrections for “arbitrary” observable with the implicit assumption no
new small scale is introduced (e.g. for a pt distribution result is unreliable for small pt)

• if there is a new small scale → large logs → resummation → requires dedicated ET
(or other) calculation

• expand real amplitude in δ and α under the assumption that there is no further small
scale (compare to parton showers)

Areal = Ag
prod ⊗ P ⊗A0

dec + A0
prod ⊗P ⊗Ag

dec

• the restriction to no new small scales is generic for fixed-order calculations
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real corrections

+

A
g
prod ⊗P ⊗A0

dec + A0
prod ⊗ P ⊗A

g
dec

corrections to production (soft and coll singularities):
Z

dΦn+1

˛

˛

˛

Ag
prod ⊗P ⊗A0

dec

˛

˛

˛

2
combined with (hard) Wilson coeff. for production is IR finite

corrections to decay (soft and coll singularities):
Z

dΦn+1

˛

˛

˛

A0
prod ⊗P ⊗Ag

dec

˛

˛

˛

2
combined with (hard) Wilson coefficient for decay is IR finite

non-factorizable corrections (soft singularities only):
Z

dΦn+1 2 Re
“

A0
prod ⊗P ⊗Ag

dec

” “

Ag
prod ⊗ P ⊗A0

dec

”∗
plus soft virtual is IR finite
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single top

Comparison between (ET) and earlier (non-ET) NLO calculations
[Campbell et.al, Yuan et.al.]

• ET virtual: hard part vanishes (at this order), soft part contributes and is included

• ET real: interference between production and decay radiation included
after expansion this cancels corresponding virtual IR singularities

• non-ET real and virtual: not included

• ET: both top quarks can be off-shell, hard and soft part contribute

• non-ET: one top is always on-shell
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single top

7 TeV LHC ’t’-channel:

mt = 171.3 GeV, MSTW 2008 NLO pdf, mt/4 ≤ µ ≤ mt

define jets: k⊥ cluster algorithm ⇒ cuts on p⊥(Jb), p⊥(Jq), 6E⊥, p⊥(ℓ)

top window: 150 GeV <
p

(p(Jb) + p(ℓ) + p(ν))2 < 200 GeV

LHC 7 TeV

LO

NLO

NLO OS

QCD bg

0.5
0.75

1.
1.25
1.5

120 140 160 180 200

-10

-8

-6

-4

-2

MinvHt=W+JbL @GeVD

dΣ
�d

M
in

v
@p

b�
G

eV
D

invariant mass of ’top’

M2
inv ≡ (p(Jb)+p(W ))2

effects large around
the peak, but small for
observables inclusive
enough in Minv
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single top

7 TeV LHC ’t’-channel:

mt = 171.3 GeV, MSTW 2008 NLO pdf, mt/4 ≤ µ ≤ mt

define jets: k⊥ cluster algorithm ⇒ cuts on p⊥(Jb), p⊥(Jq), 6E⊥, p⊥(ℓ)

top window: 150 GeV <
p

(p(Jb) + p(ℓ) + p(ν))2 < 200 GeV

LHC 7 TeV

LO
NLO
OS NLO
QCD ’bg’

0.9
0.95

1.
1.05
1.1

1.15

100 120 140 160 180

0

0.005

0.01

0.015

0.02

MT HJb ,WL

dΣ
�M

T
@p

b�
G

eV
D

transverse mass of ’top’

M2
T =

(
X

ET )2 − (
X

~pT )2

effects tiny except at
edges of distributions
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single top

comparison EFT approch vs complex mass scheme calculation ⇒ good agreement
[Papanastasiou et al. 1305.7088]

invariant mass relative transverse b-jet momentum

10
-2

10
-1

10
0

dσ / d M [ pb / GeV  ]

LO
NLO
NWA NLO
ET NLO

-0.90

-0.60

-0.30

0.00

0.30

 160  165  170  175  180

M(W
+
, Jb) [ GeV ] 

NWA / offshell - 1 (NLO)
ET / offshell - 1 (NLO)

10
-4

10
-3

10
-2

10
-1

10
0

dσ / d pT,rel [ pb / GeV  ]

LO
NLO

NWA NLO
ET NLO

-0.90

-0.60

-0.30

0.00

0.30

 55  60  65  70  75  80  85

pT(Jb)rel.t [ GeV ] 

(NLO)

ET / off-shell -1
NWA / off-shell -1
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top pair

SM t t̄ theory status

• fully exclusive known at ∼ one-loop

electroweak corrections known [Bernreuther et al., Kuhn et al.]
spin correlations included [Bernreuther et al., Melnikov et al.]
full one-loop 2 → 4 computed [Denner et al., Bevilacqua et al.]
included in MC@NLO and POWHEG [Frixione, Nason, Webber . . . . . . ]
two-loop corrections on their way . . .

• inclusive cross section(s) known at ∼ two-loop

two-loop known [Czakon et al.]
bound-state effects computed [Hagiwara et al., Kiyo et al.]
non-factorizable corrections computed [Beenakker et al.]
resummation of logs under control [Ahrens et al, Beneke et al . . .]
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top pair

virtual correction qq̄ →W+b̄W−b

hard only hard and soft soft only soft only

• hard parts ⇒ matching coefficients

• soft parts ⇒ explicit diagrams in ET

• integrals with more than 4 legs only needed in soft approximation

• hard integrals:
„

µ2

s

«ǫ

⇒ hard scale

• soft integrals:
„

µ2

∆t mt

«ǫ

⇒ soft scale
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top pair

top pair production: structure of real amplitude

+

A
g
prod ⊗ Pt ⊗ Pt̄ ⊗A0

t ⊗A0
t̄ +

+

+A0
prod ⊗ Pt ⊗Pt̄ ⊗A

g
t ⊗A0

t̄ A0
prod ⊗ Pt ⊗Pt̄ ⊗A0

t ⊗A
g
t̄

corrections to production
Z

dΦn+1

˛

˛

˛

Ag
prod ⊗Pt ⊗A0

t ⊗Pt̄ ⊗A0
t̄

˛

˛

˛

2
(finite if combined with virtual corr. to production)

and corrections to decay
Z

dΦn+1

˛

˛

˛

A0
prod ⊗Pt ⊗Ag

t ⊗Pt̄ ⊗A0
t̄

˛

˛

˛

2
(finite if combined with virtual corr. to top decay)

routinely taken into account [Bernreuther et al; Melnikov et al; Campbell et al;]

real interference contributions combined with soft virtual corrections are separately IR finite
generally small, but study e.g. impact on mt measurement [Falgari, Papanastasiou, AS]
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top pair

sample results for Tevatron, qq̄ → tt̄ only

invariant mass of ’top’ transverse mass of ’top’
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again, effects small except at kinematic boundaries
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top mass

extraction of top mass from invariant mass

• consider mass scheme different from pole mass mt

• check scheme dependence
• avoid infrared sensitivity of pole mass (renormalons)

• many possible choices

• example used here: potential subtracted mass mPS [Beneke]

mPS(µPS) = mt +
1

2

Z

q<µPS

d3~q

(2π)3
Vcoul(q) with µPS∼ mαs ∼ δ1/2

• express everything in terms of mPS

mt = mPS(µPS) + µPS

»

αs

2π
δ1 +

α2
s

(2π)2
δ2 + . . .

–

• (inverse of) propagator:

p2 −m2
PS + imPSΓ

| {z }

∼δ

−
αs

π
δ1µPSmPS

| {z }

∼δ

−
α2

s

2π2
δ2µPSmPS

| {z }

∼δ3/2

+ . . .
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top mass

results in PS scheme µPS ∈ {0, 10, 20, 30, 50} GeV

example of non-sensitive observable (pseudo-rapidity of ’top’)
d

σ 
/ 

d
η 

[ 
p

b
 ]

LO

pole
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+
) 
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top mass

results in PS scheme µPS ∈ {0, 10, 20, 30, 50} GeV

example of sensitive observable (invariant mass of ’top’) ⇒ µPS . 20 GeV
d
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top mass

consider scheme dependence of mass extraction

LO NLO

µPS mexp m mt mexp m mt

0 172.9 162.2 172.9 172.9 162.2 172.9

10 172.4 162.7 173.5 172.2 162.4 173.3

20 172.0 163.0 173.8 171.5 162.5 173.4

mexp
µPS = 20

mexp
µPS = 10

mexp =mt
µPS = 0

observable

m

mt

=

• conversion at NNNLO
[Melnikov, Ritbergen]
( + Pade approximation)

• scheme ambiguity
∼ 500 − 900 MeV at LO

• scheme ambiguity
∼ 400 − 500 MeV at NLO

• MS scheme somewhat
more stable
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approx NNLO

Part II: approximate NNLO for fully differential tt̄ production, including decay

• NNLL renormalization-group improved calculations for total cross section,
dσ/(dMtt̄ d cos θ) and dσ/(dpT dy) available [Kidonakis et al, Ahrens et al. . . .]

• resummation can reproduce dominant (??) terms of fixed-order approach

• generalize resummed cross section to include decay of top quarks

• obtain approximate NNLO corrections to the production part of
qq̄ → tt̄→W+bW− b̄ and gg → tt̄→W+bW−b̄ through expansion of resummed
results

• implement these and match to fixed-order NLO to obtain ’improved’ weight for
parton-level Monte Carlo

dσapprox NNLO = dσNLO + α2
s dσ

resum
2

• not a strict approach, not a unique approach
attempt to include most important features of fully differential NNLO corrections

Adrian Signer, April 2014 – p. 33/39



approx NNLO

pair-invariant mass (PIM) kinematics

• h1(P1)h2(P2) → (t+ t̄)(p3 + p4) + X(pX)

• soft limit z = (p3 + p4)2/ŝ→ 1

• factorization of cross section [Ahrens et al.]

dσ

dMtt̄ dcos θ
≃

X

ij

Z

dz

z

Z

dx

x
fi/h1

(x)fj/h2
(τ/(zx))

“

Tr
ˆ

Hij · Sij

˜

+ O(1 − z)
”

• plus distribution Pn(z) =

»

lnn(1 − z)

1 − z

–

+

one-particle inclusive (1PI) kinematics

• h1(P1)h2(P2) → t(p3) + (t̄+X)(p4 + pX)

• soft limit s4 = (p4 + pX)2 −m2
t → 0

• factorization of cross section [Ahrens et al.]

dσ

dpT dy
≃

X

ij

Z

dx1

x1

Z

dx2

x2
fi/h1

(x1)fj/h2
(x2)

“

Tr
ˆ

Hij · Sij

˜

+ O(s4)
”

• plus distribution Pn(s4) =

»

1

s4
lnn

„

s4

m2
t

«–

+
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approx NNLO

parton-level Monte Carlo, including top decay

• compute modified hard function including top decay (in narrow-width approximation)

• soft functions and structure of renormalization group equations not affected

• obtain approximate NLO (for consistency checks only) and NNLO corrections by
expansion in αs → coefficients of plus distributions

• e.g. for PIM @ NNLL → NNLO:
ˆ

Hij · Sij

˜

∼ D3 P3(z) +D2 P2(z) +D1 P1(z) +D0 P0(z) + C0 δ(1 − z) +R(z)

• restore dependence on final-state particles → weight of events in Monte Carlo

Di(Mtt̄, cos θ) → Di({pi})

• different resummation (PIM and 1PI) and different implementations due to treatment of
subleading terms (e.g. in phase-space integration)

• take scale variation and variation over various implementations for estimate of theory
error (take known NNLO total cross section as cross check of procedure)
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approx NNLO

approx NNLO, cross checks, LHC 8TeV

350 400 450 500 550 600 650 700
M(t, t̄) [GeV]
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0.002
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d
σ
/d

M
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b
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]

α
s
(PIM)

α2

s
(PIM)

LO

NLO

NNLO-approx.

NLO-approx.
compare Mtt̄ with [Ahrens et al.]

cluster final state partons into jets

reconstruct top t
.
= Jb + ℓ+ ν

here: no cuts whatsoever

recover total cross section

0 50 100 150 200 250 300
pT (t) [GeV]

0.000

0.005
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p T
[p
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/G
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]

αs(1PI)

α2

s
(1PI)

LO

NLO

NNLO-approx.

NLO-approx.
compare pT (t) with [Ahrens et al.]

stable perturbative behaviour

pdf: mstw08nlo (!)

theory error band: envelope of scale
variation and phase-space imple-
mentations
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approx NNLO

realistic Mtt̄ distribution with (standard) cuts
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cluster final state partons into jets

reconstruct top t .= Jb + ℓ+ ν

apply (whatever) cuts

compute Mtt̄ distribution

note: no improvement in treatment
of decay (strict NLO)

theory error band: {1PI, PIM}impl
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NLO-approx.

less conservative error estimate:

theory error band: {1PI, PIM}

“wrong” resummation (1PI) gives
remarkably consistent results with
“correct” resummation (PIM)

pdf: mstw08nlo (!)
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approx NNLO

’go crazy’ and compute other distributions with realistic cuts, e.g. M(Jb, ℓ
+)
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LO
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apply (whatever) cuts

compute M(Jb, ℓ
+) @ approx NNLO

note: no improvement in treatment of
decay (strict NLO)

pdf: mstw08nlo (!), approx NNLO band
is lower for mstw08nnlo

theory error band: {1PI, PIM}impl
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NLO-approx. less conservative error estimate:

theory error band: {1PI, PIM}

both resummations (1PI) and (PIM)
give remarkably consistent results
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summary

• include off-shell effects at NLO for unstable particles using ET inspired approach
• amounts to inclusion of non-factorizable ( = soft) corrections

(and all spin correlation effects)
• combined with “standard” ( = hard) corrections for production and decay

• applicable to unstable fermions, gauge bosons and scalars

• example single top:
• off-shell effects O(αs δ) are small 1 − 2% for most observables
• can be larger at kinematic end points
• excellent agreement between ET and complex mass scheme calculations

• example top pair production:
• off-shell effects small except for kinematic edges
• impact on mt determination needs to be under control for δmt/mt < 1%

• approximate NNLO for fully differential top pair cross section, including the decay
• PIM and 1PI implemented in fully differential parton-level Monte Carlo
• decay only at NLO
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