How many doublets?
Constraining new physics with Higgs data

Ulrich Nierste
Karlsruhe Institute of Technology

Seminar at the University of Vienna
11 Mar 2014
Contents

Introduction

The Standard Model with four generations

Two-Higgs-doublet model of type II

Triple-Higgs couplings

Conclusions
Accountant’s approach to new physics: Check the inventory (nature) against the inventory list (Standard Model).
Accountant’s approach to new physics:
Check the inventory (nature) against the inventory list (Standard Model).

No theoretical reason for three fermion generations!
Can there be a fourth generation (SM4), with new heavy fermions t', b', ℓ_4, ν_4?
Accountant’s approach to new physics: Check the inventory (nature) against the inventory list (Standard Model).

No theoretical reason for three fermion generations! Can there be a fourth generation (SM4), with new heavy fermions t', b', ℓ_4, ν_4?

No theoretical reason for a minimal Higgs sector! Can there be a second Higgs doublet?
A fourth generation is non-decoupling, experimental constraints cannot be evaded by postulating ever increasing masses of the new particles.

Yukawa couplings grow with masses, $y_f = m_f/v$, which can compensate for the decrease of loop integrals.
A fourth generation is non-decoupling, experimental constraints cannot be evaded by postulating ever increasing masses of the new particles.

Yukawa couplings grow with masses, $y_f = m_f / v$, which can compensate for the decrease of loop integrals.

The non-standard Higgs bosons of a two-Higgs-doublet model (2HDM) decouple with increasing masses, reproducing the Standard Model in the decoupling limit.
As long as experimental data comply with the SM expectations a decoupling model of new physics cannot be excluded, while
As long as experimental data comply with the SM expectations a **decoupling** model of new physics cannot be excluded, while

the calculation of the statistical significance for the exclusion of a **non-decoupling** model of new physics is difficult: The SM and the new-physics model are **non-nested**, meaning that the SM is not recovered for specific parameter choices of the new-physics model.
My theory colleagues: Rather boring subject. But: more than 500 papers on the subject in the last 10 years.
Oblique electroweak corrections

New physics with particle masses well above M_Z, no extra gauge bosons and no Z-vertex corrections affect electroweak precision observables through the parameters S, T, and U, calculated from self-energy diagrams of Z, γ, and W.

The non-decoupling of heavy chiral fermions from S lead to a premature obituary notice of the SM4 in the Particle Data Table.
But: Contribution of \((t', b')\) to \(S\):

\[
\Delta S = \frac{1}{2\pi} \left[1 - \frac{1}{3} \ln \frac{m_{t'}}{m_{b'}} \right]
\]

Peskin, Takeuchi (1991)

⇒ Only degenerate doublets are ruled out.

\[
\Delta T \approx \frac{1}{12\pi \sin^2 \theta_W \cos^2 \theta_W} \frac{(m_{t'}^2 - m_{b'}^2)^2}{m_{b'}^2 M_Z^2} \quad \text{for } |m_{t'}^2 - m_{b'}^2| \ll m_{b'}^2.
\]

Electroweak precision data perfectly allow simultaneously positive \(\Delta S\) and \(\Delta T\).

Kribs et al. (2007)

Other freedom: Permit fermion mixing, but then must deal with non-oblique corrections to \(Z \rightarrow b\bar{b}\).
Higgs data

LHC: experimental information on signal strengths

$$\hat{\mu}(pp \rightarrow H \rightarrow Y) = \frac{\sigma(pp \rightarrow H)B(H \rightarrow Y)_{SM4}}{\sigma(pp \rightarrow H)B(H \rightarrow Y)_{SM3}}$$

with $$Y = \gamma\gamma, WW^*, ZZ^*, Vb\overline{b}, \tau\tau$$.

The production cross section $$\sigma(gg \rightarrow H)$$ in the SM4 is 9 times larger than in the SM3 and essentially independent of $$m_{t'}$$, $$m_{b'}$$.

Does this rule out the SM4?
Higgs data

LHC: experimental information on signal strengths

\[\hat{\mu}(pp \to H \to Y) = \frac{\sigma(pp \to H)B(H \to Y)|_{\text{SM4}}}{\sigma(pp \to H)B(H \to Y)|_{\text{SM3}}} \]

with \(Y = \gamma\gamma, WW^*, ZZ^*, Vb\bar{b}, \tau\tau \).

The production cross section \(\sigma(gg \to H) \) in the SM4 is 9 times larger than in the SM3 and essentially independent of \(m_{t'}, m_{b'} \).

Does this rule out the SM4?

No: Effect can be compensated by a large \(B(H \to \nu_4\bar{\nu}_4) \equiv \Gamma(H \to \nu_4\bar{\nu}_4)/\Gamma_{\text{tot}}, \) because the invisible width \(\Gamma(H \to \nu_4\bar{\nu}_4) \) dominates \(\Gamma_{\text{tot}} \) for \(m_{\nu_4} < M_H/2 \).
Global fit of electroweak precision data, five LHC Higgs signal strengths and $\hat{\mu}(p\bar{p} \rightarrow H \rightarrow Vb\bar{b})$ from Tevatron using CKMfitter.

Otto Eberhardt theory KIT
Geoffrey Herbert ATLAS HU Berlin
Heiko Lacker ATLAS HU Berlin
Alexander Lenz theory CERN/Durham
Andreas Menzel theory HU Berlin
UN theory KIT
Martin Wiebusch theory KIT

To quantify the level at which a theory is disfavoured with respect to the SM one performs a likelihood ratio test. Choose SM parameters $x_1, \ldots x_n$ and new-physics (NP) parameters $x_{n+1}, \ldots x_{n+k}$ such that $x_{n+1} = \ldots x_{n+k} = 0$ in the SM. Fit the theories to the observables O_i:

Step 1: Minimise χ^2 function for both theories,

- $\chi^2_{\text{NP, min}}(O_i) = \min \chi^2(x_1, \ldots x_{n+k})$ and
- $\chi^2_{\text{SM, min}}(O_i) = \min \chi^2(x_1, \ldots x_n, 0, \ldots 0)$.

$\Delta \chi^2(O_i) := \chi^2_{\text{SM, min}}(O_i) - \chi^2_{\text{NP, min}}(O_i)$.

To quantify the level at which a theory is disfavoured with respect to the SM one performs a likelihood ratio test. Choose SM parameters $x_1, \ldots x_n$ and new-physics (NP) parameters $x_{n+1}, \ldots x_{n+k}$ such that $x_{n+1} = \ldots x_{n+k} = 0$ in the SM. Fit the theories to the observables O_i:

Step 1: Minimise χ^2 function for both theories,

$\chi^2_{\text{NP}, \text{min}}(O_i) = \min \chi^2(x_1, \ldots x_{n+k})$ and

$\chi^2_{\text{SM}, \text{min}}(O_i) = \min \chi^2(x_1, \ldots x_n, 0, \ldots 0)$.

$\Delta \chi^2(O_i) := \chi^2_{\text{SM}, \text{min}}(O_i) - \chi^2_{\text{NP}, \text{min}}(O_i)$.

Step 2: Calculate the statistical significance (“p-value”)

$p = 1 - P_{k/2}(\frac{1}{2} \Delta \chi^2)$.
To quantify the level at which a theory is disfavoured with respect to the SM one performs a likelihood ratio test. Choose SM parameters $x_1, \ldots x_n$ and new-physics (NP) parameters $x_{n+1}, \ldots x_{n+k}$ such that $x_{n+1} = \ldots x_{n+k} = 0$ in the SM. Fit the theories to the observables O_i:

Step 1: Minimise χ^2 function for both theories,

$$\chi^2_{\text{NP}, \text{min}}(O_i) = \min \chi^2(x_1, \ldots x_{n+k}) \quad \text{and} \quad \chi^2_{\text{SM}, \text{min}}(O_i) = \min \chi^2(x_1, \ldots x_n, 0, \ldots 0).$$

$$\Delta \chi^2(O_i) := \chi^2_{\text{SM}, \text{min}}(O_i) - \chi^2_{\text{NP}, \text{min}}(O_i).$$

Step 2: Calculate the statistical significance (“p-value”) $p = 1 - P_{k/2}(\frac{1}{2} \Delta \chi^2)$.
To quantify the level at which a theory is disfavoured with respect to the SM one performs a likelihood ratio test. Choose SM parameters $x_1, \ldots x_n$ and new-physics (NP) parameters $x_{n+1}, \ldots x_{n+k}$ such that $x_{n+1} = \ldots x_{n+k} = 0$ in the SM. Fit the theories to the observables O_i:

Step 1: Minimise χ^2 function for both theories,

\[
\chi^2_{NP,\text{min}}(O_i) = \min \chi^2(x_1, \ldots x_{n+k}) \quad \text{and} \\
\chi^2_{SM,\text{min}}(O_i) = \min \chi^2(x_1, \ldots x_n, 0, \ldots 0).
\]

\[
\Delta \chi^2(O_i) := \chi^2_{SM,\text{min}}(O_i) - \chi^2_{NP,\text{min}}(O_i).
\]

Step 2: Calculate the statistical significance (“p-value”)

\[
p = 1 - P_{k/2}(\frac{1}{2} \Delta \chi^2).
\]

Lower incomplete Γ function.
To quantify the level at which a theory is disfavoured with respect to the SM one performs a likelihood ratio test.

Choose SM parameters $x_1, \ldots x_n$ and new-physics (NP) parameters $x_{n+1}, \ldots x_{n+k}$ such that $x_{n+1} = \ldots x_{n+k} = 0$ in the SM. Fit the theories to the observables O_i:

Step 1: Minimise χ^2 function for both theories,

$$
\chi_{NP, \text{min}}^2(O_i) = \min \chi^2(x_1, \ldots x_{n+k}) \quad \text{and} \\
\chi_{SM, \text{min}}^2(O_i) = \min \chi^2(x_1, \ldots x_n, 0, \ldots 0).
$$

$$
\Delta \chi^2(O_i) := \chi_{SM, \text{min}}^2(O_i) - \chi_{NP, \text{min}}^2(O_i).
$$

Step 2: Calculate the statistical significance (“p-value”)

$$
p = 1 - P_{k/2}(\frac{1}{2}\Delta \chi^2).
$$

Lower incomplete Γ function.

Does not work for the SM4!
The SM4 and SM3 are non-nested models, i.e. one cannot recover the SM3 from the SM4 by fixing its extra parameters, due to the non-decoupling property. Instead:

Step 1: Fit both theories to the measured observables O_i by minimising the χ^2 function,

$$\Delta \chi^2(O_i) := \chi^2_{\text{SM4,min}}(O_i) - \chi^2_{\text{SM,min}}(O_i).$$
The SM4 and SM3 are non-nested models, i.e. one cannot recover the SM3 from the SM4 by fixing its extra parameters, due to the non-decoupling property.

Instead:

Step 1: Fit both theories to the measured observables O_i by minimising the χ^2 function,

$$\Delta \chi^2(O_i) := \chi^2_{\text{SM4, min}}(O_i) - \chi^2_{\text{SM, min}}(O_i).$$

Step 2: Generate a large sample of toy measurements O_i' distributed around the best-fit prediction of the SM4 (according to the errors of the O_i).
The SM4 and SM3 are non-nested models, i.e. one cannot recover the SM3 from the SM4 by fixing its extra parameters, due to the non-decoupling property.

Instead:

Step 1: Fit both theories to the measured observables O_i by minimising the χ^2 function,

$$\Delta \chi^2(O_i) := \chi_{\text{SM4,min}}^2(O_i) - \chi_{\text{SM,min}}^2(O_i).$$

Step 2: Generate a large sample of toy measurements O'_i distributed around the best-fit prediction of the SM4 (according to the errors of the O_i).

Step 3: Fit both theories for each set of toy measurements and compute $\Delta \chi^2(O'_i) := \chi_{\text{SM4,min}}^2(O'_i) - \chi_{\text{SM,min}}^2(O'_i)$.
The SM4 and SM3 are non-nested models, i.e. one cannot recover the SM3 from the SM4 by fixing its extra parameters, due to the non-decoupling property.

Instead:

Step 1: Fit both theories to the measured observables O_i by minimising the χ^2 function,

$$\Delta \chi^2(O_i) := \chi^2_{\text{SM4, min}}(O_i) - \chi^2_{\text{SM, min}}(O_i).$$

Step 2: Generate a large sample of toy measurements O'_i distributed around the best-fit prediction of the SM4 (according to the errors of the O_i).

Step 3: Fit both theories for each set of toy measurements and compute $\Delta \chi^2(O'_i) := \chi^2_{\text{SM4, min}}(O'_i) - \chi^2_{\text{SM, min}}(O'_i)$.

Step 4: The statistical significance of the SM4 is the fraction of toy measurements with $\Delta \chi^2(O'_i) \geq \Delta \chi^2(O_i)$.
Challenge: To rule out a theory at 5σ, a p-value of $5.7 \cdot 10^{-7}$ must be calculated.

⇒ Need several million minimisations...
Challenge: To rule out a theory at 5σ, a p-value of $5.7 \cdot 10^{-7}$ must be calculated.

⇒ Need several million minimisations... ... if toy measurements follow Gaussian distribution.

Idea: Importance sampling: Modify the probability function of the toy Monte-Carlo in such way that the central region of the Gaussian (corresponding to few standard deviations) is avoided (i.e. fit only to the tail of the Gaussian).

⇒ Speedup of a factor of 100-1000.

We find an excellent fit to the SM3. The p-value of the SM4 is $p = 1.1 \cdot 10^{-7}$, corresponding to 5.3σ. Without the Tevatron data on $p\bar{p} \rightarrow Vb\bar{b}$ we find $p = 1.9 \cdot 10^{-6}$, corresponding to 4.8σ.

The exclusion of the SM4 corresponds to the perturbative regime only.
We find an excellent fit to the SM3. The p-value of the SM4 is $p = 1.1 \cdot 10^{-7}$, corresponding to 5.3σ. Without the Tevatron data on $p\bar{p} \rightarrow Vb\bar{b}$ we find $p = 1.9 \cdot 10^{-6}$, corresponding to 4.8σ.

The exclusion of the SM4 corresponds to the perturbative regime only.

Comment of a colleague:

"Why don’t you rule out the third generation next?"
Higgs signal strengths

- $pp \rightarrow H \rightarrow \gamma \gamma$
- $pp \rightarrow H \rightarrow \gamma \gamma$
- $pp \rightarrow H \rightarrow WW$
- $pp \rightarrow H \rightarrow ZZ$
- $pp \rightarrow H \rightarrow b\bar{b}$
- $pp \rightarrow H \rightarrow b\bar{b}$
- $pp \rightarrow H \rightarrow \tau \tau$

SM4 before ICHEP'12
SM4 after ICHEP'12

Delta χ^2
PRL 109 (2012) 241802 also contains the first combined fit to Higgs signal strengths and electroweak precision observables (EWPO) after the Higgs discovery. For the EWPO we have used the Zfitter program.
Deviations of EWPO

Fit results for the SM.

In the past EWPO were used to constrain \(m_t \) and \(m_H \).

With the Higgs discovery a parameter-free test of the SM is possible.
14. Dezember 2012 16:04 Teilchenphysik

Alle Dinge sind drei

Der Zerfall eines Higgs-Boson, wie es sich die Wissenschaftler vorstellen. Anhand der Messdaten des Teilchenbeschleunigers am Cern in Genf, die im Sommer das Higgs-Teilchen offenbart haben, kommen Forscher zu dem Schluss, dass die gesamte Materie aus nur wenigen Elementarbausteinen zusammengesetzt ist. (Foto: dpa)

Von Dirk Eidemüller
Two-Higgs-doublet model of type II

The presented work is based on:

Otto Eberhardt, UN, Martin Wiebusch, JHEP 1307 (2013) 118
Julien Baglio, Otto Eberhardt, UN, Martin Wiebusch, arXiv:1403.1264
Higgs potential

Type II: softly broken Z_2 symmetry: $(\Phi_1, \Phi_2) \rightarrow (-\Phi_1, \Phi_2)$

CP-conserving potential: may choose all parameters real

\[
V = m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - m_{12}^2(\Phi_1^\dagger \Phi_2 + \Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^\dagger \Phi_2)^2
\]
\[
+ \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)
\]
\[
+ \frac{1}{2} \lambda_5 \left[(\Phi_1^\dagger \Phi_2)^2 + (\Phi_2^\dagger \Phi_1)^2 \right]
\]

Yukawa couplings:

Only \{ Φ_1 \} couples to \{ down-type \}

\{ Φ_2 \} couples to \{ up-type \} fermions.
Higgs spectrum:

- 2 CP-even neutral Higgs fields h, H
- 1 CP-odd neutral Higgs field A
- 2 charged Higgs fields H^+, H^-
Higgs spectrum: 2 CP-even neutral Higgs fields h, H
1 CP-odd neutral Higgs field A
2 charged Higgs fields H^+, H^-

Trade m^2_{11} and m^2_{22} for vacuum expectation values v_1 and v_2
and express all λ_i in terms of Higgs masses to choose

$$\tan \beta = v_2/v_1, \quad \beta - \alpha, \quad m^2_{12}, \quad m_H, \quad m_A, \quad m_{H^\pm}$$

as parameters in a global analysis.

Here α is the h-H mixing angle:

$$H = \left(\sqrt{2} \text{Re} \Phi^0_1 - v_1\right) \cos \alpha + \left(\sqrt{2} \text{Re} \Phi^0_2 - v_2\right) \sin \alpha$$

$$h = -\left(\sqrt{2} \text{Re} \Phi^0_1 - v_1\right) \sin \alpha + \left(\sqrt{2} \text{Re} \Phi^0_2 - v_2\right) \cos \alpha$$
i) Higgs potential bounded from below:

\[\lambda_1 > 0 \ , \lambda_2 > 0 \ , \lambda_3 > -\sqrt{\lambda_1 \lambda_2} \ , \ |\lambda_5| < \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} \]

Gunion, Haber 2002
Fit input: theoretical constraints

i) Higgs potential bounded from below:

\[\lambda_1 > 0 \quad , \quad \lambda_2 > 0 \quad , \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2} \quad , \quad |\lambda_5| < \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} \]

\[\text{Gunion, Haber 2002} \]

ii) stability of “our” vacuum with \(v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV} \):

\[m_{12}^2 (m_{11}^2 - m_{22}^2 \sqrt{\lambda_1/\lambda_2}) (\tan \beta - (\lambda_1/\lambda_2)^{1/4}) > 0 \]

\[\text{Barroso et al. 2013} \]
Fit input: theoretical constraints

i) Higgs potential bounded from below:

\[\lambda_1 > 0 \quad , \lambda_2 > 0 \quad , \lambda_3 > -\sqrt{\lambda_1 \lambda_2} \quad , |\lambda_5| < \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} \]

Gunion,Haber 2002

ii) stability of “our” vacuum with \(v = \sqrt{v_1^2 + v_2^2} = 246 \) GeV:

\[m_{12}^2 (m_{11}^2 - m_{22}^2 \sqrt{\lambda_1/\lambda_2}) (\tan \beta - (\lambda_1/\lambda_2)^{1/4}) > 0 \]

Barroso et al. 2013

iii) perturbative couplings:

\[\| 16\pi S \| < \Lambda_{\text{max}} \]

with \(S \) being the tree-level scattering matrix for Higgs and longitudinal gauge bosons. \(\| \cdot \| \) is the magnitude of the largest eigenvalue.

Lee,Quigg,Thacker 1977
Perturbativity bound:

\[\|16\pi S\| < \Lambda_{\text{max}} \]

Necessary for tree-level unitarity: \(\Lambda_{\text{max}} = 16\pi \)

SM experience with higher-orders: must impose \(\Lambda_{\text{max}} = 2\pi \) to avoid breakdown of perturbation theory

We have studied both the loose and tight bounds, but quote our results for the tight bound with \(\Lambda_{\text{max}} = 2\pi \).
Fit input: experimental constraints

i) **ATLAS** and **CMS** data on Higgs signal strength

\[\hat{\mu}(pp \to H \to Y) = \frac{\sigma(pp \to h)B(h \to Y)|_{2HDM}}{\sigma(pp \to h)B(h \to Y)|_{SM3}} \]

with \(Y = \gamma\gamma, WW^*, ZZ^*, Vb\overline{b}, \tau\tau \),
Fit input: experimental constraints

i) **ATLAS** and **CMS** data on Higgs signal strength

\[\hat{\mu}(pp \rightarrow H \rightarrow Y) = \frac{\sigma(pp \rightarrow h)B(h \rightarrow Y)_{2\text{HDM}}}{\sigma(pp \rightarrow h)B(h \rightarrow Y)_{\text{SM3}}} \]

with \(Y = \gamma\gamma, WW^*, ZZ^*, Vb\bar{b}, \tau\tau \),

ii) **CMS** exclusion limits for \(H, A \) decays to \(WW, ZZ \), and \(\tau\tau \),
Fit input: experimental constraints

i) **ATLAS** and **CMS** data on Higgs signal strength

\[\hat{\mu}(pp \to H \to Y) = \frac{\sigma(pp \to h)B(h \to Y)|_{2\text{HDM}}}{\sigma(pp \to h)B(h \to Y)|_{\text{SM3}}} \]

with \(Y = \gamma\gamma, WW^*, ZZ^*, Vb\bar{b}, \tau\tau \),

ii) **CMS** exclusion limits for \(H, A \) decays to \(WW, ZZ \), and \(\tau\tau \),

iii) all electroweak precision observables (EWPO) (as implemented in **Zfitter**),
Fit input: experimental constraints

i) ATLAS and CMS data on Higgs signal strength

\[\hat{\mu}(pp \rightarrow H \rightarrow Y) = \frac{\sigma(pp \rightarrow h)B(h \rightarrow Y)|_{2HDM}}{\sigma(pp \rightarrow h)B(h \rightarrow Y)|_{SM3}} \]

with \(Y = \gamma\gamma, WW^*, ZZ^*, Vb\bar{b}, \tau\tau \),

ii) CMS exclusion limits for \(H,A \) decays to \(WW,ZZ \), and \(\tau\tau \),

iii) all electroweak precision observables (EWPO) (as implemented in \textit{Zfitter}),

iv) flavour constraints: mass difference \(\Delta m_{B_s} \) in the \(B_s - \bar{B}_s \) system and \(B(B \rightarrow X_s\gamma) \).
Remarks on the flavour constraints:

\(B_s - B_s\) mixing is only relevant for \(\tan \beta \lesssim 2\).

\(B(B \to X_s \gamma)\) places the bound \(m_{H^+} \geq 322\) GeV (@2\(\sigma\)), which (for \(\tan \beta \gtrsim 2\)) is essentially independent of \(\tan \beta\).

Hermann et al., JHEP1211(2912)036.

\(B \to \tau \nu\), \(B \to D \tau \nu\), and \(B \to D^* \tau \nu\) are neither well described by the SM nor the 2HDM of type II. Including these decay modes would not affect the likelihood ratio test for \(\tan \beta \lesssim 50\) and would disfavour the 2HDM of type II for larger values of \(\tan \beta\).
Remarks on the flavour constraints:

$B_s - \bar{B}_s$ mixing is only relevant for $\tan \beta \lesssim 2$.

$B(B \to X_s \gamma)$ places the bound $m_{H^+} \geq 322$ GeV (@2σ), which (for $\tan \beta \gtrsim 2$) is essentially independent of $\tan \beta$.

Hermann et al., JHEP1211(2012)036.

$B \to \tau \nu$, $B \to D\tau \nu$, and $B \to D^*\tau \nu$ are neither well described by the SM nor the 2HDM of type II. Including these decay modes would not affect the likelihood ratio test for $\tan \beta \lesssim 50$ and would disfavour the 2HDM of type II for larger values of $\tan \beta$.

A satisfactory explanation of $B \to \tau \nu$, $B \to D\tau \nu$, and $B \to D^*\tau \nu$ can be achieved with a minimal modification of the Yukawa sector of the considered type-II model.

Crivellin, Greub, Kokulu 2012
blue: tight perturbativity bound

green: loose perturbativity bound

non-decoupling strip: rather small m_{H^+} in tension with flavour observables, but allowed by Higgs signal strengths
blue: tight perturbativity bound, $1\sigma,$ $2\sigma,$ 3σ regions,

EWPO demand that either $M_A \sim M_{H^+}$ or $M_H \sim M_{H^+}$, while one of M_A, M_H can be lighter than 200 GeV!
Why is the constraint so far away from the decoupling limit?

In the “alignment limit” $\beta - \alpha = \pi / 2$ the VVh (with $V = W, Z, \gamma$) and $\bar{f}fh$ couplings are SM-like while all other VV-Higgs couplings vanish.
The measurement of the hhh coupling g_{hhh} through Higgs pair production is a major goal of future LHC runs and of the ILC.

LHC with $3\, \text{ab}^{-1}$ at $14\, \text{TeV}$: measure g_{hhh} with 40% error.

Barger et al. arXiv:1311.2931
Can one find new physics in this way?
Can one find new physics in this way?

Study:
To which extent can g_{hhh} deviate from its SM value?
To which extent can $gg \rightarrow hh$ be enhanced with respect to the SM prediction?

both h and H in the s channel
Normalise all triple-Higgs couplings to g_{hhh}^{SM}:

$$c_{\phi_1 \phi_2 \phi_3} = \frac{g_{\phi_1 \phi_2 \phi_3}^{2HDM}}{g_{hhh}^{SM}}$$

with $\phi_1, \phi_2, \phi_3 \in \{h, H, A, H^\pm\}$.
Normalise all triple-Higgs couplings to g_{hhh}^{SM}:

$$c_{\phi_1 \phi_2 \phi_3} = \frac{g_{\phi_1 \phi_2 \phi_3}^{2HDM}}{g_{hhh}^{SM}}$$

with $\phi_1, \phi_2, \phi_3 \in \{h, H, A, H^\pm\}$.

In the alignment limit $\beta - \alpha = \frac{\pi}{2}$:

$$c_{hhh} = 1, \quad c_{hhH} = 0, \quad c_{hXX} \neq 0, \quad c_{HXX} \neq 0 \text{ for } X = H, A, H^+$$
Result of the global fit:

At the 3σ level c_{hhh} cannot exceed 1!

One finds $c_{hhh} \geq \{0.72, 0.56, 0.40\}$ at $\{1\sigma, 2\sigma, 3\sigma\}$.
Result of the global fit:

At the 3σ level c_{hhh} cannot exceed 1!

One finds $c_{hhh} \geq \begin{cases} 0.72 \\ 0.56 \\ 0.40 \end{cases}$ at $\begin{cases} 1\sigma \\ 2\sigma \\ 3\sigma \end{cases}$.

But: The global fit permits large enough c_{hhH} to increase the Higgs pair production cross section by more than a factor of 50 through $gg \rightarrow H \rightarrow hh$!
Result of the global fit:

At the 3σ level c_{hhh} cannot exceed 1!

One finds $c_{hhh} \geq \begin{cases} 0.72 \quad 1\sigma \\ 0.56 \quad 2\sigma \\ 0.40 \quad 3\sigma \end{cases}$.

But: The global fit permits large enough c_{hhH} to increase the Higgs pair production cross section by more than a factor of 50 through $gg \rightarrow H \rightarrow hh$!

A large branching ratio $B(H \rightarrow hh)$ implies smaller branching ratios in the standard search channels $H \rightarrow \gamma\gamma, WW, ZZ, Z\gamma, t\bar{t}, b\bar{b}, \tau\bar{\tau}, gg \ldots$. Could a spectacularly enhanced h pair production cross section be the only signature of the 2HDM of type 2?
To suppress also standard search channels for A look for regions in the parameter space with large $B(A \rightarrow Zh)$ or large $B(A \rightarrow ZH)$.

Sum of standard branching ratios:
At the 2σ level $B(H \rightarrow X_{\text{std}})$ can be as low as 40% and $B(A \rightarrow X_{\text{std}})$ can be even suppressed below 1%.

This happens in a narrow strip with $M_{H^+} \sim 320 \text{ GeV} \leq m_A \leq 2m_t$ and $M_H < 260 \text{ GeV}$, with dominant decay modes $A \rightarrow ZH$ and $H \rightarrow hh$.
At the 2σ level $B(H \rightarrow X_{\text{std}})$ can be as low as 40% and $B(A \rightarrow X_{\text{std}})$ can be even suppressed below 1%.

This happens in a narrow strip with $M_{H^+} \sim 320 \text{ GeV} \leq m_A \leq 2m_t$ and $M_H < 260 \text{ GeV}$, with dominant decay modes $A \rightarrow ZH$ and $H \rightarrow hh$.

Even for $M_A > 2m_t$ one can have $B(A \rightarrow X_{\text{std}}) < 0.08$, for $M_A \gtrsim 400 \text{ GeV}$ the channel $A \rightarrow H^\pm W^{\mp}$ opens!
Conclusions

- The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.
Conclusions

- The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.
- In the 2HDM of type II with CP-conserving Higgs potential
Conclusions

- The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.

- In the 2HDM of type II with CP-conserving Higgs potential:
 - $B \rightarrow X_s\gamma$ enforces $M_{H^+} \geq 322$ GeV (at 2σ) and EWPO require $M_H \sim M_{H^+}$ or $M_A \sim M_{H^+}$. Individually, H or A could be lighter than 200 GeV,
The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.

In the 2HDM of type II with CP-conserving Higgs potential:

- $B \rightarrow X_s\gamma$ enforces $M_{H^+} \geq 322$ GeV (at 2σ) and EWPO require $M_H \sim M_{H^+}$ or $M_A \sim M_{H^+}$. Individually, H or A could be lighter than 200 GeV,
- the triple Higgs coupling g_{hhh} cannot exceed its SM value, but
Conclusions

- The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.
- In the 2HDM of type II with CP-conserving Higgs potential
 - $B \rightarrow X_s \gamma$ enforces $M_{H^+} \geq 322$ GeV (at 2σ) and EWPO require $M_H \sim M_{H^+}$ or $M_A \sim M_{H^+}$. Individually, H or A could be lighter than 200 GeV,
 - the triple Higgs coupling g_{hhh} cannot exceed its SM value, but
 - $\sigma(gg \rightarrow hh)$ can be enhanced by more than a factor of 50 through the resonant process $gg \rightarrow H \rightarrow hh$, and
Conclusions

- The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.
- In the 2HDM of type II with CP-conserving Higgs potential
 - $B \rightarrow X_s \gamma$ enforces $M_{H^+} \geq 322 \text{ GeV}$ (at 2σ) and EWPO require $M_H \sim M_{H^+}$ or $M_A \sim M_{H^+}$. Individually, H or A could be lighter than 200 GeV,
 - the triple Higgs coupling g_{hhh} cannot exceed its SM value, but
 - $\sigma(gg \rightarrow hh)$ can be enhanced by more than a factor of 50 through the resonant process $gg \rightarrow H \rightarrow hh$, and
 - standard H, A search channels can be substantially suppressed with simultaneously large $B(H \rightarrow hh)$ and $B(A \rightarrow ZH)$.
Conclusions

• The Standard Model with a perturbative 4th fermion generation is ruled out at the level of 5.3σ.

• In the 2HDM of type II with CP-conserving Higgs potential
 • $B \to X_s \gamma$ enforces $M_{H^+} \geq 322$ GeV (at 2σ) and EWPO require $M_H \sim M_{H^+}$ or $M_A \sim M_{H^+}$. Individually, H or A could be lighter than 200 GeV,
 • the triple Higgs coupling g_{hhh} cannot exceed its SM value, but
 • $\sigma(gg \to hh)$ can be enhanced by more than a factor of 50 through the resonant process $gg \to H \to hh$, and
 • standard H, A search channels can be substantially suppressed with simultaneously large $B(H \to hh)$ and $B(A \to ZH)$.

• For an exhaustive study of all triple-Higgs couplings and benchmark scenarios (for collider studies) in the studied 2HDM see arXiv:1403.1264.