Light quark physics and Lattice QCD

C. Doppler

L. Boltzmann

V. F. Hess E. Schrödinger

universität

OUTLINE

- Lattice QCD and flavor physics: the "precision era" of LQCD
- 1. The light quark masses: m_{ud} and m_s
- 2. The CKM matrix and the first row di unitarity test: Vus, Vud $\leftrightarrow f_{\kappa}/f_{\pi}, f_{+}(0)$
- 3. Isospin breaking effects on the lattice: mu/md, $M_{\pi^+} - M_{\pi^0}$, $M_n - M_p$, $[f_{\kappa}/f_{\pi}]^{QCD}$...

13 May 2014

Faculty of Physics

Light quark physics and Lattice QCD

J. Stefan

C. Doppler

L. Boltzmann

V. F. Hess E. Schrödinger

universität

OUTLINE

- Lattice QCD and flavor physics: the "precision era" of LQCD
- 1. The light quark masses: m_{ud} and m_s
- 2. The CKM matrix and the first row di unitarity test: Vus, Vud $\Leftrightarrow f_K/f_{\pi}, f_{+}(0)$
- 3. Isospin breaking effects on the lattice: mu/md, $M_{\pi^+} - M_{\pi^0}$, $M_n - M_p$, $[f_{\kappa}/f_{\pi}]^{QCD}$...

13 May 2014

Faculty of Physics

LATTICE QCD AND FLAVOR PHYSICS: The "precision era" of LQCD

Lattice QCD and flavor physics

A fundamental task of LQCD is to provide a determination of the SM free parameters in the quark sector, particularly in the flavor sector

The largest number of SM free parameters is in the flavor sector and 10 parameters in the quark sector only (6 m_q + 4 CKM) with unexplained hierarchical structure

Flavor physics is (well) described but not explained in the SM

Lattice QCD and flavor physics

Uncertainties in LQCD in the "quenched era"

For many years, uncertainties in lattice calculations have been dominated by the quenched approximation (or, more precisely, by the uncertainty on the quenching error)

	f _B	$f_{Bs}\sqrt{B_s}$	ξ	
	[MeV]	[MeV]	5	
J.Flynn	175(25)			
Latt'96	14%			
C.Bernard	200(30)	267(46)	1.16(5)	
Latt'00	15%	17%	4%	QUENCHED
L.Lellouch	193(27)(10)	276(38)	1.24(4)(6)	
Ichep'02	15%	14%	6%	50
Hashimoto	189(27)	262(35)	1.23(6)	
Ichep'04	14%	13%	5%	
N.Tantalo	223(15)(19)	246(16)(20)	1.21(2)(5)	UNQUENCHED
CKM/06	11%	10%	4%	1

Uncertainties in lattice QCD

- Statistical errors
- Discretization errors $(a \rightarrow 0)$
- Finite volume effects ($M_{\pi}L \gg 1$)
- Extrapolation in quark masses, both light ($M_\pi \gg 1/L$) and heavy ($m_Q \ll 1/a$)
- Renormalization (where required)
- [Quenched approximation $(N_f=0)$]

All these errors can be systematically improved in time

3 main reasons: 1) Increasing computational power

TeraFlops machines are required for unquenched LQCD simulations. They are available since few years only.

For LQCD today: ~ 100-200 TFlops

In 1989 the APE computer had a peak power of ~1 GFlops

List	Rank	System	Vendors	Cores	Rmax (GFlop/s)	Rpeak (GFlop/s)
11/2013	1	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P	NUDT	3,120,000	33,862,700	54,902,400
11/2013	15	Fermi - BlueGene/Q Power BQC 16C 1.60GHz, Custom IBM	163,840	1,788,87	78 2,05	97,152

2) <u>Algorithmic improvements</u>

Empirical CPU cost of a simulation (for Nf=2 Wilson fermions)

- Ukawa 2001
TFlops-years
$$\approx 3.1 \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right)^3 \left(\frac{0.1 \text{ fm}}{a}\right)^7$$

- Del Debbio et al. 2006

TFlops-years
$$\simeq 0.03 \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right) \left(\frac{0.1 \text{ fm}}{a}\right)$$

<u>Some years ago</u>: $M_{\pi} \ge 500 \text{ MeV}$ <u>Today</u>: $M_{\pi} \approx 140-200 \text{ MeV}$ Light quark masses in the ChPT regime

3) <u>Action</u> <u>improvements</u>

- Improved chiral symmetry: GW, Domain Wall...

- Improved scaling properties: CSW, Twisted mass, ...

Overview of lattice ensembles

A. El-Khadra @ Lattice 2013: "Quark Flavour Physics Review"

 \Box Nf = 2 \Box Nf = 2 + 1 \Box Nf = 2 + 1 + 1

The FLAG criteria (for light quarks)

- <u>Chiral extrapolation:</u>
 - ★ $M_{\pi,\min} < 200 \text{ MeV}$
 - \circ 200 MeV $\leq M_{\pi,\min} \leq 400$ MeV
 - 400 MeV $< M_{\pi,\min}$
- Continuum extrapolation:
 - \star 3 or more lattice spacings, at least 2 points below 0.1 fm
 - $\circ~~2$ or more lattice spacings, at least 1 point below 0.1 fm
 - otherwise

• Finite-volume effects:

- ★ $M_{\pi,\min}L > 4$ or at least 3 volumes
- $M_{\pi,\min}L > 3$ and at least 2 volumes
 - otherwise
- <u>Renormalization</u> (where applicable):
 - \star non-perturbative
 - \circ 1-loop perturbation theory or higher with a reasonable estimate
 - otherwise

of truncation errors

Flavour Lattice Averaging Group

arXiv:1310.8555

		lb);	tration Star.	this chine was	titutun uton	Volume Volation	une de lie adion	, 50		Aı	n exa FLA	mp G t	ole of a able
Collaboration	Ref.	NQ	Ð	.0°	<i>A</i>	20 ⁷	n _z	m_{ud}	m_s		a	rXiv	:1310.8555
$\begin{array}{c} \mathrm{RBC}/\mathrm{UKQCD}\;12^{\ominus}\\ \mathrm{PACS-CS}\;12^{\star}\\ \mathrm{Laiho}\;11\\ \mathrm{BMW}\;10\mathrm{A},\;10\mathrm{B}^{+}\\ \mathrm{PACS-CS}\;10\\ \mathrm{MILC}\;10\mathrm{A}\\ \mathrm{HPQCD}\;10^{\star}\\ \mathrm{RBC}/\mathrm{UKQCD}\;10\mathrm{A}\\ \mathrm{Blum}\;10^{\dagger}\\ \mathrm{PACS-CS}\;09\\ \mathrm{HPQCD}\;09\mathrm{A}^{\oplus}\\ \mathrm{MILC}\;09\mathrm{A}\\ \mathrm{MILC}\;09\\ \mathrm{PACS-CS}\;08\\ \mathrm{RBC}/\mathrm{UKQCD}\;08\\ \mathrm{CP-PACS}/\\ \mathrm{JLQCD}\;07\\ \mathrm{HPQCD}\;05\\ \mathrm{MILC}\;04,\;\mathrm{HPQCD}/\\ \mathrm{MILC}/\mathrm{UKQCD}\;04\\ \end{array}$	[25] [76] [77] [22, 23] [75] [73] [73] [20] [72] [37] [15] [19] [79] [80] [81] [36, 82]	A A C A A A A A A A A A A A A A	★★ ○ ★ ○○○○★○○○★○● ○	○■★★■★★○■■★★★■■ ★ ○ ○	*=**=***0=***=* * 0 0	******	a b - c b - - a - - - - - - - - - - -	$\begin{array}{c} 3.37(9)(7)(1)(2)\\ 3.12(24)(8)\\ 3.31(7)(20)(17)\\ 3.469(47)(48)\\ 2.78(27)\\ 3.19(4)(5)(16)\\ 3.39(6)\\ 3.59(13)(14)(8)\\ 3.44(12)(22)\\ 2.97(28)(3)\\ 3.40(7)\\ 3.25(1)(7)(16)(0)\\ 3.2(0)(1)(2)(0)\\ 2.527(47)\\ 3.72(16)(33)(18)\\ 3.55(19)(\substack{+56\\-20})\\ 3.2(0)(2)(2)(0)^{\ddagger}\\ 2.8(0)(1)(3)(0) \end{array}$	$\begin{array}{c} 92.3(1.9)(0.9)(0.\\ 83.60(0.58)(2.23)\\ 94.2(1.4)(3.2)(4.\\ 95.5(1.1)(1.5)\\ 86.7(2.3)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $.4)(0.8) 3) .7) .1) .5)(0.1) 4.9)	Nf=2+1		
ALPHA 12 Dürr 11^{\ddagger} ETM 10B JLQCD/TWQCD 08 RBC 07^{\dagger} ETM 07 QCDSF/ UKQCD 06 SPQcdR 05 ALPHA 05 QCDSF/ UKQCD 04 JLQCD 02 CP-PACS 01	[59] [61] [60] 3A [67] [34] [62] [68] [68] [64] [66] [70] [63]	A A A A A A A A A A A A		* * * * 0 0	* 0 * 0 *	*-*** * ** * ==	a, b a 	$\begin{array}{c} 3.52(10)(9)\\ 3.6(1)(2)\\ 4.452(81)(38)\left(\begin{smallmatrix}+0\\-227\end{smallmatrix}\right)\\ 4.25(23)(26)\\ 3.85(12)(40)\\ 4.08(23)(19)(23)\\ 4.3(4)\left(\begin{smallmatrix}+1.1\\-0.0\end{smallmatrix}\right)\\ 4.7(2)(3)\\ 3.223\left(\begin{smallmatrix}+46\\-69\end{smallmatrix}\right)\\ 3.45(10)\left(\begin{smallmatrix}+11\\-18\end{smallmatrix}\right)\end{array}$	$\begin{array}{c} 102(3)(1)\\ 97.0(2.6)(2.5)\\ 95(2)(6)\\ -\\ 119.5(5.6)(7.4)\\ 105(3)(9)\\ 111(6)(4)(6)\\ 101(8)(\frac{+25}{-0})\\ 97(4)(18)^{\$}\\ 119(5)(8)\\ 84.5(\frac{+12.0}{-1.7})\\ 89(2)(\frac{+2}{-6})^{\star} \end{array}$		Nf=2		14

... and examples of FLAG plots: THE LIGHT QUARK MASSES

results included in the average

results that are not included in the average but pass all quality criteria

all other results

LATTICE DETERMINATION OF QUARK MASSES

- QUARK MASSES CANNOT BE DIRECTLY MEASURED IN THE EXPERIMENTS, BECAUSE QUARKS ARE CONFINED INSIDE HADRONS
- BEING FUNDAMENTAL PARAMETERS OF THE STANDARD MODEL, QUARK MASSES CANNOT BE DETERMINED BY THEORETICAL CONSIDERATIONS ONLY.

Hadron masses and matrix elements

$$G(t) = \sum_{\mathbf{x}} \langle A_0(\mathbf{x}, t) A^{\dagger}_0(\mathbf{0}, 0) \rangle = \sum_{\mathbf{n}} \frac{|\langle \mathbf{0} | A_0 | \mathbf{n} \rangle|^2}{2m_n} \exp[-m_n t]$$

$$\rightarrow \frac{|\langle \mathbf{0} | A_0 | \pi \rangle|^2}{2m_\pi} \exp[-m_\pi t] = \frac{f_\pi^2 m_\pi}{2} \exp[-m_\pi t]$$

LATTICE DETERMINATION OF QUARK MASSES

A recent lattice calculation with Nf=2+1+1

Up, down, strange and charm quark masses with $N_f = 2 + 1 + 1$ twisted mass lattice QCD

N. Carrasco^(a), P. Dimopoulos^(b,c), R. Frezzotti^(c,d), V. Giménez^(e),
G. Herdoiza^(f), P. Lami^(g,a), V. Lubicz^(g,a), A. Nube^(h), D. Palao⁽ⁱ⁾,
L. Riggio^(g,a), G.C. Rossi^(c,d), F. Sanfilippo^(l), L. Scorzato^(m),
S. Simula^(a), C. Tarantino^(g,a), C. Urbach⁽ⁿ⁾

ETMC 2014 (Nf=2+1+1)

arXiv:1403.4504 [hep-lat]

ensemble	β	V/a^4	$a\mu_{sea} = a\mu_{\ell}$	$a\mu_{\sigma}$	$a\mu_\delta$	N_{cfg}	$a\mu_s$	$a\mu_c$
A30.32	1.90	$32^3 \times 64$	0.0030	0.15	0.19	150	0.0145,	0.1800, 0.2200,
A40.32			0.0040			90	0.0185,	0.2600, 0.3000,
A50.32			0.0050			150	0.0225	0.3600, 0.4400
A40.24	1.90	$24^3 \times 48$	0.0040	0.15	0.19	150		
A60.24			0.0060			150		
A80.24			0.0080			150		
A100.24			0.0100			150		
B25.32	1.95	$32^3 \times 64$	0.0025	0.135	0.170	150	0.0141,	0.1750, 0.2140,
B35.32			0.0035			150	0.0180,	0.2530, 0.2920,
B55.32			0.0055			150	0.0219	0.3510, 0.4290
B75.32			0.0075			75		
B85.24	1.95	$24^3 \times 48$	0.0085	0.135	0.170	150		
D15.48	2.10	$48^3 \times 96$	0.0015	0.12	0.1385	60	0.0118,	0.1470, 0.1795,
D20.48			0.0020			90	0.0151,	0.2120, 0.2450,
D30.48			0.0030			90	0.0184	0.2945, 0.3595

A recent lattice calculation with Nf=2+1+1

The lattice accuracy on light quark masses is at the few per cent level

2) THE CKM MATRIX AND THE 1st ROW UNITARITY TEST Vus, Vud from f_K/f_{π} , $f_{+}(0)$

The determination of V_{us} and V_{ud} provides the most stringent CKM unitarity test

THE 1st ROW UNITARITY TEST

$$\begin{array}{c}
|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 \\
\text{Central value:} & (0.974)^{2} & (0.225)^{2} & (3.75 \cdot 10^{-3})^{2} \\
\text{Error:} & 3.9 \cdot 10^{-4} & 4.5 \cdot 10^{-4} & \sim 10^{-6} \\
\end{array}$$

$$\begin{array}{c}
\text{=} \cos \Theta_{C} & \text{=} \sin \Theta_{C}
\end{array}$$

Processes: $K \rightarrow lv$, $K \rightarrow \pi lv$ Theory input: f_K/f_{π} , $f_{+}(0)$

Lattice calculation of f_K/f_{π}

Lattice results for Vud and Vus:

 $f_{\rm K}/f_{\rm m}$ and $f_{\rm +}(0)$

 $f_{K^+}/f_{\pi^+} = 1.192(5)$ Nf=2+1 0.4% $f_{K^+}/f_{\pi^+} = 1.205(18)$ Nf=2

State of the art LQCD calculations are Nf=2+1+1 at the physical point

Predictions of analytical models tends to be larger than lattice results

The 1st row unitarity test

The unitarity test: $\Delta_u = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$

- From lattice only:
- From lattice KI3 + $|V_{ud}|_{\beta}$:
- From lattice KI2 + $|V_{ud}|_{\beta}$:

 $\Delta_{u} = (-14 \pm 11) \times 10^{-3}$ $\Delta_{u} = (-7 \pm 6) \times 10^{-4}$ $\Delta_{u} = (0 \pm 6) \times 10^{-4}$

ISOSPIN BREAKING EFFECTS ON THE LATTICE: mu/md, $M_{\pi^+} - M_{\pi^0}$, $M_{K^+} - M_{K^0}$, $M_n - M_p$, [fk/f_{π}]QCD

Since electromagnetic interactions renormalize quark masses the two corrections are intrinsically related

Though small, IB effects play often a very important role

- The knowledge of mu and md (besides m_{ud}) is important for our understanding of flavor physics at the fundamental level

mu ≈ 2.5 MeV md ≈ 5 MeV mc ≈ 1.2 GeV ms ≈ 100 MeV

mt ~ 175 GeV mb ~ 4.3 GeV

$$\left(\frac{\mathbf{m}_{d}}{\mathbf{m}_{s}}\right)^{1/2} \simeq \left(\frac{\mathbf{m}_{u}}{\mathbf{m}_{c}}\right)^{1/4} \simeq \mathbf{V}_{us} \simeq 0.22$$

A remarkable relation:

The actual values of the mass difference md-mu and quark charges
 Qd, Qu implies Mn > Mp and guarantees the stability of matter

THEORY: LATTICE QCD

|Vus|f+(0) from world data: 2012

- Identify the isospin breaking term in the QCD action

- Expand the functional integral in powers of Δm

$$\left\langle O\right\rangle = \frac{\int D\phi \ O \ e^{-S_0 + \Delta m \ \hat{S}}}{\int D\phi \ e^{-S_0 + \Delta m \ \hat{S}}} \simeq \frac{\int D\phi \ O \ e^{-S_0} \left(1 + \Delta m \ \hat{S}\right)}{\int D\phi \ e^{-S_0} \left(1 + \Delta m \ \hat{S}\right)} \simeq \frac{\left\langle O\right\rangle_0 + \Delta m \left\langle O \ \hat{S}\right\rangle_0}{1 + \Delta m \left\langle \hat{S}\right\rangle_0} = \left\langle O\right\rangle_0 + \Delta m \left\langle O \ \hat{S}\right\rangle_0}$$
for isospin symmetry

- At leading order in Δm the corrections only appear in the valence quark propagators: (disconnected contractions of $\bar{u}u$ and $\bar{d}d$ vanish due to isospin symmetry)

An example: the charged and neutral pions

Because of the $u \leftrightarrow d$ symmetry, the corrections cancel at 1^{st} order

This is certainly not the case at 2nd order:

$$C_{\pi^0\pi^0}(t) - C_{\pi^+\pi^-}(t) = -2\left[\textcircled{\otimes} - \textcircled{\otimes} \textcircled{\otimes}\right] + \mathcal{O}(\Delta m_{ud})^3$$

The charged and neutral kaons

QED ON THE LATTICE

• Non-compact QED: the dynamical variable is the gauge potential $A_{\mu}(x)$ in a fixed covariant gauge ($\nabla_{\mu}^{-}A_{\mu}(x) = 0$)

$$S_{QED} = \frac{1}{2} \sum_{x;\mu\nu} A_{\nu}(x) \left(-\nabla_{\mu}^{-} \nabla_{\mu}^{+} \right) A_{\nu}(x) \stackrel{(p.b.c.)}{=} \frac{1}{2} \sum_{k;\mu\nu} \tilde{A}_{\nu}^{*}(k) \left(2\sin(k_{\mu}/2) \right)^{2} \tilde{A}_{\nu}(k)$$

- The photon propagator is IR divergent \rightarrow subtract the zero momentum mode

• Full covariant derivatives are defined introducing QED and QCD links:

$$A_{\mu}(x) \rightarrow E_{\mu}(x) = e^{-iaeA_{\mu}(x)}$$

$$D_{\mu}^{+}q_{f}(x) = \begin{bmatrix} E_{\mu}(x) \end{bmatrix}^{e_{f}} U_{\mu}(x) q_{f}(x+\hat{\mu}) - q_{f}(x)$$

$$QED \leftarrow QCD$$

$$QED \leftarrow QCD$$

$$Since E_{\mu}(x) = e^{-ieA_{\mu}(x)} = 1 - ieA_{\mu}(x) - 1/2 e^{2}A_{\mu}^{2}(x) + \dots \text{ the expansion of the lattice action up to } O(e^{2})$$

$$(e_{f}e)^{2} \leftarrow (e_{f}e)^{2} \leftarrow (e_{f}e)^{2} - (e_{f}e)^{2$$

Switching on the e.m. interactions requires the introduction of new counterterms which renormalize the couplings of the theory:

$$\vec{g}^{0} = (0, g_{s}^{0}, m_{u}^{0}, m_{d}^{0}, m_{s}^{0}, \ldots) \rightarrow \vec{g} = (e^{2}, g_{s}, m_{u}, m_{d}, m_{s}, \ldots)$$

- For any observable, the leading isospin breaking expansion reads,

$$O(\vec{g}) = O(\vec{g}^0) + \left[e^2 \frac{\partial}{\partial e^2} + \left(g_s^2 - (g_s^0)^2 \right) \frac{\partial}{\partial g_s^2} + \left(m_f - m_f^0 \right) \frac{\partial}{\partial m_f} + \dots \right] O(\vec{g}) \Big|_{\vec{g} = \vec{g}^0}$$

$$\Delta \longrightarrow \pm =$$

The charged-neutral pion mass splitting

The charged-neutral pion mass splitting

The charged and neutral kaon masses

The result can be expressed in terms of the violation of the Dashen's theorem:

$$\boldsymbol{\varepsilon}_{\gamma} = \frac{\left[M_{K^{+}}^{2} - M_{K^{0}}^{2}\right]^{\text{QED}} - \left[M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2}\right]^{\text{QED}}}{M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2}}$$

$$\left[M_{K^{+}} - M_{K^{0}}\right]^{\text{QED}} = 2.3(2)(2) \text{ MeV}$$

The up and down quark masses

Comparison with other approaches/results

Antonin Portelli, talk at KAON13

The neutron-proton mass splitting

The up-down mass difference (QCD) and electromagnetic interactions have opposite effect on the neutron-proton mass splitting

- We have only evaluated so far the QCD contribution:

$$\begin{bmatrix} M_N - M_P \end{bmatrix}^{\text{QCD}} = 2.9(6) \text{ MeV}$$
$$\begin{bmatrix} M_N - M_P \end{bmatrix}^{\text{QED}} = -1.6(6) \text{ MeV}$$

A study of both QCD and QED IB effects for the whole baryon octet is in progress

LQCD calculations of QCD+QED:	BMW Collab. arXiv:1306.2287	T. Blum et al. arXiv::1006.1311		
$[M_N - M_p]^{QCD}$ (MeV)	2.28(25)(7)	2.51(14)()		
$[M_N - M_p]^{QED}$ (MeV)	-1.59(30)(35)	-0.38(7)()		

Isospin breaking effects in the ratio f_{κ}/f_{π}

• We find that the QCD isospin breaking correction to the ratio f_{κ}/f_{π} is rather small:

$$\delta_{\rm SU(2)} = \frac{1}{f_{\rm K}} \frac{\partial f_{\rm K}}{\partial \Delta m_{\rm ud}} \Delta m_{\rm ud} = -0.40(3)(2)\%$$

• The result is nevertheless larger than the prediction of SU(3) ChPT at NLO

$$\delta_{SU(2)} = -\frac{1}{2} \frac{m_{d} - m_{u}}{m_{s} - m_{ud}} \left[\frac{f_{K}}{f_{\pi}} - 1 - \frac{M_{K}^{2} - M_{\pi}^{2} - M_{\pi}^{2} \ln(M_{K}^{2} / M_{\pi}^{2})}{64\pi^{2} F_{0}^{2}} \right] = -0.21(6)\%$$
[Gasser Leutwyler 1985: Ciricliano, Neufeld, 2013

er, Leutwyler 1985; Cirigliano, Neufeld, 2011

Lattice QCD evaluation of δ_{EM} : a challenging project

1 LQCD CALULATIONS ARE RAPIDLY EXTENDING THEIR DOMAIN OF APPLICABILITY AND IMPROVING THEIR ACCURACY

2 FOR SEVERAL QUANTITIES IN FLAVOUR PHYSICS THE ACCURACY IS AT THE PERCENT LEVEL 3) STATE OF THE ART LQCD CALCULATIONS ARE Nf=2+1+1 SIMULATIONS AT PHYSICAL QUARK MASSES

(4) ISOSPIN BREAKING EFFECTS ARE PHENOMENOLOGICALLY RELEVANT AND THEY ARE NOW BEING STUDIED ON THE LATTICE