Light quark physics and Lattice QCD

C. Doppler

L. Boltzmann

J. Stefan

E. Schrödinger

- 2. The CKM matrix and the first row di unitarity test: Vus, Vud $\leftrightarrow f_{K} / f_{\pi}, f_{+}(0)$
- 3. Isospin breaking effects on the lattice: $\mathrm{mu} / \mathrm{md}, \mathrm{M}_{\pi+}-\mathrm{M}_{\pi 0}, \mathrm{M}_{\mathrm{n}}-\mathrm{M}_{\mathrm{p}},\left[\mathrm{fk}_{\mathrm{K}} / \mathrm{f}_{\pi}\right]^{Q C D} \ldots$
- 1. The light quark masses: $m_{u d}$ and m_{s}

universität
 wien

Light quark physics and Lattice QCD

Franz Sacher [1816-1907]

OUTLINE

- Lattice QCD and flavor physics: the "precision era" of LQCD
- 1. The light quark masses: $m_{u d}$ and m_{s}
- 2. The CKM matrix and the first row di unitarity test: Vus, Vud $\leftrightarrow f_{K} / f_{\pi}, f_{+}(0)$
- 3. Isospin breaking effects on the lattice: $\mathrm{mu} / \mathrm{md}, \mathrm{M}_{\pi+}-\mathrm{M}_{\pi 0}, \mathrm{M}_{\mathrm{n}}-\mathrm{M}_{\mathrm{p}},\left[\mathrm{fk}_{\mathrm{K}} / \mathrm{f}_{\pi}\right]^{Q C D} \ldots$
wien
13 May 2014
Faculty of Physics

LATTICE QCD

AND FLAVOR PHYSICS:

 The "precision era" of LQCD
Lattice QCD and flavor physics

A fundamental task of LQCD is to provide a determination of the SM free parameters in the quark sector, particularly in the flavor sector

The largest number of SM free parameters is in the flavor sector and 10 parameters in the quark sector only ($6 \mathrm{~m}_{q}+4$ CKM) with unexplained hierarchical structure

Flavor physics is (well) described but not explained in the SM

Lattice QCD and flavor physics

Non-leptonic

Physics BSM

THE "PRECISION ERA" OF LQCD

Uncertainties in LQCD in the "quenched era"

For many years, uncertainties in lattice calculations have been dominated by the quenched approximation (or, more precisely, by the uncertainty on the quenching error)

	$\begin{gathered} \mathbf{f}_{\mathrm{B}} \\ {[\mathbf{M e V}]} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{Bs}} \sqrt{\mathbf{B}_{\mathrm{s}}} \\ {[\mathrm{MeV}]} \end{gathered}$	ξ	
J.Flynn Latt'96	$\begin{gathered} 175(25) \\ 14 \% \end{gathered}$	----	----	
C.Bernard Latt' 00	$\begin{gathered} 200(30) \\ 15 \% \end{gathered}$	$\begin{gathered} \hline 267(46) \\ 17 \% \end{gathered}$	$\begin{gathered} 1.16(5) \\ 4 \% \end{gathered}$	QUENCHED
L.Lellouch Ichep' 02	$\begin{gathered} \text { 193(27)(10) } \\ 15 \% \end{gathered}$	$\begin{gathered} \hline 276(38) \\ 14 \% \end{gathered}$	$\begin{gathered} 1.24(4)(6) \\ 6 \% \end{gathered}$	
Hashimoto Ichep' 04	$\begin{gathered} \hline 189(27) \\ 14 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 262(35) \\ 13 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.23(6) \\ 5 \% \end{gathered}$	
N.Tantalo СКМ 106	223(15)(19) 11%	$\begin{gathered} \hline 246(16)(20) \\ 10 \% \end{gathered}$	$\begin{gathered} 1.21(2)(5) \\ 4 \% \end{gathered}$	UNQUENCHED

THE "PRECISION ERA" OF LQCD

Uncertainties in lattice QCD

- Statistical errors

- Discretization errors ($\mathbf{a} \rightarrow \mathbf{0}$)
- Finite volume effects ($M_{\pi} L \gg 1$)
- Extrapolation in quark masses, both light ($\left.M_{\pi} \gg 1 / L\right)$ and heavy ($\mathrm{m}_{\mathrm{Q}} \ll 1 / \mathrm{a}$)
- Renormalization (where required)
- [Quenched approximation $\left(\mathrm{N}_{\mathrm{f}}=0\right)$]

All these errors can be systematically improved in time

THE "PRECISION ERA" OF LQCD

3 main reasons: 1) Increasing computational power

TeraFlops machines are required for unquenched LQCD simulations.
They are available since few years only.

For LQCD today:
 ~ 100-200 TFlops

In 1989 the APE computer had a peak power of ~ 1 GFlops

List	Rank	System
11/2013	1	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C
		2.200 GHz , TH Express-2, Intel Xeon Phi 31S1P

THE "PRECISION ERA" OF LQCD

2) Algorithmic improvements

Empirical CPU cost of a simulation (for $\mathrm{Nf}=2$ Wilson fermions)

- Ukawa 2001

TFlops-years $\simeq 3.1\left(\frac{\mathbf{N}_{\text {conf }}}{\mathbf{1 0 0}}\right)\left(\frac{\mathbf{L}_{\mathrm{s}}}{3 \mathrm{fm}}\right)^{5}\left(\frac{\mathbf{L}_{\mathrm{t}}}{2 \mathrm{~L}_{\mathrm{s}}}\right)\left(\frac{0.2}{\hat{m} / \boldsymbol{m}_{s}}\right)^{3}\left(\frac{\mathbf{0 . 1} \mathrm{fm}}{a}\right)^{7}$

- Del Debbio et al. 2006

TFlops-years $\simeq 0.03\left(\frac{\mathbf{N}_{\text {conf }}}{100}\right)\left(\frac{\mathrm{L}_{\mathrm{s}}}{3 \mathrm{fm}}\right)^{5}\left(\frac{\mathrm{~L}_{\mathrm{t}}}{2 \mathrm{~L}_{\mathrm{s}}}\right)\left(\frac{0.2}{\hat{m} / m_{s}}\right)\left(\frac{0.1 \mathrm{fm}}{a}\right)^{6}$
Some years ago: $M_{\pi} \geq 500 \mathrm{MeV}$ Today: $M_{\pi} \approx 140-200 \mathrm{MeV}$ Light quark masses in the ChPT regime

3) Action improvements

- Improved chiral symmetry: GW, Domain Wall...
- Improved scaling properties: CSW, Twisted mass, ...

Overview of lattice ensembles

A. El-Khadra @ Lattice 2013: "Quark Flavour Physics Review"

$\square N f=2$

- $N f=2+1$
- $\mathrm{Nf}=2+1+1$

Review of lattice results concerning low-energy particle physics

FLAG working group of FLAVIANET
G. Colangelo ${ }^{1, \mathrm{a}}$, S. Dürr ${ }^{2,3}$, A. Jüttner ${ }^{4}$, L. Lellouch ${ }^{5}$, H. Leutwyler ${ }^{1}$, V. Lubicz ${ }^{6}$, S. Necco ${ }^{4}$, C.T. Sachrajda ${ }^{7}$, S. Simula ${ }^{8}$, A. Vladikas 9, U. Wenger ${ }^{1}$, H. Wittig ${ }^{10}$
${ }^{1}$ Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland ${ }_{3}^{2}$ Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany ${ }^{3}$ Iüliah Cunoconmoutina Conten_ Eowoshnagzzentrum Jülich, 52425 Jülich, Germany

FLAG-2

[2013-14]

CP3-Origins-2013-040 DNRF90, DIAS-2013-40 FERMILAB-PUB-13-484-T, FTUAM-13-28 IFIC/13-76, IFT-UAM/CSIC-13-106 MITP/13-067, YITP-13-114

Review of lattice results concerning low energy particle physics

April 18, 2014
FLAG Working Group

S. Aoki ${ }^{1}$, Y. Aoki ${ }^{2},{ }^{3}$, C. Bernard ${ }^{4}$, T. Blum ${ }^{5},{ }^{3}$, G. Colangelo ${ }^{6}$, M. Della Morte ${ }^{7}$, S. Dürr ${ }^{8}$, A. X. El-Khadra ${ }^{9}$, H. Fukaya ${ }^{10}$, R. Horsley ${ }^{11}$, A. Jüttner ${ }^{12}$, T. Kaneko ${ }^{13}$, J. Laiho ${ }^{144}$,
L. Lellouch ${ }^{15,16}$, H. Leutwyler ${ }^{6}$, V. Lubicz ${ }^{17,18}$, E. Lunghi ${ }^{19}$, S. Necco ${ }^{6}$, T. Onogi ${ }^{10}$, C. Pena ${ }^{20}$, C. T. Sachrajda ${ }^{13}$, S. R. Sharpe ${ }^{21}$, S. Simula ${ }^{17}$, R. Sommer ${ }^{22}$, R. S. Van de Water ${ }^{23}$, A. Vladikas ${ }^{24}$, U. Wenger ${ }^{6}$, H. Wittig ${ }^{25}$

Abstract

We review lattice results related to pion, kaon, D - and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor $f_{+}(0)$, arising in semileptonic $K \rightarrow \pi$ transition at zero momentum transfer, as well as the decay constant ratio f_{K} / f_{π} of decay constants and its consequences for the CKM matrix elements $V_{u s}$ and $V_{u d}$. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of $S U(2)_{L} \times S U(2)_{R}$ and $S U(3)_{L} \times S U(3)_{R}$ Chiral Perturbation Theory and review the determination of the B_{K} parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D - and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant α_{s}.

Geneva 23, Switzerland
Campus de Luminy, 13288 Marseille, France ${ }^{\text {b }}$

Our aim is to provide the answer to the frequently posed question "What is currently the best lattice value (i.e. central value and error) for a particular quantity?"

The FLAG criteria (for light quarks)

- Chiral extrapolation:
* $M_{\pi, \min }<200 \mathrm{MeV}$
- $200 \mathrm{MeV} \leq M_{\pi, \min } \leq 400 \mathrm{MeV}$
- $400 \mathrm{MeV}<M_{\pi, \text { min }}$
- Continuum extrapolation:

3 or more lattice spacings, at least 2 points below 0.1 fm

- 2 or more lattice spacings, at least 1 point below 0.1 fm
- otherwise
- Finite-volume effects:
* $M_{\pi, \min } L>4$ or at least 3 volumes
- $M_{\pi, \min } L>3$ and at least 2 volumes
- otherwise
- Renormalization (where applicable):
non-perturbative
- 1-loop perturbation theory or higher with a reasonable estimate
- otherwise of truncation errors

... and examples of FLAG plots: THE LIGHT QUARK MASSES


```
arXiv:1310.8555
```

\square results included in the average
\square results that are not included in the average but pass all quality criteria
\square all other results

(1) THE LIGHT QUARK MASSES:

$m_{u d}$ and m_{s}

LATTICE DETERMINATION OF QUARK MASSES

- QUARK MASSES CANNOT BE DIRECTLY MEASURED IN THE EXPERIMENTS, BECAUSE QUARKS ARE CONFINED INSIDE HADRONS
- BEING FUNDAMENTAL PARAMETERS OF THE STANDARD MODEL, QUARK MASSES CANNOT BE DETERMINED BY THEORETICAL CONSIDERATIONS ONLY.
\Rightarrow QUARK MASSES CAN BE DETERMINED BY COMBINING TOGETHER A THEORETICAL AND AN EXPERIMENTAL INPUT. E.G.:

$\left[\mathbf{M}_{\text {HAD }}\left(\Lambda_{\mathbf{Q C D}}, \mathrm{m}_{\mathrm{q}}\right)\right]^{\mathrm{TH} .}=\left[\mathbf{M}_{\mathbf{H A D}}\right]^{\text {EXP. }}$

LATTICE QCD

Hadron masses and matrix elements

$$
\begin{aligned}
\mathrm{G}(\mathrm{t}) & =\sum_{\mathrm{x}}\left\langle\mathrm{~A}_{0}(\mathbf{x}, \mathrm{t}) \mathrm{A}_{0}^{\dagger}(\mathbf{0}, 0)\right\rangle=\sum_{\mathrm{n}} \frac{\left.\left|\langle 0| \mathrm{A}_{0}\right| \mathrm{n}\right\rangle\left.\right|^{2}}{2 \mathrm{~m}_{\mathrm{n}}} \exp \left[-\mathrm{m}_{\mathrm{n}} \mathrm{t}\right] \\
& \rightarrow \frac{\left.\left|\langle 0| \mathrm{A}_{0}\right| \pi\right\rangle\left.\right|^{2}}{2 \mathrm{~m}_{\pi}} \exp \left[-\mathrm{m}_{\pi} \mathrm{t}\right]=\frac{\mathrm{f}_{\pi}^{2} \mathrm{~m}_{\pi}}{2} \exp \left[-\mathrm{m}_{\pi} \mathrm{t}\right]
\end{aligned}
$$

Hadron mass and $\langle O| A|h\rangle$ matrix elements from the 2-point correlation function

LATTICE DETERMINATION OF QUARK MASSES

2 steps:

$$
\hat{\mathbf{m}}_{q}(\mu)=\mathbf{m}_{q}(\mathbf{a}) \mathbf{Z}_{\mathrm{m}}(\mu \mathbf{a})
$$

ADJUSTED UNTIL
 $\mathbf{M}_{\mathbf{H}}{ }^{\text {LATT }}=\mathbf{M}_{\mathbf{H}}{ }^{\text {EXP }}$

PERTURBATION THEORY OR NON-PERTURBATIVE METHODS

A recent lattice calculation with $\mathrm{Nf}=2+1+1$

Up, down, strange and charm quark masses with $N_{f}=2+1+1$ twisted mass lattice QCD
N. Carrasco ${ }^{(a)}$, P. Dimopoulos ${ }^{(b, c)}$, R. Frezzotti ${ }^{(c, d)}$, V. Giménez ${ }^{(e)}$,
G. Herdoiza ${ }^{(f)}$, P. Lami ${ }^{(g, a)}$, V. Lubicz ${ }^{(g, a)}$, A. Nube ${ }^{(h)}$, D. Palao ${ }^{(i)}$, L. $\operatorname{Riggio}^{(g, a)}$, G.C. Rossi ${ }^{(c, d)}$, F. Sanfilippo ${ }^{(l)}$, L. Scorzato ${ }^{(m)}$,

$$
\text { S. Simula }{ }^{(a)} \text {, C. Tarantino }{ }^{(g, a)} \text {, C. } \operatorname{Urbach}^{(n)}
$$

ETMC 2014
 (Nf=2+1+1) arXiv:1403.4504 [hep-lat]

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{\ell}$	$a \mu_{\sigma}$	$a \mu_{\delta}$	$N_{\text {cfg }}$	$a \mu_{s}$	$a \mu_{c}$
$A 30.32$	1.90	$32^{3} \times 64$	0.0030	0.15	0.19	150	0.0145,	$0.1800,0.2200$,
$A 40.32$			0.0040			90	0.0185,	$0.2600,0.3000$,
$A 50.32$			0.0050			150	0.0225	$0.3600,0.4400$
$A 40.24$	1.90	$24^{3} \times 48$	0.0040	0.15	0.19	150		
$A 60.24$			0.0060			150		
$A 80.24$			0.0080			150		
$A 100.24$			0.0100			150		
$B 25.32$	1.95	$32^{3} \times 64$	0.0025	0.135	0.170	150	0.0141,	$0.1750,0.2140$,
$B 35.32$			0.0035			150	0.0180,	$0.2530,0.2920$,
$B 55.32$			0.0055			150	0.0219	$0.3510,0.4290$
$B 75.32$			0.0075			75		
$B 85.24$	1.95	$24^{3} \times 48$	0.0085	0.135	0.170	150		
$D 15.48$	2.10	$48^{3} \times 96$	0.0015	0.12	0.1385	60	0.0118,	$0.1470,0.1795$,
$D 20.48$			0.0020			90	0.0151,	$0.2120,0.2450$,
$D 30.48$			0.0030			90	0.0184	$0.2945,0.3595$

A recent lattice calculation with $\mathrm{Nf}=2+1+1$

$$
\begin{array}{ll}
\overline{\mathrm{m}}_{\mathrm{ud}}=3.6 \pm 0.2 \mathrm{MeV} & {[\mathrm{Nf}=2]} \\
\overline{\mathrm{m}}_{\mathrm{ud}}=3.42 \pm 0.09 \mathrm{MeV} & {[\mathrm{Nf}=2+1]}
\end{array}
$$

$$
\begin{array}{ll}
\overline{\mathrm{m}}_{\mathrm{s}}=101 \pm 3 \mathrm{MeV} & {[\mathrm{Nf}=2]} \\
\overline{\mathrm{m}}_{\mathrm{s}}=93.8 \pm 2.4 \mathrm{MeV} & {[\mathrm{Nf}=2+1]}
\end{array}
$$

$$
\overline{\mathrm{m}}_{\mathrm{ud}}=3.70 \pm 0.17 \mathrm{MeV}[\mathrm{Nf}=2+1+1]
$$

$$
\overline{\mathrm{m}}_{\mathrm{s}}=99.6 \pm 4.1 \mathrm{MeV} \quad[\mathrm{Nf}=2+1+1]
$$

ETMC 2014

The lattice accuracy on light quark masses is at the few per cent level

(2) THE CKM MATRIX AND THE $1^{\text {st }}$ ROW UNITARITY TEST

 Vus, Vud from $f_{k} / f_{\pi}, f_{+}(0)$The determination of $V_{u s}$ and $V_{u d}$ provides the most stringent CKM unitarity test

THE $1^{\text {st }}$ ROW UNITARITY TEST

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

Central value:

$$
\left(3.75 \cdot 10^{-3}\right)^{2}
$$ Error:

$$
\begin{array}{c|c}
& (0.974)^{2} \\
3.9 \cdot 10^{-4} & \begin{array}{c}
(0.225)^{2} \\
4.5 \cdot 10^{-4}
\end{array} \\
\cos \theta_{C} \quad & \simeq \sin \theta_{C} \\
&
\end{array}
$$

$$
\sim 10^{-6}
$$

$\left(\begin{array}{ccc}\hline \mathrm{V}_{\text {td }} & \mathrm{V}_{\text {us }} & \mathrm{V}_{\mathrm{ub}} \\ \mathrm{V}_{\text {cd }} & \mathrm{V}_{\text {cs }} & \mathrm{V}_{\mathrm{cb}} \\ \mathrm{V}_{\mathrm{td}} & \mathrm{V}_{\text {ts }} & \mathrm{V}_{\text {tb }}\end{array}\right)$
Processes: $K \rightarrow \mid v, K \rightarrow \pi / V$
Theory input: $f_{K} / f_{\pi}, f_{+}(0)$

Vus/Vud from $K \mu 2 / \pi \mu 2$ decays

$$
\frac{\Gamma\left(K \rightarrow \mu \bar{v}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}=\frac{\left|V_{u s}\right|^{2}}{\left|V_{u s}\right|^{2}}\left(\frac{f_{K}}{f_{\pi}}\right)^{2} \frac{m_{K}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)}{m_{\pi}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)} \times \underset{\text { [Marciano 04] }}{0.9930(35)}
$$

Vus from KI3 decays

$\frac{\left|V_{u s}\right|}{\left|V_{u t}\right|} \left\lvert\, \frac{f_{k}}{f_{\pi}}=0.2758(5)\right.$
$F_{\text {nexavi }} A$

$$
\left|V_{u s}\right| f_{+}(0)=0.2163(5)
$$ arXiv:1005.2323 [hep-ph]

Lattice calculation of f_{k} / f_{π}

PROCEEDINGS

PS

of SCIENCE

```
arXiv:1310.8555
```

Pseudoscalar decay constants $f_{K} / f_{\pi}, f_{D}$ and $f_{D_{s}}$ with $N_{f}=2+1+1$ ETMC configurations

$$
G(t)=\sum_{\mathbf{x}}\left\langle A_{0}(\mathbf{x}, t) A_{0}^{\dagger}(\mathbf{0}, 0)\right\rangle \xrightarrow{t \rightarrow \infty} \frac{f_{\pi}^{2} m_{\pi}^{2}}{2} \exp \left(-m_{\pi} t\right)
$$

$\mathrm{f}_{\mathrm{K}^{+}} / \mathrm{f}_{\mathrm{T}^{+}}=1.183(17)$ $\mathrm{f}_{\mathrm{K}^{+}}=154.4(2.1) \mathrm{MeV}$

ETMC 13 ($\mathrm{Nf}=2+1+1$) [preliminary]

Two other $\mathrm{Nf}=2+1+1$ results

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{K}^{+}} / \mathrm{f}_{\pi^{+}}=1.192(2) \text { HPQCD } 13 \\
& \mathrm{f}_{\mathrm{K}^{+}} / \mathrm{f}_{\pi^{+}}=1.195(5) \text { MILC } 13
\end{aligned}
$$

Simulations at the physical point!

Lattice results for Vud and Vus:

$$
\begin{aligned}
\mathrm{f}_{+}(0)=0.970(3) & \mathrm{Nf}=2+1+1 \\
\mathrm{f}_{+}(0)=0.966(3) & \mathrm{Nf}=2+1 \\
\mathrm{f}_{+}(0)=0.956(8) & \mathrm{Nf}=2
\end{aligned}
$$

Predictions of analytical models tends to be larger than lattice results

State of the art LQCD calculations are $\mathrm{Nf}=2+1+1$ at the physical point

The $1^{\text {st }}$ row unitarity test

The unitarity plot

From lattice results only

$$
\begin{aligned}
& {\left[\cdot\left|V_{u s}\right|=0.2239(9)\right.} \\
& \cdot\left|V_{u s}\right| /\left|V_{u d}\right|=0.2314(11) \\
& \cdot\left|V_{u d}\right|=0.968(6)
\end{aligned}
$$

From nuclear β-decays:

$$
\left|\mathrm{V}_{\mathrm{ud}}\right|_{\beta}=0.97425(22)
$$

The unitarity test: $\Delta_{u}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1$

- From lattice only:

$$
\begin{aligned}
\Delta_{\mathrm{u}} & =(-14 \pm 11) \times 10^{-3} \\
\Delta_{\mathrm{u}} & =(-7 \pm 6) \times 10^{-4} \\
\Delta_{\mathrm{u}} & =(0 \pm 6) \times 10^{-4}
\end{aligned}
$$

- From lattice KI3 + |V $\left.\mathrm{Vad}_{\beta}\right|_{\beta}$:
- From lattice KI2 + |V $\left.\mathrm{Vad}_{\beta}\right|_{\beta}$:
(3) ISOSPIN BREAKING EFFECTS ON THE LATTICE:
$\mathrm{mu} / \mathrm{md}, \mathrm{M}_{\boldsymbol{\pi}^{+}}-\mathrm{M}_{\boldsymbol{\pi}}, \mathrm{Mk}^{+}$- $\mathrm{Mko}^{\text {, }}$
$M_{n}-M_{p},\left[f_{k} / f_{\pi}\right]^{Q C D}$

ISOSPIN BREAKING EFFECTS

Isospin symmetry is an almost exact property of the strong interactions

Isospin breaking effects are induced by:

$$
m_{u} \neq m_{d}: \quad O\left[\left(m_{d}-m_{u}\right) / \Lambda_{Q C D}\right] \approx 1 / 100 \quad \text { "Strong" }
$$

$$
Q_{u} \neq Q_{d}: \quad O\left(\alpha_{e, m}\right) \approx 1 / 100
$$

"Electromagnetic"
Since electromagnetic interactions renormalize quark masses the two corrections are intrinsically related

Though small, IB effects play often a very important role

- The knowledge of $m u$ and $m d$ (besides $m_{u d}$) is important for our understanding of flavor physics at the fundamental level

$$
\begin{array}{rl}
\mathrm{mu} \simeq 2.5 \mathrm{MeV} & \mathrm{md} \simeq 5 \mathrm{MeV} \\
\mathrm{mc} \simeq 1.2 \mathrm{GeV} & \mathrm{~ms} \simeq 100 \mathrm{MeV} \\
\mathrm{mt} \simeq 175 \mathrm{GeV} & \mathrm{mb} \simeq 4.3 \mathrm{GeV}
\end{array}
$$

A remarkable relation:

$$
\left(\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{~m}_{\mathrm{s}}}\right)^{1 / 2} \simeq\left(\frac{\mathrm{~m}_{\mathrm{u}}}{\mathrm{~m}_{\mathrm{c}}}\right)^{1 / 4} \simeq \mathrm{~V}_{\mathrm{us}} \simeq 0.22
$$

- The actual values of the mass difference md-mu and quark charges Qd, Qu implies Mn > Mp and guarantees the stability of matter

Proton

938.27 MeV

Neutron

$$
M(n)-M(p)=1.3 M e V=0.14 \%
$$

$$
\left|V_{u s}\right| f_{+}(0)=0.2163(5)
$$

$$
f_{K} / f_{\pi}=1.192(5) \quad 0.4 \%
$$

| Vus | f+(0) from world data: 2012

$\left|V_{u s}\right| f_{+}(\mathbf{0})$

$$
K_{L} e 3 \quad 0.2163(5)
$$

$$
K_{L} \mu 3 \quad 0.2166(6)
$$

$$
K_{S} e 3 \quad 0.2155(13)
$$

0.61
0.60
0.02
0.11
0.05
$K^{ \pm} e 3 \quad 0.2160(11)$
0.52
0.31
0.09
0.04
$K^{ \pm} \mu 3 \quad 0.2158(13)$
0.63
$0.47 \quad 0.08$
0.06

Average: $\left|V_{u s}\right| f_{+}(0)=0.2163(5) \quad \chi^{2} / \mathrm{ndf}=0.84 / 4$ (93\%)
M. Raggi, NA48/2 collaboration @ KAON13

A strategy for Lattice QCD:

The isospin breaking part of the Lagrangian is treated as a perturbation

1 The (md-mu) expansion

- Identify the isospin breaking term in the QCD action

$$
\begin{aligned}
S_{m} & =\sum_{x}\left[m_{u} \bar{u} u+m_{d} \bar{d} d\right]=\sum_{x}\left[\frac{1}{2}\left(m_{u}+m_{d}\right)(\bar{u} u+\bar{d} d)-\frac{1}{2}\left(m_{d}-m_{u}\right)(\bar{u} u-\bar{d} d)\right]= \\
& =\sum_{x}\left[m_{u d}(\bar{u} u+\bar{d} d)-\Delta m(\bar{u} u-\bar{d} d)\right]=S_{0}-\Delta m \hat{S} \longleftarrow \hat{\mathrm{~S}}=\Sigma_{x}(\overline{\mathrm{u} u}-\bar{d} d)
\end{aligned}
$$

- Expand the functional integral in powers of Δm

$$
\langle O\rangle=\frac{\int D \phi O e^{-S_{0}+\Delta m \hat{\mathrm{~S}}}{ }_{1 s t}}{\int D \phi e^{-S_{0}+\Delta m \hat{\mathrm{~S}}}} \simeq \frac{\int D \phi O e^{-S_{0}}(1+\Delta m \hat{\mathrm{~S}})}{\int D \phi e^{-S_{0}}(1+\Delta m \hat{\mathrm{~S}})} \simeq \frac{\langle O\rangle_{0}+\Delta m\langle O \hat{\mathrm{~S}}\rangle_{0}}{1+\Delta m\langle\hat{\mathrm{~S}}\rangle_{0} \tau}=\langle O\rangle_{0}+\Delta m\langle O \hat{\mathrm{~S}}\rangle_{0}
$$

- At leading order in Δm the corrections only appear in the valence quark propagators: (disconnected contractions of ūu and dd vanish due to isospin symmetry)

An example: the charged and neutral pions

$$
\begin{aligned}
C_{\pi^{+} \pi^{-}}(t) & =-\infty+\cdots+\cdots \\
& =-\infty+\infty
\end{aligned}
$$

$$
C_{\pi^{0} \pi^{0}}(t)=-\frac{1}{2}\left[\bigodot_{u}^{u}+\bigodot_{d}^{d}\right]=-\longrightarrow+\mathcal{O}\left(\Delta m_{u d}\right)^{2} .
$$

Because of the $u \leftrightarrow d$ symmetry, the corrections cancel at $1^{\text {st }}$ order

This is certainly not the case at $2^{\text {nd }}$ order:

$$
C_{\pi^{0} \pi^{0}}(t)-C_{\pi^{+} \pi^{-}}(t)=-2\left[\bigotimes_{\bigotimes}^{\bigotimes}-\otimes\right]+\mathcal{O}\left(\Delta m_{u d}\right)^{3}
$$

The charged and neutral kaons

Corrections to the charged and neutral kaons are equal and opposite at $1^{\text {st }}$ order:

We compute the slope in $\Delta m: S_{m}=S_{0}-\Delta m \hat{S}$

$$
\frac{\left[\mathrm{M}_{\mathrm{K}^{0}}^{2}-\mathrm{M}_{\mathrm{K}^{+}}^{2}\right]^{\mathrm{QCD}}}{\mathrm{~m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}}(\overline{\mathrm{MS}}, 2 \mathrm{GeV})=2.57(8) \times 10^{3} \mathrm{MeV}
$$

But in order to get a determination of md-mu we must evaluate also the QED contribution to the mass splitting

A strategy for Lattice QCD:

The isospin breaking part of the Lagrangian is treated as a perturbation

QED ON THE LATTICE

- Non-compact QED: the dynamical variable is the gauge potential $A_{\mu}(x)$ in a fixed covariant gauge $\left(\nabla_{\mu}^{-} A_{\mu}(x)=0\right)$

$$
S_{Q E D}=\frac{1}{2} \sum_{x ; \mu v} A_{v}(x)\left(-\nabla_{\mu}^{-} \nabla_{\mu}^{+}\right) A_{v}(x) \stackrel{(p . b . c .)}{=} \frac{1}{2} \sum_{k ; \mu v} \tilde{A}_{v}^{*}(k)\left(2 \sin \left(k_{\mu} / 2\right)\right)^{2} \tilde{A}_{v}(k)
$$

- The photon propagator is IR divergent \rightarrow subtract the zero momentum mode
- Full covariant derivatives are defined introducing QED and QCD links:

$$
A_{\mu}(x) \rightarrow E_{\mu}(x)=e^{-i a e A_{\mu}(x)}
$$

$$
D_{\mu}^{+} q_{f}(x)=\left[E_{\mu}(x)\right]^{e_{f}} U_{\mu}(x) q_{f}(x+\hat{\mu})-q_{f}(x)
$$

QED

- Since $E_{\mu}(x)=e^{-i e A_{\mu}(x)}=1-i e A_{\mu}(x)-1 / 2 e^{2} A_{\mu}^{2}(x)+\ldots$ the expansion of the lattice action up to $O\left(e^{2}\right)$ contains 2 contributions:

- Switching on the e.m. interactions requires the introduction of new counterterms which renormalize the couplings of the theory:

$$
\vec{g}^{0}=\left(0, g_{s}^{0}, m_{u}^{0}, m_{d}^{0}, m_{s}^{0}, \ldots\right) \rightarrow \vec{g}=\left(e^{2}, g_{s}, m_{u}, m_{d}, m_{s}, \ldots\right)
$$

- For any observable, the leading isospin breaking expansion reads,

$$
O(\vec{g})=O\left(\vec{g}^{0}\right)+\left.\left[e^{2} \frac{\partial}{\partial e^{2}}+\left(g_{s}^{2}-\left(g_{s}^{0}\right)^{2}\right) \frac{\partial}{\partial g_{s}^{2}}+\left(m_{f}-m_{f}^{0}\right) \frac{\partial}{\partial m_{f}}+\ldots\right] O(\vec{g})\right|_{\vec{g}=\vec{g}^{0}}
$$

$$
\Delta \longrightarrow \longrightarrow^{ \pm}=
$$

$$
\left(e_{f} e\right)^{2} \xrightarrow{\Omega^{M} 3}+\left(e_{f} e\right)^{2} \xrightarrow{\sum^{M}}-\left[m_{f}-m_{f}^{0}\right]-\mathbb{Q}-\mp\left[m_{f}^{c r}-m_{0}^{c r}\right]
$$

$$
-e^{2} e_{f} \sum_{f_{1}} e_{f_{1}} \xrightarrow{\text { M }}-e^{2} \sum_{f_{1}} e_{f_{1}}^{2} \xrightarrow{\text { S }}-e^{2} \sum_{f_{1}} e_{f_{1}}^{2} \xrightarrow{?}+\ldots
$$

The charged-neutral pion mass splitting

$\Delta M_{\pi^{+}}=-e_{u} e_{d} e^{2} \partial_{t} \xrightarrow{\text { ? }}-\left(e_{u}^{2}+e_{d}^{2}\right) e^{2} \partial_{t}$

$\left.m_{u d}^{0}\right] \partial_{t}$

Since $e_{u} \neq e_{d}$, sea quark contributions now enter at the leading order

$M_{\pi^{+}}-M_{\pi^{0}}=\frac{\left(e_{u}-e_{d}\right)^{2}}{2} e^{2} \partial_{t} \xrightarrow{\text { ? }}$
Only 2 diagrams contribute to the pion mass splitting.
The disconnected diagram, of $\mathrm{O}\left(\alpha_{\mathrm{em}} \mathrm{m}_{\mathrm{ud}}\right)$, has been neglected in the present calculation

The charged-neutral pion mass splitting

We obtain $M_{\pi^{+}}-M_{\pi^{0}}=5.2(5)(6) \mathrm{MeV}$ in good agreement with the experimental value $\left[M_{\pi^{+}}-M_{\pi^{0}}\right]^{\exp }=4.6 \mathrm{MeV}$
[It suggests, a posteriori, that the effect of having neglected the disconnected contribution of $O\left(a_{e m} m_{u d}\right)$ is small]

The charged and neutral kaon masses

QED

The result can be expressed in terms of the violation of the Dashen's theorem:

$$
\varepsilon_{\gamma}=\frac{\left[M_{\kappa^{+}}^{2}-M_{\kappa^{0}}^{2}\right]^{\mathrm{QED}}-\left[M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right]^{\mathrm{QED}}}{M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}}
$$

$$
\left[\mathrm{M}_{\mathrm{K}^{+}}-\mathrm{M}_{\mathrm{K}^{0}}\right]^{\mathrm{QED}}=2.3(2)(2) \mathrm{MeV} \quad, \quad\left[\mathrm{M}_{\mathrm{K}^{+}}-\mathrm{M}_{\mathrm{K}^{0}}\right]^{\mathrm{QCD}}=-6.2(2)(2) \mathrm{MeV}
$$

The up and down quark masses

From: $\frac{\left[\mathrm{M}_{\mathrm{K}^{0}}^{2}-\mathrm{M}_{\mathrm{K}^{+}}^{2}\right]^{2 C D}}{\mathrm{~m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}}=2.57(8) \times 10^{3} \mathrm{MeV}$

$$
\left(\overline{\mathrm{m}}_{\mathrm{d}}-\overline{\mathrm{m}}_{\mathrm{u}}\right)=2.39(8)(17) \mathrm{MeV}
$$

$$
\overline{\mathrm{m}}_{\mathrm{u}} / \overline{\mathrm{m}}_{\mathrm{d}}=0.50(2)(3)
$$

$$
\begin{aligned}
& \overline{\mathrm{m}}_{\mathrm{u}}=2.40(23) \mathrm{MeV} \\
& \overline{\mathrm{~m}}_{\mathrm{d}}=4.80(23) \mathrm{MeV}
\end{aligned}
$$

$$
\overline{\mathrm{m}}_{\mathrm{ud}}=3.6(2) \mathrm{MeV}
$$

from isosymmetric LQCD

RM123 2013 (Nf=2)

$$
\begin{aligned}
& \overline{\mathrm{m}}_{\mathrm{u}}=2.36(24) \mathrm{MeV} \\
& \overline{\mathrm{~m}}_{\mathrm{d}}=5.03(26) \mathrm{MeV}
\end{aligned}
$$

$$
\overline{\mathrm{m}}_{\mathrm{ud}}=3.70(17) \mathrm{MeV}
$$

$$
\overline{\mathrm{m}}_{\mathrm{u}} / \overline{\mathrm{m}}_{\mathrm{d}}=0.470(56)
$$

ETMC 2014 ($\mathrm{Nf}=2+1+1$)

Comparison with other approaches/results

Other lattice studies of QCD + QED have been /are being performed

They are based on the "standard" approach: QED is introduced directly in the MC simulation, like QCD.

Advantages of our approach:

- The small parameters Δm and e are factorized in the expansion - No need to generate new gauge configurations

Disadvantages:

- More vertices and correlations functions to be computed

Antonin Portelli, talk at KAON13

The neutron-proton mass splitting

The up-down mass difference (QCD) and electromagnetic interactions have opposite effect on the neutron-proton mass splitting

- We have only evaluated so far the QCD contribution:

$$
\begin{aligned}
& {\left[M_{N}-M_{P}\right]^{a C D}=2.9(6) \mathrm{MeV}} \\
& {\left[M_{N}-M_{P}\right]^{\text {aED }}=-1.6(6) \mathrm{MeV}}
\end{aligned}
$$

A study of both QCD and QED IB effects for the whole baryon octet is in progress

LQCD calculations of QCD + QED:	BMW Collab. arXiv:1306.2287	T. Blum et al. arXiv::1006.1311
$\left[\mathrm{M}_{\mathrm{N}}-\mathrm{M}_{\mathrm{p}}\right.$]CD (MeV)	$2.28(25)(7)$	$2.51(14)(\ldots)$
$\left[\mathrm{M}_{\mathrm{N}}-\mathrm{M}_{\mathrm{p}}\right]^{\text {QED }}$	(MeV)	$-1.59(30)(35)$

Isospin breaking effects in the ratio f_{k} / f_{π}

- We find that the QCD isospin breaking correction to the ratio f_{k} / f_{π} is rather small:

$$
\delta_{\mathrm{SU}(2)}=\frac{1}{\mathrm{f}_{\mathrm{K}}} \frac{\partial \mathrm{f}_{\mathrm{K}}}{\partial \Delta \mathrm{~m}_{\mathrm{ud}}} \Delta \mathrm{~m}_{\mathrm{ud}}=-0.40(3)(2) \%
$$

- The result is nevertheless larger than the prediction of SU(3) ChPT at NLO

$$
\delta_{\mathrm{SU}(2)}=-\frac{1}{2} \frac{\mathrm{~m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}}{\mathrm{~m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{ud}}}\left[\frac{\mathrm{f}_{\mathrm{K}}}{\mathrm{f}_{\pi}}-1-\frac{\mathrm{M}_{\mathrm{K}}^{2}-\mathrm{M}_{\pi}^{2}-\mathrm{M}_{\pi}^{2} \ln \left(\mathrm{M}_{\mathrm{K}}^{2} / \mathrm{M}_{\pi}^{2}\right)}{64 \pi^{2} \mathrm{~F}_{0}^{2}}\right]=-0.21(6) \%
$$

[Gasser, Leutwyler 1985; Cirigliano, Neufeld, 2011]
Lattice QCD evaluation of $\delta_{\text {EM }}$: a challenging project

1) LQCD CALULATIONS ARE RAPIDLY EXTENDING THEIR DOMAIN OF APPLICABILITY AND IMPROVING THEIR ACCURACY
(2) FOR SEVERAL QUANTITIES IN
FLAVOUR PHYSICS
THE ACCURACY IS AT
THE PERCENT LEVEL
(3) STATE OF THE ART LQCD CALCULATIONS ARE $\mathrm{Nf}=2+1+1$
SIMULATIONS AT PHYSICAL QUARK MASSES
 PHENOMENOLOGICALLY RELEVANT AND THEY ARE NOW BEING STUDIED ON THE LATTICE
