Description of Exclusive Hadronic τ Decays

Matthias Jamin

Description of Exclusive Hadronic τ Decays

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes

Matthias Jamin ICREA & IFAE Universitat Autònoma de Barcelona

Single-meson modes

Single meson modes have been calculated long ago:

(Marciano, Sirlin 1988)

Decay $\tau^- \rightarrow \pi^- v_{\tau}$:

$$B_{\tau \to \pi} = 12\pi^2 |V_{ud}|^2 S_{\text{EW}} \frac{f_{\pi}^2}{M_{\tau}^2} \left(1 - \frac{M_{\pi}^2}{M_{\tau}^2}\right)^2 \cdot B_{\tau \to e}$$
$$\approx 0.61 \cdot B_{\tau \to e} = 10.87\%$$

Decay $\tau^- \rightarrow K^- v_{\tau}$:

$$B_{\tau \to K} = 12\pi^2 |V_{us}|^2 S_{\text{EW}} \frac{f_K^2}{M_\tau^2} \left(1 - \frac{M_K^2}{M_\tau^2}\right)^2 \cdot B_{\tau \to e}$$
$$\approx 0.04 \cdot B_{\tau \to e} = 0.72\%$$

Employing $\pi^- \rightarrow \mu^- v_{\mu}$ and $K^- \rightarrow \mu^- v_{\mu}$, precise predictions can be made for the branching fractions $B_{\tau \to \pi}$ and $B_{\tau \to K}$.

Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes Conclusions

Exclusive τ decays

Universität Wien 30. January 2014

*icrea

IFAE9

Description of Exclusive

Two-meson decays

Viable information can be obtained from the decay spectra for exclusive τ -decay channels.

The procedure can be exemplified through the description of the $\tau \rightarrow K \pi v_{\tau}$ decay spectrum: (MJ, Pich, Portolés 2006/0

(MJ, Pich, Portolés 2006/08) (Boito, Escribano, MJ 2008) (Passemar et al. 2006-11)

$$\frac{d\Gamma_{K\pi}}{d\sqrt{s}} = \frac{G_F^2 |V_{US}|^2 M_\tau^3}{32\pi^3 s} \left(1 - \frac{s}{M_\tau^2}\right)^2 \times$$

$$\left[\left(1+2\frac{s}{M_{\tau}^2}\right)q_{K\pi}^3|F_+^{K\pi}(s)|^2+\frac{3\Delta_{K\pi}^2}{4s}q_{K\pi}|F_0^{K\pi}(s)|^2\right].$$

To this end the $K\pi$ vector and scalar form factors $F_+^{K\pi}(s)$ and $F_0^{K\pi}(s)$ are required as an input.

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive r decays Single-meson modes Two-meson modes Vector form factor Scalar form factor K-r decay distribution Multi meson modes Conclusions

$K\pi$ form factors

The $K\pi$ vector and scalar form factors are defined by:

$$\langle \mathcal{K}^{+}(p') | \bar{u} \gamma_{\mu} s | \pi^{0}(p) \rangle \equiv \frac{1}{\sqrt{2}} \Big[(p'_{\mu} + p_{\mu}) F^{K\pi}_{+}(t) + (p'_{\mu} - p_{\mu}) F^{K\pi}_{-}(t) \Big]$$

The scalar form factor results from the S-wave projection:

$$F_0^{\kappa\pi}(t) \equiv F_+^{\kappa\pi}(t) + rac{t}{(M_\kappa^2 - M_\pi^2)} F_-^{\kappa\pi}(t).$$

A description of the $K\pi$ vector form factor can be obtained within chiral perturbation theory with resonances (R χ PT):

$$F_+^{K\pi}(s) = rac{m_{K^*}^2}{m_{K^*}^2 - s - \kappa \, \widetilde{H}_{K\pi}(s)}$$

The functional form of $F_{+}^{K\pi}(s)$ resembles a Breit-Wigner shape.

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive r decays Single-meson modes Two-meson modes Vector form factor Scalar form factor K-r decay distribution Multi meson modes Conclusions

The imaginary part of the denominator is linked to the s-dependent width of the resonance:

$$\kappa \operatorname{Im} \widetilde{H}_{K\pi}(s) = m_{K^*} \gamma_{K^*}(s)$$

where

$$\mathrm{Im}\widetilde{H}_{K\pi}(s)=rac{s}{192\pi}\,\sigma_{K\pi}^3(s),$$

and

$$\sigma_{K\pi}(s) = \frac{1}{s} \sqrt{[s - (M_K + M_\pi)^2][s - (M_K - M_\pi)^2]}.$$

Hence, it follows that:

$$\kappa = \frac{192\pi \gamma_{K^*}(m_{K^*}^2)}{m_{K^*}\sigma_{K\pi}^3(m_{K^*}^2)}; \qquad \gamma_{K^*} \equiv \gamma_{K^*}(m_{K^*}^2).$$

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes Conclusions

The parameters of this model, namely m_{K^*} and γ_{K^*} , can be fitted from experimental data for *p*-wave $K\pi$ scattering, or from the τ data.

The physical parameters M_{K^*} and Γ_{K^*} can be inferred from the pole of $\mathcal{F}_+^{K\pi}(s)$ in the complex *s*-plane.

Also a second resonance contribution can easily be included.

Define the reduced form factor:

$$\widetilde{\mathsf{F}}_+^{K\pi}(s)\equiv rac{\mathsf{F}_+^{K\pi}(s)}{\mathsf{F}_+^{K\pi}(0)}\,.$$

Then

$$\widetilde{F}^{K\pi}_+(s) = rac{m_{K^*}^2 - \kappa_{K^*}\widetilde{H}_{K\pi}(0) + \gamma s}{m_{K^*}^2 - s - \kappa_{K^*}\widetilde{H}_{K\pi}(s)} - rac{\gamma s}{m_{K^{*'}}^2 - s - \kappa_{K^{*'}}\widetilde{H}_{K\pi}(s)}$$

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive r decays Single-meson modes Two-meson modes Vector form factor Scalar form factor K-r decay distribution Multi meson modes Conclusions

In the elastic, single-channel case a subtracted dispersive representation is available which is related to the Omnès solution:

$$\widetilde{F}_+^{\mathcal{K}\pi}(s) = \expigg(rac{lpha_1s}{M_\pi^2} + rac{lpha_2s^2}{2M_\pi^4} + rac{s^3}{\pi}\int\limits_{s_{\mathcal{K}\pi}}^{s_{ ext{cut}}} rac{\delta_{\mathcal{K}\pi}(s')}{(s')^3(s'-s-i0)}\,ds'igg)$$

where $\delta_{\kappa\pi}(s)$ is the elastic P-wave $\kappa\pi$ phase shift.

$$an \delta_{K\pi}(s) = rac{ ext{Im} \mathcal{F}_+^{K\pi}(s)}{ ext{Re} \mathcal{F}_+^{K\pi}(s)}$$

The two subtraction constants α_1 and α_2 are related to slope and curvature of the vector form factor:

$$\lambda'_+ = \alpha_1, \qquad \lambda''_+ = \alpha_2 + \alpha_1^2,$$

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive t decays Single-meson modes Two-meson modes Vector form factor Scalar form factor K t decay distribution Multi meson modes Conclusions

Scalar form factor

The scalar form factor $F_0^{K\pi}(s)$ can be obtained from a dispersion relation analysis of S-wave $K\pi$ scattering data.

(MJ, Oller, Pich 2000/02)

The scalar form factors are defined by:

$$i\langle \Omega | \, \partial^{\,\mu}(ar{s}\gamma_{\mu}u) | \Gamma
angle = rac{\Delta_{K\pi}}{\sqrt{2}} \, C_{\Gamma} \, F^{\Gamma}_{0}(s)$$

where the C_{Γ} are Clebsch-Gordan coefficients and

$$\Delta_{K\pi} = M_K^2 - M_\pi^2$$

The form factors $F_{\Gamma} \equiv F_0^{\Gamma}$ are difficult to measured directly. An indirect determination is more appropriate. Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes Conclusions

From unitarity we have the following relation:

$$\mathrm{Im}F_k(s) = \sum_i \sigma_i(s) F_i(s) t_0^{ik}(s)^{ik}$$

with $t_0^{ik}(s)$ the S-wave l=1/2 scattering amplitudes.

The $F_i(s)$ also satisfy dispersion relations. In the 2-channel case with $F_1 \equiv F_{K\pi}$ and $F_3 \equiv F_{K\pi'}$:

$$F_{1}(s) = \frac{1}{\pi} \int_{s_{1}}^{\infty} \frac{\sigma_{1}F_{1} t_{0}^{11}(s')^{*}}{(s'-s-i0)} ds' + \frac{1}{\pi} \int_{s_{3}}^{\infty} \frac{\sigma_{3}F_{3} t_{0}^{13}(s')^{*}}{(s'-s-i0)} ds'$$

$$F_{3}(s) = \frac{1}{\pi} \int_{s_{1}}^{\infty} \frac{\sigma_{1}F_{1} t_{0}^{13}(s')^{*}}{(s'-s-i0)} ds' + \frac{1}{\pi} \int_{s_{3}}^{\infty} \frac{\sigma_{3}F_{3} t_{0}^{33}(s')^{*}}{(s'-s-i0)} ds'$$

Description of Exclusive

Hadronic 7 Decays

Exclusive r decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kr decay distribution Multi meson modes Conclusions

Numerical analysis

Several ingredients are required for solving the set of coupled integral equations:

 An input for the scattering amplitudes is obtained by fitting an Ansatz from resonance ChPT to experimental data for S-wave Kπ scattering.

(MJ, Oller, Pich 2000/02)

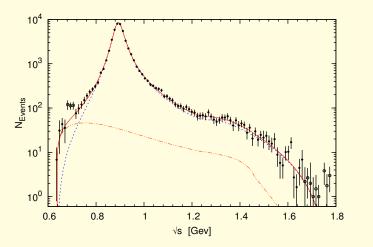
• Two integration constants are also required. These can be chosen to be: $F_{K\pi}(0) = 0.972 \pm 0.012$ and

$$\frac{F_{K\pi}(\Delta_{K\pi})}{F_{K\pi}(0)} = \frac{F_{K}}{F_{\pi}F_{K\pi}(0)} + \frac{\Delta_{\rm CT}}{F_{K\pi}(0)} = 1.2346(53)$$

The last relation follows from the ratio of leptonic K and π decays, as well as |V_{US}|F_{Kπ}(0) from K_{I3} decays.

Description of Exclusive Hadronic τ Decays

Matthias Jamin


Exclusive r decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kr decay distribution Multi meson modes

 $\begin{array}{c} 4.0 \\ 3.0 \\ \hline \textcircled{0} \\ \underline{w} \\ 2.0 \\ 1.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ M_{K\pi} [GeV] \end{array}$

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes

Decay $\tau^- \rightarrow K_S \pi^- v_\tau$: Belle decay distribution.

(MJ, Pich, Portolés 2006/08) (Boito, Escribano, MJ 2009/10)

 $M_{K^*} = 892.0 \pm 0.5 \,\text{MeV}, \quad \Gamma_{K^*} = 46.5 \pm 1.1 \,\text{MeV}$

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kr decay distribution Multi meson modes Conclusions

Slope parameters

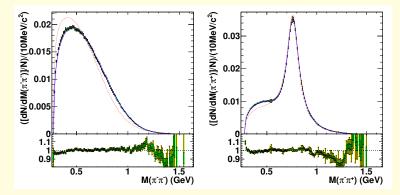
As a prediction of the model, we also obtain slope and the curvature of the vector form factor $F_{+}^{K\pi}(s)$:

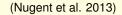
$$\lambda'_{+} = (25.49 \pm 0.31) \cdot 10^{-3}, \qquad \lambda''_{+} = (12.22 \pm 0.14) \cdot 10^{-4}$$

Can be compared to earlier experimental determinations:

Collaboration	$\lambda'_{+}[10^{-3}]$	λ''_{+} [10 ⁻³]
ISTRA 04	24.9 ± 1.6	0.84 ± 0.41
KTEV 04	20.64 ± 1.75	3.20 ± 0.69
NA48 04	$28.0\!\pm\!2.4$	$0.2\!\pm\!0.5$
KLOE 06	25.5 ± 1.8	$1.4\pm\!0.8$

Description of Exclusive Hadronic τ Decays


Matthias Jamin


Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor Kπ decay distribution Multi meson modes Conclusions

Multi meson modes

Decay $\tau^- \rightarrow \pi^- \pi^- \pi^+ v_{\tau}$:

BaBar decay distribution.

Work in progress for $\tau \rightarrow K\pi\pi$ modes.

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor $K\pi$ decay distribution Multi meson modes

Conclusions

Conclusions

- Employing a dispersive representation of the $K\pi$ form factors, a satisfactory description of the $\tau \rightarrow v_{\tau}K\pi$ decay spectrum can be obtained.
- While a coupled-channel analysis is available for the scalar $K\pi$ form factors, our model for the vector form factors is purely elastic.
- To my mind, fits to experimental data should be done in a two-way approach: on the one hand, experimentalists can try to fit theoretical models provided by theorists.
- On the other hand, it would be very useful if unfolded distributions with correlations would be made available.

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor $K\pi$ decay distribution Multi meson modes

Conclusions

Conclusions

- Employing a dispersive representation of the $K\pi$ form factors, a satisfactory description of the $\tau \rightarrow v_{\tau}K\pi$ decay spectrum can be obtained.
- While a coupled-channel analysis is available for the scalar $K\pi$ form factors, our model for the vector form factors is purely elastic.
- To my mind, fits to experimental data should be done in a two-way approach: on the one hand, experimentalists can try to fit theoretical models provided by theorists.
- On the other hand, it would be very useful if unfolded distributions with correlations would be made available.

Thank You!

Description of Exclusive Hadronic τ Decays

Matthias Jamin

Exclusive τ decays Single-meson modes Two-meson modes Vector form factor Scalar form factor $K\pi$ decay distribution Multi meson modes

Conclusions