Residual symmetries in the lepton mass matrices

Walter Grimus

Faculty of Physics, University of Vienna Particle Physics Seminar

October 10, 2013

Contents

- Introduction
- Residual symmetries
- Group scan using GAP
- Residual symmetries and roots of unity
- TM₁ and roots of unity
- Residual symmetries and caveats

Introduction

Tri-bimaximal mixing:

$$U_{
m TBM} = \left(egin{array}{ccc} 2/\sqrt{6} & 1/\sqrt{3} & 0 \ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{array}
ight) \quad {
m ruled out!}$$

$$\sin^2 \theta_{13} = 0.0227 {}^{+0.0023}_{-0.0024}$$
 Gonzalez-Garcia et al. (2012) $\sin^2 \theta_{12} = 0.302 {}^{+0.013}_{-0.012}$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Introduction

$$U = (U_{\alpha j}) = (u_1, u_2, u_3)$$
 with columns u_j

Albright, Rodejohann (2008): TM₁, TM₂ still valid!

$$\mathsf{TM}_1: \quad u_1 = \frac{1}{\sqrt{6}} \left(\begin{array}{c} 2 \\ -1 \\ -1 \end{array} \right), \quad \mathsf{TM}_2: \quad u_2 = \frac{1}{\sqrt{3}} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$$

$$\begin{split} \mathsf{TM}_1: \quad s_{12}^2 &= 1 - \tfrac{2}{3c_{13}^2} < \tfrac{1}{3}, \quad \cos\delta\tan2\theta_{23} \simeq -\frac{1}{2\sqrt{2}s_{13}} \left(1 - \tfrac{7}{2}s_{13}^2\right) \\ \mathsf{TM}_2: \quad s_{12}^2 &= \tfrac{1}{3c_{13}^2} > \tfrac{1}{3}, \quad \cos\delta\tan2\theta_{23} \simeq \frac{1}{\sqrt{2}s_{13}} \left(1 - \tfrac{5}{4}s_{13}^2\right) \end{split}$$

Fixing the notation:

Mass terms: Majorana neutrinos

$$\mathcal{L}_{\mathrm{mass}} = -\bar{\ell}_L M_\ell \ell_R + \frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \text{H.c.}$$

Diagonalization:

$$U_\ell^\dagger M_\ell M_\ell^\dagger U_\ell = \text{diag}\left(m_e^2, m_\mu^2, m_\tau^2\right), \quad U_\nu^\mathsf{T} \mathcal{M}_\nu U_\nu = \text{diag}\left(m_1, m_2, m_3\right)$$

Mixing matrix:
$$U=U_\ell^\dagger U_
u$$

$$egin{aligned} V_\ell(lpha) &\equiv U_\ell \, \mathrm{diag} \left(\mathrm{e}^{ilpha_1}, \mathrm{e}^{ilpha_2}, \mathrm{e}^{ilpha_3}
ight) \, U_\ell^\dagger \ V_
u(\epsilon) &\equiv U_
u \, \mathrm{diag} \left(\epsilon_1, \epsilon_2, \epsilon_3
ight) \, U_
u^\dagger \quad ext{with} \quad \epsilon_i^2 = 1 \end{aligned}$$

Invariance of the mass matrices:

$$V_{\ell}(\alpha)^{\dagger} M_{\ell} M_{\ell}^{\dagger} V_{\ell}(\alpha) = M_{\ell} M_{\ell}^{\dagger}, \quad V_{\nu}(\epsilon)^{\mathsf{T}} \mathcal{M}_{\nu} V_{\nu}(\epsilon) = \mathcal{M}_{\nu}$$

Remarks:

- $V_{\ell}(\alpha) \in U(1) \times U(1) \times U(1)$, $V_{\nu}(\epsilon) \in \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- ullet $V_\ell(lpha)$, $V_
 u(\epsilon)$ depend on VEVs and Yukawa coupling constants
- Invariance of mass matrices V_ℓ , $V_
 u$ contains no information beyond diagonalizability

Idea of residual symmetries: C.W. Lam

- Weak basis $\Rightarrow \ell_L$, ν_L in same multiplet of G
- G broken to different subgroups in charged-lepton and neutrino sectors:

$$G_{\ell} \subseteq U(1) \times U(1) \times U(1), \quad G_{\nu} \subseteq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

For simplicity:

One generator T of G_{ℓ} , one generator S of G_{ν} :

$$T^{\dagger}M_{\ell}M_{\ell}^{\dagger}T = M_{\ell}M_{\ell}^{\dagger}, \quad S^{T}\mathcal{M}_{\nu}S = \mathcal{M}_{\nu}$$

- For simplicity:
 - T has three different eigenvalues
- Then T and S determine one column of U!

Why is this so?

- $② \ U_\ell^\dagger \, T U_\ell = \, \widetilde{T} \ \mathsf{diagonal}$
- $U_{\ell}^{\dagger}u$ column in mixing matrix
- **1** Two matrices S_1 , S_2 with $S_j^T \mathcal{M}_{\nu} S_j = \mathcal{M}_{\nu} \Rightarrow$ mixing matrix U completely determined

$\mathsf{Theorem}$

If
$$S^T \mathcal{M}_{\nu} S = \mathcal{M}_{\nu}$$
 with $S = \pm (2uu^{\dagger} - \mathbb{1})$, then $\mathcal{M}_{\nu} u \propto u^*$.

Remark: $U_\ell^\dagger u$ determined by the group! It does not contain parameters of the model.

Two ways to tackle residual symmetries for the purpose of determination of possible flavour symmetry groups:

- Scanning finite groups
- Solving relations involving roots of unity

Group scan using GAP

Holthausen, Lim, Lindner (2013):

 $\mathit{G}_{
u} = \mathbb{Z}_2 imes \mathbb{Z}_2$, group results within 3σ of fitted s_{ij}^2

a) Assumptions: ord $G<1536=3\times 2^9$ (with one exception), G_ℓ generated by $\widetilde{T}={\rm diag}(1,\omega,\omega^2)$ with $\omega=e^{2\pi i/3}$

n	G	s_{12}^2	s ₁₃ ²	s_{23}^2
5	$\Delta (6 imes 10^2)$	0.3432	0.0288	0.3791
		0.3432	0.0288	0.6209
9	$(\mathbb{Z}_{18} \times \mathbb{Z}_6) \rtimes S_3$	0.3402	0.0201	0.3992
		0.3402	0.0201	0.6008
16	$\Delta (6 imes 16^2)$	0.3420	0.0254	0.3867
		0.3420	0.0254	0.6133

b) Assumptions: ord G < 512, G_{ℓ} Abelian \Rightarrow no candidates!

Group scan using GAP

Model-building addendum to group scan (Grimus, Lavoura (2013)):

$$s_{23}^2 = rac{1}{2} \left(1 \pm rac{\sqrt{2s_{13}^2 - 3s_{13}^4}}{c_{13}^2}
ight), \quad \cos \delta = \mp 1$$

$$U = \begin{pmatrix} \frac{1}{\sqrt{6}} \left(1 + e^{i\alpha} \right) & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \left(1 - e^{-i\alpha} \right) \\ \frac{1}{\sqrt{6}} \left(\omega^2 + \omega e^{i\alpha} \right) & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \left(\omega - \omega^2 e^{-i\alpha} \right) \\ \frac{1}{\sqrt{6}} \left(\omega + \omega^2 e^{i\alpha} \right) & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \left(\omega^2 - \omega e^{-i\alpha} \right) \end{pmatrix}$$

$\alpha/(2\pi)$	s_{13}^2	s_{23}^2
2/5, 3/5	0.028818	0.379101 or 0.620899
1/16, 15/16	0.025373	0.386653 or 0.613347
1/18, 5/18,, 13/18, 17/18	0.020102	0.399242 or 0.600758

Residual symmetries and roots of unity

Basic assumption: Flavour group G finite! (finitely generated) Mixing matrix: $U = (U_{\alpha i})$ ($\alpha = e, \mu, \tau, j = 1, 2, 3$)

- G_{ℓ} generated by T, G_{ν} generated by S
- $\det S = 1 \Rightarrow S = 2uu^{\dagger} 1$
- Finiteness $\Rightarrow \exists m, n \in \mathbb{N}$ such that $T^m = S^2 = (ST)^n = \mathbb{1}$

T has eigenvalues $e^{i\phi_{\alpha}}$, ST has eigenvalues $\lambda_{j} \Rightarrow T$

$$\mathsf{Tr}(ST) = \lambda_1 + \lambda_2 + \lambda_3$$

Trace and determinant of ST

Hernandez, Smirnov (2012)

u i-th column of $U \Rightarrow$ two equations for 6 roots of unity:

$$\sum_{\alpha=e,\mu,\tau} \left(2 \left| U_{\alpha i} \right|^2 - 1 \right) e^{i\phi_\alpha} = \lambda_1 + \lambda_2 + \lambda_3 \quad \text{and} \quad \prod_\alpha e^{i\phi_\alpha} = \lambda_1 \lambda_2 \lambda_3$$

Which finite group can enforce TM₁? Grimus (2013)

$$\mathsf{TM}_1: \quad u_1 = \frac{1}{\sqrt{6}} \left(\begin{array}{c} 2 \\ -1 \\ -1 \end{array} \right) \ \Rightarrow \ \begin{array}{c} 2 \left| U_{\text{e}1} \right|^2 - 1 = \frac{1}{3} \\ 2 \left| U_{\mu 1} \right|^2 - 1 = -\frac{2}{3} \\ 2 \left| U_{\tau 1} \right|^2 - 1 = -\frac{2}{3} \end{array}$$

Vanishing sum of roots of unity:

$$-e^{i\phi_e} + 2e^{i\phi_\mu} + 2e^{i\phi_\tau} + 3\lambda_1 + 3\lambda_2 + 3\lambda_2 = 0$$

Solution by theorem of Conway and Jones (1976)

Formal sums of roots of unity: ring over rational numbers $\omega=e^{2\pi i/3},\ \beta=e^{2\pi i/5},\ \gamma=e^{2\pi i/7}$

Theorem (Conway and Jones (1976))

Let S be a non-empty vanishing sum of length at most 9. Then either S involves θ , $\theta\omega$, $\theta\omega^2$ for some root θ , or S is similar to one of

$$1 + \beta + \beta^{2} + \beta^{3} + \beta^{4},$$

$$-\omega - \omega^{2} + \beta + \beta^{2} + \beta^{3} + \beta^{4},$$

$$1 + \beta + \beta^{2} - (\omega + \omega^{2})(\beta^{2} + \beta^{3}),$$

$$1 + \gamma + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} + \gamma^{6},$$

$$-\omega - \omega^{2} + \gamma + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} + \gamma^{6},$$

$$\beta + \beta^{4} - (\omega + \omega^{2})(1 + \beta^{2} + \beta^{3}),$$

$$1 + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} - (\omega + \omega^{2})(\gamma + \gamma^{6}),$$

$$1 - (\omega + \omega^{2})(\beta + \beta^{2} + \beta^{3} + \beta^{4}).$$

Solution:

$$e^{i\phi_e}=\eta$$
, $e^{i\phi_\mu}=\eta\omega$, $e^{i\phi_\tau}=\eta\omega^2$, $\lambda_1=\epsilon$, $\lambda_2=-\epsilon$, $\lambda_3=\eta$ η is an arbitrary root of unity, $\epsilon=\pm i\eta$

In basis where charged lepton mass matrix is diagonal:

$$egin{aligned} \widetilde{T} &= \eta \operatorname{diag}\left(1,\omega,\omega^2
ight) \ u_1 &= rac{1}{\sqrt{6}} \left(egin{array}{c} 2 \ -1 \ -1 \end{array}
ight) \ \Rightarrow \ \widetilde{S} &= rac{1}{3} \left(egin{array}{ccc} 1 & -2 & -2 \ -2 & -2 & 1 \ -2 & 1 & -2 \end{array}
ight) \end{aligned}$$

 \widetilde{T} and \widetilde{S} generate group $\mathbb{Z}_q \times S_4$ with η being a primitive root of order q.

Another basis:

$$U_{\omega}=rac{1}{\sqrt{3}}\left(egin{array}{ccc} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{array}
ight) \quad ext{with} \quad \omega=e^{2\pi i/3}=rac{-1+i\sqrt{3}}{2}$$

$$S = U_{\omega} \tilde{S} U_{\omega}^{\dagger} = \left(egin{array}{ccc} -1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight), \quad T = U_{\omega} \, \tilde{T} U_{\omega}^{\dagger} = \eta \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight)$$

$$E^\dagger \left(M_\ell M_\ell^\dagger
ight) E = M_\ell M_\ell^\dagger \ \Rightarrow \ U_\omega^\dagger \left(M_\ell M_\ell^\dagger
ight) U_\omega$$
is diagonal

$$Su = u \quad \Rightarrow \quad u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Mechanism for TM₁:

Lavoura, de Madeiros Varzielas (2012); Grimus (2013)

 U_ω diagonalizes $M_\ell M_\ell^\dagger$ and u eigenvector of $\mathcal{M}_
u \Rightarrow$

$$U_{\omega}^{\dagger}u=rac{1}{\sqrt{6}}\left(egin{array}{c}2\\-1\\-1\end{array}
ight)$$
 is column in mixing matrix

Example: S_4 and type II seesaw mechanism Needs 7 scalar gauge doublets in $\mathbf{1} \oplus \mathbf{3} \oplus \mathbf{3}'$ and 4 gauge triplets in $\mathbf{1} \oplus \mathbf{3}' + \mathsf{VEV}$ alignment

$$M_{\ell} = \left(egin{array}{cccc} a & b+c & b-c \ b-c & a & b+c \ b+c & b-c & a \end{array}
ight), \quad \mathcal{M}_{
u} = \left(egin{array}{cccc} A & B & -B \ B & A & C \ -B & C & A \end{array}
ight)$$

Residual symmetries and caveats

Notation:

- G = flavour symmetry group of the Lagrangian
- $ar{G}=$ group determined by residual symmetries in $M_\ell M_\ell^\dagger$ and $\mathcal{M}_
 u$
 - Restriction:
 - Symmetry group G of Lagrangian is finitely generated
 - Neutrinos have Majorana nature
 - Possible relationship between G and \bar{G} :
 - $\bar{G} \subset U(3)$ due to 3 families
 - Method is purely group-theoretical and uses only information contained in the mass matrices $\Rightarrow \bar{G}$ can at most yield D(G)
 - Accidental symmetries in the mass matrices \Rightarrow \bar{G} not even a subgroup of D(G)
 - Total breaking of G:
 Method not applicable, though model might be predictive

Thank you for your attention!