Residual symmetries in the lepton mass matrices

Walter Grimus

Faculty of Physics, University of Vienna
Particle Physics Seminar

October 10, 2013

Contents

(1) Introduction
(2) Residual symmetries
(3) Group scan using GAP
(9) Residual symmetries and roots of unity
(6) TM_{1} and roots of unity
(0) Residual symmetries and caveats

Introduction

Tri-bimaximal mixing:

$$
\begin{gathered}
U_{\mathrm{TBM}}=\left(\begin{array}{rrr}
2 / \sqrt{6} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \quad \text { ruled out! } \\
\sin ^{2} \theta_{13}=0.0227_{-0.0024}^{+0.0023} \\
\sin ^{2} \theta_{12}=0.302{ }_{-0.012}^{+0.013} \\
U=\left(\begin{array}{ccc}
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{13} e^{-i \delta} \\
c_{12} c_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
\end{gathered}
$$

Introduction

$U=\left(U_{\alpha j}\right)=\left(u_{1}, u_{2}, u_{3}\right)$ with columns u_{j}
Albright, Rodejohann (2008): $\mathrm{TM}_{1}, \mathrm{TM}_{2}$ still valid!

$$
\mathrm{TM}_{1}: \quad u_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), \quad \mathrm{TM} 2: \quad u_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$\mathrm{TM}_{1}: \quad s_{12}^{2}=1-\frac{2}{3 c_{13}^{2}}<\frac{1}{3}, \quad \cos \delta \tan 2 \theta_{23} \simeq-\frac{1}{2 \sqrt{2} s_{13}}\left(1-\frac{7}{2} s_{13}^{2}\right)$
$\mathrm{TM}_{2}: \quad s_{12}^{2}=\frac{1}{3 c_{13}^{2}}>\frac{1}{3}, \quad \cos \delta \tan 2 \theta_{23} \simeq \frac{1}{\sqrt{2} s_{13}}\left(1-\frac{5}{4} s_{13}^{2}\right)$

Residual symmetries

Fixing the notation:

Mass terms: Majorana neutrinos

$$
\mathcal{L}_{\text {mass }}=-\bar{\ell}_{L} M_{\ell} \ell_{R}+\frac{1}{2} \nu_{L}^{T} C^{-1} \mathcal{M}_{\nu} \nu_{L}+\text { H.c. }
$$

Diagonalization:
$U_{\ell}^{\dagger} M_{\ell} M_{\ell}^{\dagger} U_{\ell}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right), \quad U_{\nu}^{T} \mathcal{M}_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
Mixing matrix: $U=U_{\ell}^{\dagger} U_{\nu}$

$$
\begin{aligned}
& V_{\ell}(\alpha) \equiv U_{\ell} \operatorname{diag}\left(e^{i \alpha_{1}}, e^{i \alpha_{2}}, e^{i \alpha_{3}}\right) U_{\ell}^{\dagger} \\
& V_{\nu}(\epsilon) \equiv U_{\nu} \operatorname{diag}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) U_{\nu}^{\dagger} \quad \text { with } \quad \epsilon_{j}^{2}=1
\end{aligned}
$$

Residual symmetries

Invariance of the mass matrices:

$$
V_{\ell}(\alpha)^{\dagger} M_{\ell} M_{\ell}^{\dagger} V_{\ell}(\alpha)=M_{\ell} M_{\ell}^{\dagger}, \quad V_{\nu}(\epsilon)^{T} \mathcal{M}_{\nu} V_{\nu}(\epsilon)=\mathcal{M}_{\nu}
$$

Remarks:

- $V_{\ell}(\alpha) \in U(1) \times U(1) \times U(1), V_{\nu}(\epsilon) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $V_{\ell}(\alpha), V_{\nu}(\epsilon)$ depend on VEVs and Yukawa coupling constants
- Invariance of mass matrices V_{ℓ}, V_{ν} contains no information beyond diagonalizability

Residual symmetries

Idea of residual symmetries: C.W. Lam

- Weak basis $\Rightarrow \ell_{L}, \nu_{L}$ in same multiplet of G
- G broken to different subgroups in charged-lepton and neutrino sectors:

$$
G_{\ell} \subseteq U(1) \times U(1) \times U(1), \quad G_{\nu} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

- For simplicity:

One generator T of G_{ℓ}, one generator S of G_{ν} :

$$
T^{\dagger} M_{\ell} M_{\ell}^{\dagger} T=M_{\ell} M_{\ell}^{\dagger}, \quad S^{T} \mathcal{M}_{\nu} S=\mathcal{M}_{\nu}
$$

- For simplicity:
T has three different eigenvalues
- Then T and S determine one column of U !

Residual symmetries

Why is this so?
(1) $S^{2}=\mathbb{1} \Rightarrow S= \pm\left(2 u u^{\dagger}-\mathbb{1}\right)$ with $S u= \pm u$
(2) $U_{\ell}^{\dagger} T U_{\ell}=\tilde{T}$ diagonal
(3) $U_{\ell}^{\dagger} u$ column in mixing matrix
(9) Two matrices S_{1}, S_{2} with $S_{j}^{T} \mathcal{M}_{\nu} S_{j}=\mathcal{M}_{\nu} \Rightarrow$ mixing matrix U completely determined

Theorem

$$
\text { If } S^{T} \mathcal{M}_{\nu} S=\mathcal{M}_{\nu} \text { with } S= \pm\left(2 u u^{\dagger}-\mathbb{1}\right) \text {, then } \mathcal{M}_{\nu} u \propto u^{*}
$$

Remark: $U_{\ell}^{\dagger} u$ determined by the group! It does not contain parameters of the model.

Residual symmetries

Two ways to tackle residual symmetries for the purpose of determination of possible flavour symmetry groups:
(1) Scanning finite groups
(2) Solving relations involving roots of unity

Group scan using GAP

Holthausen, Lim, Lindner (2013):
$G_{\nu}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, group results within 3σ of fitted $s_{i j}^{2}$
a) Assumptions: ord $G<1536=3 \times 2^{9}$ (with one exception), G_{ℓ} generated by $\widetilde{T}=\operatorname{diag}\left(1, \omega, \omega^{2}\right)$ with $\omega=e^{2 \pi i / 3}$

n	G	s_{12}^{2}	s_{13}^{2}	s_{23}^{2}
5	$\Delta\left(6 \times 10^{2}\right)$	0.3432	0.0288	0.3791
		0.3432	0.0288	0.6209
9	$\left(\mathbb{Z}_{18} \times \mathbb{Z}_{6}\right) \rtimes S_{3}$	0.3402	0.0201	0.3992
16	$\Delta\left(6 \times 16^{2}\right)$	0.3402	0.0201	0.6008
		0.3420	0.0254	0.3867
		0.3420	0.0254	0.6133

b) Assumptions: ord $G<512, G_{\ell}$ Abelian \Rightarrow no candidates!

Group scan using GAP

Model-building addendum to group scan (Grimus, Lavoura (2013)):

\[

\]

Residual symmetries and roots of unity

Basic assumption: Flavour group G finite! (finitely generated) Mixing matrix: $U=\left(U_{\alpha j}\right)(\alpha=e, \mu, \tau, j=1,2,3)$

- G_{ℓ} generated by T, G_{ν} generated by S
- $\operatorname{det} S=1 \Rightarrow S=2 u u^{\dagger}-\mathbb{1}$
- Finiteness $\Rightarrow \exists m, n \in \mathbb{N}$ such that $T^{m}=S^{2}=(S T)^{n}=\mathbb{1}$ T has eigenvalues $e^{i \phi_{\alpha}}$, $S T$ has eigenvalues $\lambda_{j} \Rightarrow$ $\operatorname{Tr}(S T)=\lambda_{1}+\lambda_{2}+\lambda_{3}$

Trace and determinant of ST

Hernandez, Smirnov (2012)
u i-th column of $U \Rightarrow$ two equations for 6 roots of unity:

$$
\sum_{\alpha=e, \mu, \tau}\left(2\left|U_{\alpha i}\right|^{2}-1\right) e^{i \phi_{\alpha}}=\lambda_{1}+\lambda_{2}+\lambda_{3} \quad \text { and } \quad \prod_{\alpha} e^{i \phi_{\alpha}}=\lambda_{1} \lambda_{2} \lambda_{3}
$$

TM_{1} and roots of unity

Which finite group can enforce TM_{1} ? Grimus (2013)

$$
\mathrm{TM}_{1}: \quad u_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right) \Rightarrow \begin{aligned}
& 2\left|U_{e 1}\right|^{2}-1=\frac{1}{3} \\
& 2\left|U_{\mu 1}\right|^{2}-1=-\frac{2}{3} \\
& 2\left|U_{\tau 1}\right|^{2}-1=-\frac{2}{3}
\end{aligned}
$$

Vanishing sum of roots of unity:

$$
-e^{i \phi_{e}}+2 e^{i \phi_{\mu}}+2 e^{i \phi_{\tau}}+3 \lambda_{1}+3 \lambda_{2}+3 \lambda_{2}=0
$$

Solution by theorem of Conway and Jones (1976)

TM_{1} and roots of unity

Formal sums of roots of unity: ring over rational numbers $\omega=e^{2 \pi i / 3}, \beta=e^{2 \pi i / 5}, \gamma=e^{2 \pi i / 7}$

Theorem (Conway and Jones (1976))

Let \mathcal{S} be a non-empty vanishing sum of length at most 9 .
Then either \mathcal{S} involves $\theta, \theta \omega, \theta \omega^{2}$ for some root θ, or \mathcal{S} is similar to one of

$$
\begin{aligned}
& 1+\beta+\beta^{2}+\beta^{3}+\beta^{4}, \\
& -\omega-\omega^{2}+\beta+\beta^{2}+\beta^{3}+\beta^{4}, \\
& 1+\beta+\beta^{2}-\left(\omega+\omega^{2}\right)\left(\beta^{2}+\beta^{3}\right), \\
& 1+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}+\gamma^{5}+\gamma^{6}, \\
& -\omega-\omega^{2}+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}+\gamma^{5}+\gamma^{6}, \\
& \beta+\beta^{4}-\left(\omega+\omega^{2}\right)\left(1+\beta^{2}+\beta^{3}\right), \\
& 1+\gamma^{2}+\gamma^{3}+\gamma^{4}+\gamma^{5}-\left(\omega+\omega^{2}\right)\left(\gamma+\gamma^{6}\right), \\
& 1-\left(\omega+\omega^{2}\right)\left(\beta+\beta^{2}+\beta^{3}+\beta^{4}\right) .
\end{aligned}
$$

TM_{1} and roots of unity

Solution:

$e^{i \phi_{e}}=\eta, e^{i \phi_{\mu}}=\eta \omega, e^{i \phi_{\tau}}=\eta \omega^{2}, \lambda_{1}=\epsilon, \lambda_{2}=-\epsilon, \lambda_{3}=\eta$
η is an arbitrary root of unity, $\epsilon= \pm i \eta$

In basis where charged lepton mass matrix is diagonal:

$$
\begin{aligned}
\tilde{T} & =\eta \operatorname{diag}\left(1, \omega, \omega^{2}\right) \\
u_{1} & =\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right) \Rightarrow \widetilde{S}=\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & -2 \\
-2 & -2 & 1 \\
-2 & 1 & -2
\end{array}\right)
\end{aligned}
$$

\widetilde{T} and \widetilde{S} generate group $\mathbb{Z}_{q} \times S_{4}$ with η being a primitive root of order q.

Another basis:

$$
\begin{gathered}
U_{\omega}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \text { with } \omega=e^{2 \pi i / 3}=\frac{-1+i \sqrt{3}}{2} \\
S=U_{\omega} \tilde{S} U_{\omega}^{\dagger}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad T=U_{\omega} \tilde{T} U_{\omega}^{\dagger}=\eta\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
E^{\dagger}\left(M_{\ell} M_{\ell}^{\dagger}\right) E=M_{\ell} M_{\ell}^{\dagger} \Rightarrow U_{\omega}^{\dagger}\left(M_{\ell} M_{\ell}^{\dagger}\right) U_{\omega} \text { is diagonal }
\end{gathered}
$$

TM_{1} and roots of unity

$$
S u=u \quad \Rightarrow \quad u=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Mechanism for TM_{1} :

Lavoura, de Madeiros Varzielas (2012); Grimus (2013)
U_{ω} diagonalizes $M_{\ell} M_{\ell}^{\dagger}$ and u eigenvector of $\mathcal{M}_{\nu} \Rightarrow$

$$
U_{\omega}^{\dagger} u=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right) \text { is column in mixing matrix }
$$

Example: S_{4} and type II seesaw mechanism
Needs 7 scalar gauge doublets in $\mathbf{1} \oplus \mathbf{3} \oplus \mathbf{3}^{\prime}$
and 4 gauge triplets in $\mathbf{1} \oplus \mathbf{3}^{\prime}+\mathrm{VEV}$ alignment

$$
M_{\ell}=\left(\begin{array}{ccc}
a & b+c & b-c \\
b-c & a & b+c \\
b+c & b-c & a
\end{array}\right), \quad \mathcal{M}_{\nu}=\left(\begin{array}{ccc}
A & B & -B \\
B & A & C \\
-B & C & A
\end{array}\right)
$$

Residual symmetries and caveats

Notation:
$G=$ flavour symmetry group of the Lagrangian
$\bar{G}=$ group determined by residual symmetries in $M_{\ell} M_{\ell}^{\dagger}$ and \mathcal{M}_{ν}

- Restriction:
- Symmetry group G of Lagrangian is finitely generated
- Neutrinos have Majorana nature
- Possible relationship between G and \bar{G} :
- $\bar{G} \subset U(3)$ due to 3 families
- Method is purely group-theoretical and uses only information contained in the mass matrices $\Rightarrow \bar{G}$ can at most yield $D(G)$
- Accidental symmetries in the mass matrices \Rightarrow \bar{G} not even a subgroup of $D(G)$
- Total breaking of G :

Method not applicable, though model might be predictive

Thank you for your attention!

