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Introduction

Tri-bimaximal mixing:

UTBM =

 2/
√

6 1/
√

3 0

−1/
√

6 1/
√

3 −1/
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2

−1/
√
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√
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√
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 ruled out!

sin2 θ13 = 0.0227 +0.0023
−0.0024 Gonzalez-Garcia et al. (2012)

sin2 θ12 = 0.302 +0.013
−0.012

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


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Introduction

U = (Uαj) = (u1, u2, u3) with columns uj

Albright, Rodejohann (2008): TM1, TM2 still valid!

TM1 : u1 =
1√
6

 2
−1
−1

 , TM2 : u2 =
1√
3

 1
1
1



TM1 : s212 = 1− 2
3c213

< 1
3 , cos δ tan 2θ23 ' −

1

2
√

2s13

(
1− 7

2
s213

)
TM2 : s212 = 1

3c213
> 1

3 , cos δ tan 2θ23 '
1√
2s13

(
1− 5

4
s213

)
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Residual symmetries

Fixing the notation:
Mass terms: Majorana neutrinos

Lmass = −¯̀
LM``R +

1

2
νTL C−1MννL + H.c.

Diagonalization:

U†`M`M
†
`U` = diag

(
m2

e ,m
2
µ,m

2
τ

)
, UT

ν MνUν = diag (m1,m2,m3)

Mixing matrix: U = U†`Uν

V`(α) ≡ U` diag
(
e iα1 , e iα2 , e iα3

)
U†`

Vν(ε) ≡ Uν diag (ε1, ε2, ε3)U†ν with ε2j = 1
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Residual symmetries

Invariance of the mass matrices:

V`(α)†M`M
†
`V`(α) = M`M

†
` , Vν(ε)TMνVν(ε) =Mν

Remarks:

V`(α) ∈ U(1)× U(1)× U(1), Vν(ε) ∈ Z2 × Z2 × Z2

V`(α), Vν(ε) depend on VEVs and Yukawa coupling constants

Invariance of mass matrices V`, Vν contains no information
beyond diagonalizability
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Residual symmetries

Idea of residual symmetries: C.W. Lam

Weak basis ⇒ `L, νL in same multiplet of G

G broken to different subgroups in charged-lepton and
neutrino sectors:

G` ⊆ U(1)× U(1)× U(1), Gν ⊆ Z2 × Z2 × Z2

For simplicity:
One generator T of G`, one generator S of Gν :

T †M`M
†
`T = M`M

†
` , STMνS =Mν

For simplicity:
T has three different eigenvalues

Then T and S determine one column of U!
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Residual symmetries

Why is this so?

1 S2 = 1 ⇒ S = ±(2uu† − 1) with Su = ±u
2 U†`TU` = T̃ diagonal

3 U†`u column in mixing matrix

4 Two matrices S1, S2 with ST
j MνSj =Mν ⇒ mixing matrix

U completely determined

Theorem

If STMνS =Mν with S = ±(2uu† − 1), thenMνu ∝ u∗.

Remark: U†`u determined by the group! It does not contain
parameters of the model.
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Residual symmetries

Two ways to tackle residual symmetries for the purpose of
determination of possible flavour symmetry groups:

1 Scanning finite groups

2 Solving relations involving roots of unity
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Group scan using GAP

Holthausen, Lim, Lindner (2013):
Gν = Z2 × Z2, group results within 3σ of fitted s2ij

a) Assumptions: ordG < 1536 = 3× 29 (with one exception),
G` generated by T̃ = diag(1, ω, ω2) with ω = e2πi/3

n G s212 s213 s223
5 ∆(6× 102) 0.3432 0.0288 0.3791

0.3432 0.0288 0.6209
9 (Z18 × Z6) o S3 0.3402 0.0201 0.3992

0.3402 0.0201 0.6008
16 ∆(6× 162) 0.3420 0.0254 0.3867

0.3420 0.0254 0.6133

b) Assumptions: ordG < 512, G` Abelian ⇒ no candidates!
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Group scan using GAP

Model-building addendum to group scan (Grimus, Lavoura (2013)):

s223 =
1

2

1±

√
2s213 − 3s413

c213

 , cos δ = ∓1

U =


1√
6

(
1 + e iα

)
1√
3

1√
6

(
1− e−iα

)
1√
6

(
ω2 + ωe iα

)
1√
3

1√
6

(
ω − ω2e−iα

)
1√
6

(
ω + ω2e iα

)
1√
3

1√
6

(
ω2 − ωe−iα

)


α /(2π) s213 s223
2/5, 3/5 0.028818 0.379101 or 0.620899

1/16, 15/16 0.025373 0.386653 or 0.613347
1/18, 5/18, . . . , 13/18, 17/18 0.020102 0.399242 or 0.600758
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Residual symmetries and roots of unity

Basic assumption: Flavour group G finite! (finitely generated)
Mixing matrix: U = (Uαj) (α = e, µ, τ , j = 1, 2, 3)

G` generated by T , Gν generated by S

detS = 1 ⇒ S = 2uu† − 1
Finiteness ⇒ ∃m, n ∈ N such that Tm = S2 = (ST )n = 1

T has eigenvalues e iφα , ST has eigenvalues λj ⇒
Tr (ST ) = λ1 + λ2 + λ3

Trace and determinant of ST

Hernandez, Smirnov (2012)
u i-th column of U ⇒ two equations for 6 roots of unity:∑
α=e,µ,τ

(
2 |Uαi |2 − 1

)
e iφα = λ1+λ2+λ3 and

∏
α

e iφα = λ1λ2λ3
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TM1 and roots of unity

Which finite group can enforce TM1? Grimus (2013)

TM1 : u1 =
1√
6

 2
−1
−1

 ⇒ 2 |Ue1|2 − 1 = 1
3

2 |Uµ1|2 − 1 = −2
3

2 |Uτ1|2 − 1 = −2
3

Vanishing sum of roots of unity:

−e iφe + 2e iφµ + 2e iφτ + 3λ1 + 3λ2 + 3λ2 = 0

Solution by theorem of Conway and Jones (1976)
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TM1 and roots of unity

Formal sums of roots of unity: ring over rational numbers
ω = e2πi/3, β = e2πi/5, γ = e2πi/7

Theorem (Conway and Jones (1976))

Let S be a non-empty vanishing sum of length at most 9.
Then either S involves θ, θω, θω2 for some root θ,
or S is similar to one of

1 + β + β2 + β3 + β4,

−ω − ω2 + β + β2 + β3 + β4,

1 + β + β2 − (ω + ω2)(β2 + β3),

1 + γ + γ2 + γ3 + γ4 + γ5 + γ6,

−ω − ω2 + γ + γ2 + γ3 + γ4 + γ5 + γ6,

β + β4 − (ω + ω2)(1 + β2 + β3),

1 + γ2 + γ3 + γ4 + γ5 − (ω + ω2)(γ + γ6),

1− (ω + ω2)(β + β2 + β3 + β4).
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TM1 and roots of unity

Solution:

e iφe = η, e iφµ = ηω, e iφτ = ηω2, λ1 = ε, λ2 = −ε, λ3 = η
η is an arbitrary root of unity, ε = ±iη

In basis where charged lepton mass matrix is diagonal:

T̃ = η diag
(
1, ω, ω2

)
u1 =

1√
6

 2
−1
−1

 ⇒ S̃ =
1

3

 1 −2 −2
−2 −2 1
−2 1 −2


T̃ and S̃ generate group Zq × S4 with η being a primitive root of
order q.
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TM1 and roots of unity

Another basis:

Uω =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 with ω = e2πi/3 =
−1 + i

√
3

2

S = UωS̃U
†
ω =

 −1 0 0
0 0 1
0 1 0

 , T = UωT̃U†ω = η

 0 1 0
0 0 1
1 0 0


E †
(
M`M

†
`

)
E = M`M

†
` ⇒ U†ω

(
M`M

†
`

)
Uω is diagonal
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TM1 and roots of unity

Su = u ⇒ u =
1√
2

 0
1
1


Mechanism for TM1:

Lavoura, de Madeiros Varzielas (2012); Grimus (2013)

Uω diagonalizes M`M
†
` and u eigenvector of Mν ⇒

U†ωu =
1√
6

 2
−1
−1

 is column in mixing matrix
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TM1 and roots of unity

Example: S4 and type II seesaw mechanism
Needs 7 scalar gauge doublets in 1⊕ 3⊕ 3′

and 4 gauge triplets in 1⊕ 3′ + VEV alignment

M` =

 a b + c b − c
b − c a b + c
b + c b − c a

 , Mν =

 A B −B
B A C
−B C A


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Residual symmetries and caveats

Notation:
G = flavour symmetry group of the Lagrangian
Ḡ = group determined by residual symmetries in M`M

†
` and Mν

Restriction:

Symmetry group G of Lagrangian is finitely generated
Neutrinos have Majorana nature

Possible relationship between G and Ḡ :

Ḡ ⊂ U(3) due to 3 families
Method is purely group-theoretical and uses only information
contained in the mass matrices ⇒ Ḡ can at most yield D(G )
Accidental symmetries in the mass matrices ⇒
Ḡ not even a subgroup of D(G )

Total breaking of G :
Method not applicable, though model might be predictive
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Thank you for your attention!
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