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SM Higgs @ LHC
The production of a Higgs is wiped out by QCD background 

4. SM Higgs production at the LHC
Physics at the LHC: some generalities

LHC: pp collider

√
s=7+7=14 TeV⇒

√
seff∼

√
s/3 ∼ 5 TeV

L∼10 fb−1 first years and 100 fb−1 later

• Huge cross sections for QCD processes.
• Small cross sections for EW Higgs signal.

S/B >∼ 1010 ⇒ a needle in a haystack!

• Need some strong selection criteria:
Trigger: get rid of uninteresting events...

Select clean channels: H → γγ,VV → "

Use different kinematic features for Higgs

Combine different decay/production channels

Have a precise knowledge of S and B rates.

• Gigantic experimental (+theoretical) efforts!
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$e impo%ance of being Higgs 

    ... or “why ' Higgs boson ( not ju" yet ano)er pa%icle?”
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Why was the LHC built?
symmetry breaking: new phase with more degrees of freedom

UV behavior of these Goldstone’s? ➾➾

massive W±, Z: 3 physical polarizations=eaten Goldstone bosons SU(2)LxSU(2)R

SU(2)V

5
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the behavior of this amplitude is not consistent above 4πv (≈1÷3TeV) 

Lee, Quigg & Thacker  ’77
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What is the SM Higgs?
A single scalar degree of freedom neutral under SU(2)LxSU(2)R/SU(2)V 

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

growth cancelled for 
a = 1

restoration of 
perturbative unitarity

6
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Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10Cornwall, Levin, Tiktopoulos  ’73

Goldstone of SU(2)LxSU(2)R/SU(2)V Dµ� � Wµ� = ei⇥
a�a/v

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
http://link.aps.org/abstract/PRL/V30/P1268
http://link.aps.org/abstract/PRL/V30/P1268
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b a

a

For b = a2: perturbative unitarity in inelastic channels WW → hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW → WW
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For b = a2: perturbative unitarity in inelastic channels WW → hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW → WW
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For ac=1: perturbative unitarity in inelastic WW → ψ ψ 

Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10Cornwall, Levin, Tiktopoulos  ’73

http://link.aps.org/abstract/PRL/V30/P1268
http://link.aps.org/abstract/PRL/V30/P1268
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For b = a2: perturbative unitarity in inelastic channels WW → hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings
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For ac=1: perturbative unitarity in inelastic WW → ψ ψ 

‘a=1’, ‘b=1’ & ‘c=1’ define the SM Higgs

Higgs properties depend on a single unknown parameter (mH)

can be rewritten as 

h and πa (ie WL andZL) combine to form a linear representation of SU(2)LxU(1)Y
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Now what?

“The experiment worked better than 
expected and the analysis uncovered a 

very difficult to find signal”
the words of a string theorist
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 Hard work from experimentalists
 Luck with a positive fluctuation
 Hard work from the theorists too

higher precision in theory 
calculation makes it easier to find 

the Higgs than initially thought

R. Harlander, talk @ LHCP’13

K-factor ≈ 2

K-factor ≈ 1.25

Why did it work better than expected?

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
https://indico.cern.ch/getFile.py/access?contribId=47&sessionId=1&resId=0&materialId=slides&confId=210555
https://indico.cern.ch/getFile.py/access?contribId=47&sessionId=1&resId=0&materialId=slides&confId=210555
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What’s next?

“The experiment worked better than 
expected and the analysis uncovered a 

very difficult to find signal”
the words of a string theorist

Great success...
...but the experimentalists haven’t found what the BSM theorists 

told them they will find in addition to the Higgs boson: 
no susy, no BH, no extra dimensions, nothing ...



Christophe Grojean Challenges/Questions in Higgs physics Wien, 31st Oct. 2o139

What’s next?

“The experiment worked better than 
expected and the analysis uncovered a 

very difficult to find signal”
the words of a string theorist

Great success...
...but the experimentalists haven’t found what the BSM theorists 

told them they will find in addition to the Higgs boson: 
no susy, no BH, no extra dimensions, nothing ...

Have the theorists been lying for so many years?

Have the exp’s been too naive to believe the th’s?

HEP future:
exploration/discovery era or consolidation/measurement era?
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Text

Daniela Rebuzzi (Pavia University and INFN)

1. SM Higgs Cross Sections

• NNLO(+NNLL) QCD calculations for ggF, VBF, WH/ZH and NLO for ttH
• Cross sections with complex-pole-scheme for ggF and VBF for both 7 and 8 TeV
• NLO EW corrections O(5-10%), assuming factorization between QCD and EW dynamics
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SM Higgs computations: State of the art

Text

Daniela Rebuzzi (Pavia University and INFN)

1. SM Higgs Cross Sections

• NNLO(+NNLL) QCD calculations for ggF, VBF, WH/ZH and NLO for ttH
• Cross sections with complex-pole-scheme for ggF and VBF for both 7 and 8 TeV
• NLO EW corrections O(5-10%), assuming factorization between QCD and EW dynamics

 [GeV] HM
100 200 300 400 500 1000

 H
+X

) [
pb

]  
  

�
(p

p 
�

-210

-110

1

10
= 7 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
0

 H (NNLO+NNLL QCD + NLO EW)

�pp 

 qqH (NNLO QCD + NLO EW)

�pp 

 WH (NNLO QCD + NLO EW)

�
pp 

 ZH (NNLO QCD +NLO EW)

�
pp 

 ttH (NLO QCD)

�
pp 

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt8TeV]

 [GeV] HM
80 100 200 300 400 1000

 H
+X

) [
pb

]  
  

!
(p

p 
"

-210

-110

1

10

210
= 8 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
2

 H (NNLO+NNLL QCD + NLO EW)

!pp 

 qqH (NNLO QCD + NLO EW)

!pp 

 WH (NNLO QCD + NLO EW)

!
pp 

 ZH (NNLO QCD +NLO EW)

!
pp 

 ttH (NLO QCD)

!
pp 

NLO QCD 

+ N2LO PDF sets

➾

➾

Text

Daniela Rebuzzi (Pavia University and INFN)

1. SM Higgs Cross Sections

• NNLO(+NNLL) QCD calculations for ggF, VBF, WH/ZH and NLO for ttH
• Cross sections with complex-pole-scheme for ggF and VBF for both 7 and 8 TeV
• NLO EW corrections O(5-10%), assuming factorization between QCD and EW dynamics

 [GeV] HM
100 200 300 400 500 1000

 H
+X

) [
pb

]  
  

�
(p

p 
�

-210

-110

1

10
= 7 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
0

 H (NNLO+NNLL QCD + NLO EW)

�pp 

 qqH (NNLO QCD + NLO EW)

�pp 

 WH (NNLO QCD + NLO EW)

�
pp 

 ZH (NNLO QCD +NLO EW)

�
pp 

 ttH (NLO QCD)

�
pp 

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt8TeV]

 [GeV] HM
80 100 200 300 400 1000

 H
+X

) [
pb

]  
  

!
(p

p 
"

-210

-110

1

10

210
= 8 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
2

 H (NNLO+NNLL QCD + NLO EW)

!pp 

 qqH (NNLO QCD + NLO EW)

!pp 

 WH (NNLO QCD + NLO EW)

!
pp 

 ZH (NNLO QCD +NLO EW)

!
pp 

 ttH (NLO QCD)

!
pp 

Text

Daniela Rebuzzi (Pavia University and INFN)

1. SM Higgs Cross Sections

• NNLO(+NNLL) QCD calculations for ggF, VBF, WH/ZH and NLO for ttH
• Cross sections with complex-pole-scheme for ggF and VBF for both 7 and 8 TeV
• NLO EW corrections O(5-10%), assuming factorization between QCD and EW dynamics

 [GeV] HM
100 200 300 400 500 1000

 H
+X

) [
pb

]  
  

�
(p

p 
�

-210

-110

1

10
= 7 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
0

 H (NNLO+NNLL QCD + NLO EW)

�pp 

 qqH (NNLO QCD + NLO EW)

�pp 

 WH (NNLO QCD + NLO EW)

�
pp 

 ZH (NNLO QCD +NLO EW)

�
pp 

 ttH (NLO QCD)

�
pp 

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt8TeV]

 [GeV] HM
80 100 200 300 400 1000

 H
+X

) [
pb

]  
  

!
(p

p 
"

-210

-110

1

10

210
= 8 TeVs

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
2

 H (NNLO+NNLL QCD + NLO EW)

!pp 

 qqH (NNLO QCD + NLO EW)

!pp 

 WH (NNLO QCD + NLO EW)

!
pp 

 ZH (NNLO QCD +NLO EW)

!
pp 

 ttH (NLO QCD)

!
pp 

N2LO QCD
 NLO EW

N2LO+N2LL QCD
NLO EW

N3LO QCD
(mt=∞)

inclusive Higgs pT

NLO QCD
w/ finite mt,mb

(3 scale pb!)

~T
O

D
A

Y~
~T

O
M

O
RR

O
W

~

e.g. LHCHXSWG YR1 & YR2 & YR3

19
91

20
02

20
03

20
04

20
09

20
1X

NLO
N 2LO

mt=∞

N 2LL
NLO

EW
N 2LO

1/mt
N 3LO

ggF timeline

NLO results in MC

POWHEG, aMC@NLO

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections


Christophe Grojean Challenges/Questions in Higgs physics Wien, 31st Oct. 2o13

2 ➙ 2 @ 2-loop

2 ➙ 1 @ 3-loop

similar to ttbar @ N2LO
recently achieved by Czakon/Mitov
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The ggH Frontiers

N2LO+N2LL QCD
NLO EW

N3LO QCD
(mt=∞)

inclusive Higgs pT

NLO QCD
w/ finite mt,mb

(3 scale pb!)

~T
O

D
A

Y~
~T

O
M

O
RR

O
W

~

• H

g

g

g

• Hg

g g

• H

g

g

g g

• H

q

q̄

g

• Hg

q q

• H

g

g

q q

Figure 3.22: Typical diagrams for the QCD corrections to gg → H at NNLO in the heavy
quark limit. • denotes the effective Hgg vertex where the quark has been integrated out.

This tour de force has been made possible thanks to two simplifying features: the pos-

sibility of using the low energy theorem discussed in §2.4.1, which allows to calculate the

corrections to the effective Hgg vertex, and the development of new techniques [362] to eval-

uate massless three–point functions at the two–loop level in complete analogy to massless

three–loop propagator diagrams which are standard and can be done fully automatically.

As already discussed in §2.4.3, the NNLO QCD corrected Hgg effective operator in

the heavy quark limit, Leff(Hgg), can be obtained [21,206,361] by means of the low–energy

theorem, eq. (2.91). This operator does not describe the Hgg interaction in total: it accounts

only for the interactions mediated by the heavy quarks directly, but it does not include the

interactions of the light fields. It must be added to the light–quark and gluon part of the basic

QCD Lagrangian, i.e. the effective coupling has to be inserted into the blobs of the effective

two–loop diagrams shown in Fig. 3.22. The NNLO corrections to inclusive Higgs production

in gg → H can be cast then into the three categories which have been already encountered

when we discussed the NLO case. In terms of the variable τ̂ defined as τ̂ = M2
H/ŝ, one has

δ function terms ∝ δ(1 − τ̂), large logarithms of the form logn(1 − τ̂)/(1 − τ̂), and hard

scattering terms that have at most a logarithmic singularity in the limit τ̂ → 1
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where $k = logk(1 − τ̂) and Dk(τ̂), with now i = 1, 2, 3, are the usual + distributions

defined earlier. The virtual corrections [363], which are of course UV finite when all con-

tributions are added up, and in particular the coefficient function Cg of the Hgg effective

operator contribute only to the coefficient a(2) in front of the delta function [363, 364]. The

soft corrections to the gg → H cross section, i.e. when the momenta of the final state gluons

or quarks tend to zero, contribute to both the a(2) and b(2) terms; they have been evalu-
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H/ŝ, one has

δ function terms ∝ δ(1 − τ̂), large logarithms of the form logn(1 − τ̂)/(1 − τ̂), and hard

scattering terms that have at most a logarithmic singularity in the limit τ̂ → 1

σ̂(2)
ij = a(2)δ(1 − τ̂ ) +

3∑

k=0

b(2)
k Dk(τ̂ ) +

∞∑

l=0

3∑

k=0

c(2)
lk (1 − τ̂)l$k (3.69)

where $k = logk(1 − τ̂) and Dk(τ̂), with now i = 1, 2, 3, are the usual + distributions

defined earlier. The virtual corrections [363], which are of course UV finite when all con-

tributions are added up, and in particular the coefficient function Cg of the Hgg effective

operator contribute only to the coefficient a(2) in front of the delta function [363, 364]. The

soft corrections to the gg → H cross section, i.e. when the momenta of the final state gluons

or quarks tend to zero, contribute to both the a(2) and b(2) terms; they have been evalu-

152

• H

g

g

g

• Hg

g g

• H

g

g

g g

• H

q

q̄

g

• Hg

q q

• H

g

g

q q

Figure 3.22: Typical diagrams for the QCD corrections to gg → H at NNLO in the heavy
quark limit. • denotes the effective Hgg vertex where the quark has been integrated out.

This tour de force has been made possible thanks to two simplifying features: the pos-

sibility of using the low energy theorem discussed in §2.4.1, which allows to calculate the

corrections to the effective Hgg vertex, and the development of new techniques [362] to eval-

uate massless three–point functions at the two–loop level in complete analogy to massless

three–loop propagator diagrams which are standard and can be done fully automatically.

As already discussed in §2.4.3, the NNLO QCD corrected Hgg effective operator in

the heavy quark limit, Leff(Hgg), can be obtained [21,206,361] by means of the low–energy

theorem, eq. (2.91). This operator does not describe the Hgg interaction in total: it accounts

only for the interactions mediated by the heavy quarks directly, but it does not include the

interactions of the light fields. It must be added to the light–quark and gluon part of the basic

QCD Lagrangian, i.e. the effective coupling has to be inserted into the blobs of the effective

two–loop diagrams shown in Fig. 3.22. The NNLO corrections to inclusive Higgs production

in gg → H can be cast then into the three categories which have been already encountered

when we discussed the NLO case. In terms of the variable τ̂ defined as τ̂ = M2
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Characteristic diagrams of the QCD radiative corrections are shown in Fig. 3.19. They

involve the virtual corrections to the gg → H subprocess, which modify the LO fusion cross

section by a coefficient linear in αs, and the radiation of gluons in the final state. In addition,

Higgs bosons can be produced in gluon–quark collisions and quark–antiquark annihilation

which contribute to the cross section at the same order of αs.
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Figure 3.19: Typical diagrams for the virtual and real QCD corrections to gg → H.

The cross sections for the subprocesses ij → H + X, i, j = g, q, q, can be written as

σ̂ij = σ0

{
δigδjg

[
1 + CH(τQ)

αs

π

]
δ(1 − τ̂) + DH

ij (τ̂ , τQ)
αs

π
Θ(1 − τ̂)

}
(3.60)

where the new scaling variable τ̂ , supplementing τH = M2
H/s and τQ = M2

H/4m2
Q introduced

earlier, is defined at the parton level as τ̂ = M2
H/ŝ; Θ is the step function.

The coefficients CH(τQ) and DH
ij (τ̂ , τQ) have been determined in Refs. [180,286] for arbi-

trary Higgs boson and quark masses and the lengthy analytical expressions have been given

there [see also §2.3.3 for some details on the calculation and on the renormalization scheme].

If all the corrections eq. (3.60) are added up, ultraviolet and infrared divergences cancel.

However collinear singularities are left over and are absorbed into the renormalization of the

parton densities [84, 325] where the MS factorization scheme can be adopted.

The final result for the hadronic cross section at NLO can be cast into the form

σ(pp → H + X) = σH
0

[
1 + CH αs

π

]
τH

dLgg

dτH
+ #σH

gg + #σH
gq + #σH

qq (3.61)

The coefficient CH denotes the contributions from the virtual two–loop quark corrections

regularized by the infrared singular part of the cross section for real gluon emission. It splits

into the infrared term π2, a term depending on the renormalization scale µR of the coupling
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Figure 3.22: Typical diagrams for the QCD corrections to gg → H at NNLO in the heavy
quark limit. • denotes the effective Hgg vertex where the quark has been integrated out.

This tour de force has been made possible thanks to two simplifying features: the pos-

sibility of using the low energy theorem discussed in §2.4.1, which allows to calculate the
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uate massless three–point functions at the two–loop level in complete analogy to massless

three–loop propagator diagrams which are standard and can be done fully automatically.
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operator contribute only to the coefficient a(2) in front of the delta function [363, 364]. The

soft corrections to the gg → H cross section, i.e. when the momenta of the final state gluons

or quarks tend to zero, contribute to both the a(2) and b(2) terms; they have been evalu-
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quark limit. • denotes the effective Hgg vertex where the quark has been integrated out.
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Characteristic diagrams of the QCD radiative corrections are shown in Fig. 3.19. They

involve the virtual corrections to the gg → H subprocess, which modify the LO fusion cross

section by a coefficient linear in αs, and the radiation of gluons in the final state. In addition,

Higgs bosons can be produced in gluon–quark collisions and quark–antiquark annihilation

which contribute to the cross section at the same order of αs.
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Figure 3.19: Typical diagrams for the virtual and real QCD corrections to gg → H.

The cross sections for the subprocesses ij → H + X, i, j = g, q, q, can be written as

σ̂ij = σ0

{
δigδjg

[
1 + CH(τQ)

αs

π

]
δ(1 − τ̂) + DH

ij (τ̂ , τQ)
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π
Θ(1 − τ̂)

}
(3.60)

where the new scaling variable τ̂ , supplementing τH = M2
H/s and τQ = M2

H/4m2
Q introduced

earlier, is defined at the parton level as τ̂ = M2
H/ŝ; Θ is the step function.

The coefficients CH(τQ) and DH
ij (τ̂ , τQ) have been determined in Refs. [180,286] for arbi-

trary Higgs boson and quark masses and the lengthy analytical expressions have been given

there [see also §2.3.3 for some details on the calculation and on the renormalization scheme].

If all the corrections eq. (3.60) are added up, ultraviolet and infrared divergences cancel.

However collinear singularities are left over and are absorbed into the renormalization of the

parton densities [84, 325] where the MS factorization scheme can be adopted.

The final result for the hadronic cross section at NLO can be cast into the form

σ(pp → H + X) = σH
0

[
1 + CH αs

π

]
τH

dLgg

dτH
+ #σH

gg + #σH
gq + #σH

qq (3.61)

The coefficient CH denotes the contributions from the virtual two–loop quark corrections

regularized by the infrared singular part of the cross section for real gluon emission. It splits

into the infrared term π2, a term depending on the renormalization scale µR of the coupling
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regularized by the infrared singular part of the cross section for real gluon emission. It splits
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Signal/Background Interference
Naively small since the width is small (ΓH=4MeV, ΓH/mH =3x10-5) for a light Higgs

but   S: gg➛h➛γγ = 2-loop versus B: gg➛γγ = 1-loop

Higgs boson signal-background interference

g

g
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γ
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b, c, . . . u, c, d, s, b · · ·

∗

FIG. 1: Sample Feynman diagrams contributing to the interference of gg → H → γγ with the

continuum background. Only one diagram is shown at each loop order, for each amplitude. The

blob contains W and t loops, and small contributions from lighter charged fermions.

level. A potential worry, addressed in this letter, is the interference between the resonant

Higgs amplitude gg → H → γγ, and the continuum gg → γγ scattering process induced

by light quark loops. Higgs resonance-continuum interference has been studied previously

in gg → H → tt̄ at a hadron collider [15], and in γγ → H → W+W− and ZZ at a

photon collider [16]. These studies assumed that the Higgs boson is heavy enough to have a

GeV-scale width. In the case of a light (mH < 2min(mW , mt)), narrow-width Higgs boson,

the interference in gg → H → γγ was considered [8], but the dominant contribution in

the SM was not identified. Resonance-continuum interference effects are usually tiny for a

narrow resonance, and for mH < 150 GeV the width ΓH is less than 17 MeV. However, the

gg → H → γγ resonance is also rather weak. As shown in fig. 1, it consists of a one-loop

production amplitude followed by a one-loop decay amplitude. Thus a one-loop (or even

two-loop) continuum amplitude can partially compete with it.

In the SM, the production amplitude gg → H is dominated by a top quark in the loop.

The decay H → γγ is dominated by the W boson, with some t quark contribution as well.

For mH < 160 GeV, the Higgs is below the tt̄ and WW thresholds, so the resonant amplitude

is mainly real, apart from the relativistic Breit-Wigner factor. The full gg → γγ amplitude

is a sum of resonance and continuum terms,

Agg→γγ =
−Agg→HAH→γγ

ŝ − m2
H + imHΓH

+ Acont , (1)

where ŝ is the gluon-gluon invariant mass. The interference term in the partonic cross section

3

Since the Higgs boson is a a narrow particle, no significant impact of the interference on the 
production cross-section should be expected.  On the other hand, the Higgs boson 
resonance amplitude is small (two-loop), so that large (one-loop) background amplitude can 
interfere.  Naively, the interference can be as large as few tens of percent but -- by accident -- 
the effect is small,  it changes the cross-section by about 2% for the Higgs boson with the 
mass 125 GeV.

FIG. 2: Top panel: the percentage reduction of the SM Higgs γγ signal as a function of the Higgs

mass, for CM scattering angle θ = 45◦. The solid curve gives the result with all phases turned

on; the other curves turn on one of the component phases at a time. Bottom panel: the same

quantities, plotted as a function of the scattering angle, for mH = 140 GeV. The vertical dotted

line indicates that an event with θ < 34.9◦ will not pass the standard ATLAS and CMS photon pT

cuts.
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blob contains W and t loops, and small contributions from lighter charged fermions.

level. A potential worry, addressed in this letter, is the interference between the resonant

Higgs amplitude gg → H → γγ, and the continuum gg → γγ scattering process induced

by light quark loops. Higgs resonance-continuum interference has been studied previously

in gg → H → tt̄ at a hadron collider [15], and in γγ → H → W+W− and ZZ at a

photon collider [16]. These studies assumed that the Higgs boson is heavy enough to have a

GeV-scale width. In the case of a light (mH < 2min(mW , mt)), narrow-width Higgs boson,

the interference in gg → H → γγ was considered [8], but the dominant contribution in

the SM was not identified. Resonance-continuum interference effects are usually tiny for a

narrow resonance, and for mH < 150 GeV the width ΓH is less than 17 MeV. However, the

gg → H → γγ resonance is also rather weak. As shown in fig. 1, it consists of a one-loop

production amplitude followed by a one-loop decay amplitude. Thus a one-loop (or even

two-loop) continuum amplitude can partially compete with it.

In the SM, the production amplitude gg → H is dominated by a top quark in the loop.

The decay H → γγ is dominated by the W boson, with some t quark contribution as well.

For mH < 160 GeV, the Higgs is below the tt̄ and WW thresholds, so the resonant amplitude

is mainly real, apart from the relativistic Breit-Wigner factor. The full gg → γγ amplitude

is a sum of resonance and continuum terms,

Agg→γγ =
−Agg→HAH→γγ

ŝ − m2
H + imHΓH

+ Acont , (1)

where ŝ is the gluon-gluon invariant mass. The interference term in the partonic cross section

3

Since the Higgs boson is a a narrow particle, no significant impact of the interference on the 
production cross-section should be expected.  On the other hand, the Higgs boson 
resonance amplitude is small (two-loop), so that large (one-loop) background amplitude can 
interfere.  Naively, the interference can be as large as few tens of percent but -- by accident -- 
the effect is small,  it changes the cross-section by about 2% for the Higgs boson with the 
mass 125 GeV.

FIG. 2: Top panel: the percentage reduction of the SM Higgs γγ signal as a function of the Higgs

mass, for CM scattering angle θ = 45◦. The solid curve gives the result with all phases turned

on; the other curves turn on one of the component phases at a time. Bottom panel: the same

quantities, plotted as a function of the scattering angle, for mH = 140 GeV. The vertical dotted

line indicates that an event with θ < 34.9◦ will not pass the standard ATLAS and CMS photon pT

cuts.
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Residual effect: downward shift of Mγγ mass peak

ΔMγγ =-120 MeV @ LO
ΔMγγ =-70 MeV @ NLO

 (large K-factor of signal)
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ΔMγγ has a 
strong dependence 

on Higgs pT

3

width. (In practice we performed a fit varying the height
and width of the Gaussian as well as the mass; however,
the former two quantities are hardly affected by the real
part of the interference.)
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FIG. 2. Diphoton invariant mass Mγγ distribution for pure
signal (top panel) and interference term (bottom panel) after
Gaussian smearing.

The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [24] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-

tribution involving the SM tree amplitude for qg → γγq
is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the

Dixon, Li ’13can be measured in γγ channel alone!
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level. A potential worry, addressed in this letter, is the interference between the resonant

Higgs amplitude gg → H → γγ, and the continuum gg → γγ scattering process induced

by light quark loops. Higgs resonance-continuum interference has been studied previously

in gg → H → tt̄ at a hadron collider [15], and in γγ → H → W+W− and ZZ at a

photon collider [16]. These studies assumed that the Higgs boson is heavy enough to have a

GeV-scale width. In the case of a light (mH < 2min(mW , mt)), narrow-width Higgs boson,

the interference in gg → H → γγ was considered [8], but the dominant contribution in

the SM was not identified. Resonance-continuum interference effects are usually tiny for a

narrow resonance, and for mH < 150 GeV the width ΓH is less than 17 MeV. However, the

gg → H → γγ resonance is also rather weak. As shown in fig. 1, it consists of a one-loop

production amplitude followed by a one-loop decay amplitude. Thus a one-loop (or even

two-loop) continuum amplitude can partially compete with it.

In the SM, the production amplitude gg → H is dominated by a top quark in the loop.

The decay H → γγ is dominated by the W boson, with some t quark contribution as well.

For mH < 160 GeV, the Higgs is below the tt̄ and WW thresholds, so the resonant amplitude

is mainly real, apart from the relativistic Breit-Wigner factor. The full gg → γγ amplitude

is a sum of resonance and continuum terms,

Agg→γγ =
−Agg→HAH→γγ

ŝ − m2
H + imHΓH

+ Acont , (1)

where ŝ is the gluon-gluon invariant mass. The interference term in the partonic cross section

3

Since the Higgs boson is a a narrow particle, no significant impact of the interference on the 
production cross-section should be expected.  On the other hand, the Higgs boson 
resonance amplitude is small (two-loop), so that large (one-loop) background amplitude can 
interfere.  Naively, the interference can be as large as few tens of percent but -- by accident -- 
the effect is small,  it changes the cross-section by about 2% for the Higgs boson with the 
mass 125 GeV.

FIG. 2: Top panel: the percentage reduction of the SM Higgs γγ signal as a function of the Higgs

mass, for CM scattering angle θ = 45◦. The solid curve gives the result with all phases turned

on; the other curves turn on one of the component phases at a time. Bottom panel: the same

quantities, plotted as a function of the scattering angle, for mH = 140 GeV. The vertical dotted

line indicates that an event with θ < 34.9◦ will not pass the standard ATLAS and CMS photon pT

cuts.
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FIG. 2. Diphoton invariant mass Mγγ distribution for pure
signal (top panel) and interference term (bottom panel) after
Gaussian smearing.

The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [24] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-

tribution involving the SM tree amplitude for qg → γγq
is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the

Dixon, Li ’13can be measured in γγ channel alone!
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Now what? What’s next?
“With great power comes great responsibility”

Voltaire & Spider-Man

“With great discoveries come great measurements”
BSMers desperately looking for anomalies 

(true credit: F. Maltoni)

which, in particle physics, really means

Higgs properties
1

JPC
Important & nice to see progresses but 
“this question carries a similar potential 
for surprise as a football game between 

Brazil and Tonga” Resonaances

Higgs couplings
2

BSM implications
3

LBSM =?

The Higgs has access to EW coupled New Physics 
which is less constrained by direct searches than strongly coupled NP

http://resonaances.blogspot.jp/2012/10/higgs-new-deal.html
http://resonaances.blogspot.jp/2012/10/higgs-new-deal.html
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bosonic sector irrelevant operators (dim-6) only
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Higgs signal strengths 
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Among the 59 irrelevant directions, 3 of them induce CP Higgs couplings in the EW bosonic sector

Notice that Eqs. (B.94) and (B.95) are directly implied by Eq. (3.53), which follows from

custodial invariance. It is simple to verify that the identities (3.47) and (3.48) are satisfied

by the couplings appearing on the left-hand sides of respectively Eq. (B.94) and (B.95).

The above discussion shows explicitly that every operator in Eq. (3.46) can be dressed

up with NG bosons and made manifestly invariant under local SU(2)L ⇥U(1)Y transforma-

tions. 26

The part of Eq. (B.86) which does not depend on the Higgs field h coincides with the

non-linear chiral Lagrangian for SU(2)L ⇥ U(1)Y [79], in the limit of exact custodial sym-

metry. This latter assumption can be relaxed by specifying the sources of explicit breaking

of the custodial symmetry, i.e. its spurions, in terms of which one can construct additional

operators formally invariant under SU(2)L ⇥U(1)Y local transformations. For example, the

list of operators that follows in the case in which custodial invariance is broken by a field

with the EW quantum numbers of hypercharge has been recently discussed in Ref. [55].

Since the choice of quantum numbers of the spurions is model-dependent (and in fact the

strongest e↵ects are expected to arise from the breaking due to the top quark, rather than

hypercharge), we do not report here any particular list of operators, and prefer to refer to

the existing literature for further details.

C Relaxing the CP-even hypothesis

If one relaxes the hypothesis that h is CP-even, there are six extra dimension-6 operators

that need to be added to the e↵ective Lagrangian (2.2):

�LCP =
ic̃HW g

m2
W

(DµH)†�i(D⌫H)W̃ i
µ⌫ +

ic̃HB g0

m2
W

(DµH)†(D⌫H)B̃µ⌫

+
c̃� g0

2

m2
W

H†HBµ⌫B̃
µ⌫ +

c̃g g2S
m2

W

H†HGa
µ⌫G̃

aµ⌫

+
c̃3W g3

m2
W

✏ijkW i ⌫
µ W j ⇢

⌫ W̃ k µ
⇢ +

c̃3G g3S
m2

W

fabcGa ⌫
µ Gb ⇢

⌫ G̃c µ
⇢ ,

(C.96)

26Notice that h is invariant under SU(2)L ⇥ SU(2)R (hence SU(2)L ⇥ U(1)Y ) transformations. In the

case in which h belongs to an SU(2)L doublet H, this follows from the fact that h parametrizes the norm of

the doublet: H†H = (v + h)2/2.
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3

⇠ hFF̃ �

h

S

FIG. 1. Left: the diagram that gives rise to fermionic EDMs via the insertion of the operator hF F̃ from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model involving a VL lepton,  , coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this contribution is proportional to the mixing term, A, in the scalar
potential.

of ỸS , ✓, and m :

df = d(2l)f ⇥Q2

 ỸS
v

m 
sin(2✓)

⇥
g(m2

 /m
2

h) � g(m2

 /m
2

S)
⇤
,

(13)
where the loop function is given by

g(z) =
z

2

Z
1

0

dx
1

x(1 � x) � z
ln

✓
x(1 � x)

z

◆
, (14)

which satisfies g(1) ⇠ 1.17 and g ⇠ 1

2

ln z for large z. We
show the Feynman diagram responsible for this contribu-
tion on the right of Fig. 1.

It is instructive to consider di↵erent limits of
(13). When mh ⌧ m ,mS , to logarithmic accuracy
g(m2

 /m
2

h) � g(m2

 /m
2

S) ! 1

2

ln(m2

min

/m2

h), where m
min

is the smaller of mS and m . In this limit, the heavy
fields can be integrated out sequentially, with S and  
first, and h second. The first step is simplified by the
use of the chiral anomaly equation for  , @µ ̄�µ�5 =
2i ̄�

5

 + ↵
8⇡Q

2

 Fµ⌫ F̃µ⌫ . This leads to the following iden-
tification:

c̃h

⇤̃2

=
↵Q2

 

4⇡

ỸSA

m2

Sm 
; ⇤

UV

' min(mS ,m ). (15)

Apart from a smaller value for the logarithmic cuto↵,
the result in this limit di↵ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min

/m2

h) ⇠ O(1), the corrections to
the Higgs diphoton rate will be limited to at most the
sub-percent level unless a fine-tuned cancellation of de is
arranged with some other CP -odd source.

We now consider a di↵erent near-degenerate limit,
|mh � mS | ⌧ mh, which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di↵erence between the masses is small, we can ap-
proximate

sin(2✓)(m2

S � m2

h) ! 2Av, (16)

and the EDM becomes

df = d(2l)f ⇥ Q2

 ỸS
2Av2m 

m4

h

g0(m2

 /m
2

h) (17)

�! d(2l)f ⇥ Q2

 ỸS
Av2

m2

hm 
, (18)

where in the final step we made use of the large m limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting between h
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/(m2

hm ) in the O(10�2 � 10�3) range,
suppressing the EDM safely below the bound.
At the same time, as explicitly shown in Ref. [5], mod-

ifications to the h ! �� rate can be significant, and
enhancement can come from the Fµ⌫ F̃µ⌫ amplitude. Un-
like corrections to the Fµ⌫Fµ⌫ amplitudes that can en-
hance or suppress the e↵ective rate, the CP -odd chan-
nel always adds to R�� . Assuming that the mass di↵er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS � mh| ⇠< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is

Re↵

��(ỸS) = cos2 ✓ ⇥ Brh!��

BrSMh!��

+ sin2 ✓ ⇥ BrS!��

BrSMh!��

. (19)

If ✓ is in the range
s

�
ˆS!��

�
ˆh!��

BrSMh!�� ⇠< ✓ ⇠<
s

�
ˆh!��

�
ˆS!��

(20)

and �
ˆh!�� ⇠ �

ˆS!�� then R�� simplifies to a ✓-
independent expression,

Re↵

��(ỸS) ' 1 +
�

ˆS!��

�
ˆh!��

. (21)

The rate for the weak eigenstate Ŝ to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is

�
ˆS!�� =

↵2Q4

 Ỹ
2

s m
3

S

256⇡3m2

 

����A
P
1/2

✓
m2

S

4m 

◆����
2

, (22)

γ operator: 
already severely constrained 

by e and q EDMs
McKeen, Pospelov, Ritz ’12

Higgs rates? 
poor constraints 

since no interference with SM 
effects ≈  dim-8 CP-even operators

➤

➤➤

need to look for CP-odd observables 
that are linear in the CP Wilson coeffs. 

Z operator(s):
studied in the kinematical distributions 

for h ➙ ZZ ➙ 4l

see the fa3 CMS study

already bounded by flavor physics

http://arxiv.org/abs/arXiv:1208.4597
http://arxiv.org/abs/arXiv:1208.4597


Christophe Grojean Challenges/Questions in Higgs physics Wien, 31st Oct. 2o1316

CP-odd observables
The CP operators with W and Z are best studied in the VH channels

where the Higgs can be boosted (the derivatives in the operators don’t hurt)
Godbole et al ’13 

2

q q̄ ′

h

W

θ

θl

φ

νl

l

FIG. 1: Definition of the production and decay angles. The
W and h directions are drawn in the qq̄ ′ center-of-mass frame,
while the leptons are drawn in their parent W rest frame. φ
is the angle between the production plane and the W decay
plane.

and the direction of flight of the W as seen from the
cmf, while φ is the azimuthal angle between the produc-
tion plane and the lν decay plane in the cmf. Note that
if the decay product have a non-zero azimuthal angle
φ, the decay amplitude picks up a phase of λ, in units
of φ. The cross-section for ud̄ → W+h → l+νh reads

dσ̂ = 1/(3ŝ)
∣∣M

∣∣2 dPSlνh , where
∣∣M

∣∣2 is the associated
amplitude square averaged (summed) over the initial (fi-
nal) fermion spins, the 1/3 factor is a color average and
dPSlνh is the three-body relativistic phase-space for l+νh
final states. Under the NWA, it is well approximated by

dσ̂ " π

12ŝmWΓW

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

dPSWh dPSlν , (6)

where ΓW # mW is the W width, Mp,d
λ are defined in

Eqs. (2),(3) and Eq. (5) and the W helicity sum runs over
λ = ±1, 0.
dPSWh and dPSlν are the two-body relativistic phase-

spaces for ud̄ → W+h and W+ → l+ν, which reduce
to dPSWh = (β/16π)d cos θ in the cmf and dPSlν =
(1/32π2)d cos θldφ in the W rest frame. The absolute
value square of the helicity sum in Eq. (6) decomposes as

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

=
∑

λ

|Mp
λ|

2 ∣∣Md
λ

∣∣2

+ 2
∑

λ>λ′

Re
[
Mp

λM
p ∗
λ′ Md

λMd ∗
λ′

]
, (7)

where the second term collects interferences between dif-
ferent helicity amplitudes. Using Eqs. (2),(3) and Eq. (5),
it is straightforward to check that interference effects
vanish when averaged over azimuth φ, since helicity
is conserved, and that d2σ̂/d cos θd cos θl only depends
quadratically on CW . However any observable probing
the azimuthal angle distribution is linearly sensitive to

CW . The simplest of such observables is the up-down
asymmetry

ÂCP ≡ σ̂φ>0 − σ̂φ<0

σ̂φ>0 + σ̂φ<0
= −9π

16
sin γ

(
ATAL

2A2
T +A2

L

)
, (8)

where σ̂φ<0 =
∫ 0
−π dσ̂/dφ and σ̂φ>0 =

∫ π
0 dσ̂/dφ. ÂCP is

a measure of how often the charged lepton from the W
decay flies above the production plane, relative to below
that plane, where above (below) the plane is defined by
)l · ()h× )u) > 0 (< 0). We describe next how to probe and
the expectations for such an asymmetry in both pp̄ and
pp colliders.

Up-down asymmetry at hadron colliders. Con-
sider the hadronic process h1h2 → Wh → lνbb̄ with

√
s

energy in the cmf. We consider both cases where the col-
liding hadrons h1h2 are pp̄ as at the Tevatron, and pp as
at the LHC. The differential cross-section for the above
process is [8]

d2σ

dτdφ
= Lqq̄ ′(τ)

dσ̂

dφ
(τ,φ) + Lq̄ ′q(τ)

dσ̂

dφ
(τ,−φ) , (9)

where τ ≡ ŝ/s and Lij(τ) ≡
∫ 1
τ

dx
x fi/h1

(x)fj/h2
(τ/x) ,

with fi/h(x) is the parton distribution function (PDF)
controlling the probability to find a parton i with a frac-
tion x of the h hadron momentum. The ij frame is
boosted relative to the h1h2 frame by a rapidity yb ≡
(yW + yh)/2 log(x/

√
τ), where yW,h are the rapidities of

the W and h bosons in the laboratory frame. The q̄ ′q ini-
tial parton configuration is related to the qq̄ ′ one through
a parity transformation under which the triple product
)l · ()h × )q ) flip sign, hence the extra minus sign in the
second term of Eq. (9).

We define the asymmetry

ACP ≡ N↑ −N↓
N↑ +N↓

, (10)

where N↑ (N↓) is the number of events satisfying )l.()h ×
)h1) > 0 (< 0), i.e with a charged lepton flying “above”
(“below”) the production plane. Eq. (9) yields

N↑ =

∫ 1

τ0

dτ [Lqq̄ ′(τ)σ̂φ>0(τ) + Lq̄ ′q(τ)σ̂φ<0(τ)] , (11)

with τ0 = (mW + mh)2/s, while N↓ is obtained from
N↑ through exchanging σ̂φ>0 and σ̂φ<0. In pp̄ collisions,
Lqq̄ ′ ( Lq̄ ′q, it is more likely for q = u, d to arise from the
proton and the up-down asymmetry is well approximated
by

App̄
CP "

∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ)− σ̂φ<0(τ)]∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ) + σ̂φ<0(τ)]

. (12)

[comment on irrelevance of Tevatron due to lack of
events.] Conversely, in pp collisions Lqq̄ ′ = Lq̄ ′q and
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We propose a new observable designed to probe CP violation in the Higgs boson interactions to
weak gauge bosons.

Introduction. The recent discovery at the LHC of
a Higgs-like particle with ! 126GeV mass and close to
Standard Model (SM) properties [1, 2] implies that weak
interactions are unitarized up to energies far above the
Fermi scale, (

√
2GF )−1/2 ! 246GeV. The Higgs mass in

such a theory is however not naturally light which advo-
cates for the existence of new physics (NP) not far beyond
the SM at the scale Λ ∼TeV. Such new physics may affect
the Higgs interactions to other SM fields in a non-trivial
way. The top quark and weak gauge bosons are the most
sensitive of all SM particles to the electroweak symmetry
breaking source and thus their couplings to the Higgs are
dedicated windows to look for signs of non-SM dynamics
associated with naturalness. [comments on ttbarh, hgg,
hγγ.] [argue for Higgs CP properties, justifying interest
of hWW̃ .]
We focus here on Higgs couplings to weak bosons V =

W,Z and we write the most generic hVµVν vertex as [6]

−igV mV

[
AV ηµν +BV p1νp2µ + CV εµναβp

β
1p

α
2

]
, (1)

where p1,2 (pointing inwards) are the four-momenta of

Vµ and Vν , gW = g, gZ =
√

g2 + g′ 2, where g and g′

are the SU(2)L×U(1)Y gauge couplings, and A,B,C are
generic functions of the Lorentz scalars p21,2 and p1 · p2,
whose SM values are ASM

V = 1 and BSM
V = CSM

V = 0.
While the first two term in Eq. (1) are CP-even, the last
one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
the 3-momenta of the charged lepton from the W decay,
the Higgs boson and the initial quark in the qq̄′ (q′ '= q)
partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]

Mp
± = ±gmWAT

(1∓ cos θ)√
2

e±iγ , (2)

Mp
0 = −gmWAL sin θ , (3)

for transverse W of helicity λ = ±1 and longitudinal W
of helicity λ = 0 in the final state, respectively, where
AT =

√
A2

W + (CW ŝβ)2/4, AL = AW (1− δ)+BW ŝβ2/2
and

tan γ =
CW ŝβ

2AW
, (4)

with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.

√
ŝ is the cmf energy and β ≡

√
1− 4m2/ŝ+ δ2,

with m2 ≡ (m2
W +m2

h)/2 and δ ≡ (m2
h −m2

W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)

Md
± = ∓gmW√

2

(1± cos θl)√
2

e±iφ , Md
0 =

gmW√
2

sin θl (5)

for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum
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We propose a new observable designed to probe CP violation in the Higgs boson interactions to
weak gauge bosons.

Introduction. The recent discovery at the LHC of
a Higgs-like particle with ! 126GeV mass and close to
Standard Model (SM) properties [1, 2] implies that weak
interactions are unitarized up to energies far above the
Fermi scale, (

√
2GF )−1/2 ! 246GeV. The Higgs mass in

such a theory is however not naturally light which advo-
cates for the existence of new physics (NP) not far beyond
the SM at the scale Λ ∼TeV. Such new physics may affect
the Higgs interactions to other SM fields in a non-trivial
way. The top quark and weak gauge bosons are the most
sensitive of all SM particles to the electroweak symmetry
breaking source and thus their couplings to the Higgs are
dedicated windows to look for signs of non-SM dynamics
associated with naturalness. [comments on ttbarh, hgg,
hγγ.] [argue for Higgs CP properties, justifying interest
of hWW̃ .]
We focus here on Higgs couplings to weak bosons V =

W,Z and we write the most generic hVµVν vertex as [6]

−igV mV

[
AV ηµν +BV p1νp2µ + CV εµναβp

β
1p

α
2

]
, (1)

where p1,2 (pointing inwards) are the four-momenta of

Vµ and Vν , gW = g, gZ =
√

g2 + g′ 2, where g and g′

are the SU(2)L×U(1)Y gauge couplings, and A,B,C are
generic functions of the Lorentz scalars p21,2 and p1 · p2,
whose SM values are ASM

V = 1 and BSM
V = CSM

V = 0.
While the first two term in Eq. (1) are CP-even, the last
one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
the 3-momenta of the charged lepton from the W decay,
the Higgs boson and the initial quark in the qq̄′ (q′ '= q)
partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]

Mp
± = ±gmWAT

(1∓ cos θ)√
2

e±iγ , (2)

Mp
0 = −gmWAL sin θ , (3)

for transverse W of helicity λ = ±1 and longitudinal W
of helicity λ = 0 in the final state, respectively, where
AT =

√
A2

W + (CW ŝβ)2/4, AL = AW (1− δ)+BW ŝβ2/2
and

tan γ =
CW ŝβ

2AW
, (4)

with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.

√
ŝ is the cmf energy and β ≡

√
1− 4m2/ŝ+ δ2,

with m2 ≡ (m2
W +m2

h)/2 and δ ≡ (m2
h −m2

W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)

Md
± = ∓gmW√

2

(1± cos θl)√
2

e±iφ , Md
0 =

gmW√
2

sin θl (5)

for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum

the asymmetry in the variable 

is linear in CP coefficient Delaunay et al ’13

should allow one to constrain the third CP direction➤

no estimate of the sensitivity yet➤ ➤

Elias-Miro et al ’13 
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CP-odd observables
The CP operators with W and Z are best studied in the VH channels

where the Higgs can be boosted (the derivatives in the operators don’t hurt)
Godbole et al ’13 
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FIG. 1: Definition of the production and decay angles. The
W and h directions are drawn in the qq̄ ′ center-of-mass frame,
while the leptons are drawn in their parent W rest frame. φ
is the angle between the production plane and the W decay
plane.

and the direction of flight of the W as seen from the
cmf, while φ is the azimuthal angle between the produc-
tion plane and the lν decay plane in the cmf. Note that
if the decay product have a non-zero azimuthal angle
φ, the decay amplitude picks up a phase of λ, in units
of φ. The cross-section for ud̄ → W+h → l+νh reads

dσ̂ = 1/(3ŝ)
∣∣M

∣∣2 dPSlνh , where
∣∣M

∣∣2 is the associated
amplitude square averaged (summed) over the initial (fi-
nal) fermion spins, the 1/3 factor is a color average and
dPSlνh is the three-body relativistic phase-space for l+νh
final states. Under the NWA, it is well approximated by

dσ̂ " π

12ŝmWΓW

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

dPSWh dPSlν , (6)

where ΓW # mW is the W width, Mp,d
λ are defined in

Eqs. (2),(3) and Eq. (5) and the W helicity sum runs over
λ = ±1, 0.
dPSWh and dPSlν are the two-body relativistic phase-

spaces for ud̄ → W+h and W+ → l+ν, which reduce
to dPSWh = (β/16π)d cos θ in the cmf and dPSlν =
(1/32π2)d cos θldφ in the W rest frame. The absolute
value square of the helicity sum in Eq. (6) decomposes as

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

=
∑

λ

|Mp
λ|

2 ∣∣Md
λ

∣∣2

+ 2
∑

λ>λ′

Re
[
Mp

λM
p ∗
λ′ Md

λMd ∗
λ′

]
, (7)

where the second term collects interferences between dif-
ferent helicity amplitudes. Using Eqs. (2),(3) and Eq. (5),
it is straightforward to check that interference effects
vanish when averaged over azimuth φ, since helicity
is conserved, and that d2σ̂/d cos θd cos θl only depends
quadratically on CW . However any observable probing
the azimuthal angle distribution is linearly sensitive to

CW . The simplest of such observables is the up-down
asymmetry

ÂCP ≡ σ̂φ>0 − σ̂φ<0

σ̂φ>0 + σ̂φ<0
= −9π

16
sin γ

(
ATAL

2A2
T +A2

L

)
, (8)

where σ̂φ<0 =
∫ 0
−π dσ̂/dφ and σ̂φ>0 =

∫ π
0 dσ̂/dφ. ÂCP is

a measure of how often the charged lepton from the W
decay flies above the production plane, relative to below
that plane, where above (below) the plane is defined by
)l · ()h× )u) > 0 (< 0). We describe next how to probe and
the expectations for such an asymmetry in both pp̄ and
pp colliders.

Up-down asymmetry at hadron colliders. Con-
sider the hadronic process h1h2 → Wh → lνbb̄ with

√
s

energy in the cmf. We consider both cases where the col-
liding hadrons h1h2 are pp̄ as at the Tevatron, and pp as
at the LHC. The differential cross-section for the above
process is [8]

d2σ

dτdφ
= Lqq̄ ′(τ)

dσ̂

dφ
(τ,φ) + Lq̄ ′q(τ)

dσ̂

dφ
(τ,−φ) , (9)

where τ ≡ ŝ/s and Lij(τ) ≡
∫ 1
τ

dx
x fi/h1

(x)fj/h2
(τ/x) ,

with fi/h(x) is the parton distribution function (PDF)
controlling the probability to find a parton i with a frac-
tion x of the h hadron momentum. The ij frame is
boosted relative to the h1h2 frame by a rapidity yb ≡
(yW + yh)/2 log(x/

√
τ), where yW,h are the rapidities of

the W and h bosons in the laboratory frame. The q̄ ′q ini-
tial parton configuration is related to the qq̄ ′ one through
a parity transformation under which the triple product
)l · ()h × )q ) flip sign, hence the extra minus sign in the
second term of Eq. (9).

We define the asymmetry

ACP ≡ N↑ −N↓
N↑ +N↓

, (10)

where N↑ (N↓) is the number of events satisfying )l.()h ×
)h1) > 0 (< 0), i.e with a charged lepton flying “above”
(“below”) the production plane. Eq. (9) yields

N↑ =

∫ 1

τ0

dτ [Lqq̄ ′(τ)σ̂φ>0(τ) + Lq̄ ′q(τ)σ̂φ<0(τ)] , (11)

with τ0 = (mW + mh)2/s, while N↓ is obtained from
N↑ through exchanging σ̂φ>0 and σ̂φ<0. In pp̄ collisions,
Lqq̄ ′ ( Lq̄ ′q, it is more likely for q = u, d to arise from the
proton and the up-down asymmetry is well approximated
by

App̄
CP "

∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ)− σ̂φ<0(τ)]∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ) + σ̂φ<0(τ)]

. (12)

[comment on irrelevance of Tevatron due to lack of
events.] Conversely, in pp collisions Lqq̄ ′ = Lq̄ ′q and
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We propose a new observable designed to probe CP violation in the Higgs boson interactions to
weak gauge bosons.

Introduction. The recent discovery at the LHC of
a Higgs-like particle with ! 126GeV mass and close to
Standard Model (SM) properties [1, 2] implies that weak
interactions are unitarized up to energies far above the
Fermi scale, (

√
2GF )−1/2 ! 246GeV. The Higgs mass in

such a theory is however not naturally light which advo-
cates for the existence of new physics (NP) not far beyond
the SM at the scale Λ ∼TeV. Such new physics may affect
the Higgs interactions to other SM fields in a non-trivial
way. The top quark and weak gauge bosons are the most
sensitive of all SM particles to the electroweak symmetry
breaking source and thus their couplings to the Higgs are
dedicated windows to look for signs of non-SM dynamics
associated with naturalness. [comments on ttbarh, hgg,
hγγ.] [argue for Higgs CP properties, justifying interest
of hWW̃ .]
We focus here on Higgs couplings to weak bosons V =

W,Z and we write the most generic hVµVν vertex as [6]

−igV mV

[
AV ηµν +BV p1νp2µ + CV εµναβp

β
1p

α
2

]
, (1)

where p1,2 (pointing inwards) are the four-momenta of

Vµ and Vν , gW = g, gZ =
√

g2 + g′ 2, where g and g′

are the SU(2)L×U(1)Y gauge couplings, and A,B,C are
generic functions of the Lorentz scalars p21,2 and p1 · p2,
whose SM values are ASM

V = 1 and BSM
V = CSM

V = 0.
While the first two term in Eq. (1) are CP-even, the last
one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
the 3-momenta of the charged lepton from the W decay,
the Higgs boson and the initial quark in the qq̄′ (q′ '= q)
partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]

Mp
± = ±gmWAT

(1∓ cos θ)√
2

e±iγ , (2)

Mp
0 = −gmWAL sin θ , (3)

for transverse W of helicity λ = ±1 and longitudinal W
of helicity λ = 0 in the final state, respectively, where
AT =

√
A2

W + (CW ŝβ)2/4, AL = AW (1− δ)+BW ŝβ2/2
and

tan γ =
CW ŝβ

2AW
, (4)

with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.

√
ŝ is the cmf energy and β ≡

√
1− 4m2/ŝ+ δ2,

with m2 ≡ (m2
W +m2

h)/2 and δ ≡ (m2
h −m2

W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)

Md
± = ∓gmW√

2

(1± cos θl)√
2

e±iφ , Md
0 =

gmW√
2

sin θl (5)

for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum
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We propose a new observable designed to probe CP violation in the Higgs boson interactions to
weak gauge bosons.

Introduction. The recent discovery at the LHC of
a Higgs-like particle with ! 126GeV mass and close to
Standard Model (SM) properties [1, 2] implies that weak
interactions are unitarized up to energies far above the
Fermi scale, (

√
2GF )−1/2 ! 246GeV. The Higgs mass in

such a theory is however not naturally light which advo-
cates for the existence of new physics (NP) not far beyond
the SM at the scale Λ ∼TeV. Such new physics may affect
the Higgs interactions to other SM fields in a non-trivial
way. The top quark and weak gauge bosons are the most
sensitive of all SM particles to the electroweak symmetry
breaking source and thus their couplings to the Higgs are
dedicated windows to look for signs of non-SM dynamics
associated with naturalness. [comments on ttbarh, hgg,
hγγ.] [argue for Higgs CP properties, justifying interest
of hWW̃ .]
We focus here on Higgs couplings to weak bosons V =

W,Z and we write the most generic hVµVν vertex as [6]

−igV mV

[
AV ηµν +BV p1νp2µ + CV εµναβp

β
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α
2

]
, (1)

where p1,2 (pointing inwards) are the four-momenta of

Vµ and Vν , gW = g, gZ =
√

g2 + g′ 2, where g and g′

are the SU(2)L×U(1)Y gauge couplings, and A,B,C are
generic functions of the Lorentz scalars p21,2 and p1 · p2,
whose SM values are ASM

V = 1 and BSM
V = CSM

V = 0.
While the first two term in Eq. (1) are CP-even, the last
one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
the 3-momenta of the charged lepton from the W decay,
the Higgs boson and the initial quark in the qq̄′ (q′ '= q)
partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]

Mp
± = ±gmWAT

(1∓ cos θ)√
2

e±iγ , (2)

Mp
0 = −gmWAL sin θ , (3)

for transverse W of helicity λ = ±1 and longitudinal W
of helicity λ = 0 in the final state, respectively, where
AT =

√
A2

W + (CW ŝβ)2/4, AL = AW (1− δ)+BW ŝβ2/2
and

tan γ =
CW ŝβ

2AW
, (4)

with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.

√
ŝ is the cmf energy and β ≡

√
1− 4m2/ŝ+ δ2,

with m2 ≡ (m2
W +m2

h)/2 and δ ≡ (m2
h −m2

W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)

Md
± = ∓gmW√

2

(1± cos θl)√
2

e±iφ , Md
0 =

gmW√
2

sin θl (5)

for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum

the asymmetry in the variable 

is linear in CP coefficient Delaunay et al ’13

should allow one to constrain the third CP direction➤

Another CP-odd observable can be constructed in h➛γγ channel
the CP operator impacts the correlation 
between the photon polarizations that 
can be tracked back to the correlation 

between the converted e-

KITP, July 8 2013J. Zupan     CPV in radiative Higgs decays

measuring cpv
• how to measure a polarization of a ~60 

GeV photon?

• ~50% of the photons convert in Si tracker

• can one use these?

9

challenging
(need to reconstruct the 

separation angles between the e) 
but interesting 

e.g. talk by J. Zupan at KITP ’13

no estimate of the sensitivity yet➤ ➤

Elias-Miro et al ’13 
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FIG. 1: Definition of the production and decay angles. The
W and h directions are drawn in the qq̄ ′ center-of-mass frame,
while the leptons are drawn in their parent W rest frame. φ
is the angle between the production plane and the W decay
plane.

and the direction of flight of the W as seen from the
cmf, while φ is the azimuthal angle between the produc-
tion plane and the lν decay plane in the cmf. Note that
if the decay product have a non-zero azimuthal angle
φ, the decay amplitude picks up a phase of λ, in units
of φ. The cross-section for ud̄ → W+h → l+νh reads

dσ̂ = 1/(3ŝ)
∣∣M

∣∣2 dPSlνh , where
∣∣M

∣∣2 is the associated
amplitude square averaged (summed) over the initial (fi-
nal) fermion spins, the 1/3 factor is a color average and
dPSlνh is the three-body relativistic phase-space for l+νh
final states. Under the NWA, it is well approximated by

dσ̂ " π

12ŝmWΓW

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

dPSWh dPSlν , (6)

where ΓW # mW is the W width, Mp,d
λ are defined in

Eqs. (2),(3) and Eq. (5) and the W helicity sum runs over
λ = ±1, 0.
dPSWh and dPSlν are the two-body relativistic phase-

spaces for ud̄ → W+h and W+ → l+ν, which reduce
to dPSWh = (β/16π)d cos θ in the cmf and dPSlν =
(1/32π2)d cos θldφ in the W rest frame. The absolute
value square of the helicity sum in Eq. (6) decomposes as

∣∣∣∣∣
∑

λ

Mp
λM

d
λ

∣∣∣∣∣

2

=
∑

λ

|Mp
λ|

2 ∣∣Md
λ

∣∣2

+ 2
∑

λ>λ′

Re
[
Mp

λM
p ∗
λ′ Md

λMd ∗
λ′

]
, (7)

where the second term collects interferences between dif-
ferent helicity amplitudes. Using Eqs. (2),(3) and Eq. (5),
it is straightforward to check that interference effects
vanish when averaged over azimuth φ, since helicity
is conserved, and that d2σ̂/d cos θd cos θl only depends
quadratically on CW . However any observable probing
the azimuthal angle distribution is linearly sensitive to

CW . The simplest of such observables is the up-down
asymmetry

ÂCP ≡ σ̂φ>0 − σ̂φ<0

σ̂φ>0 + σ̂φ<0
= −9π

16
sin γ

(
ATAL

2A2
T +A2

L

)
, (8)

where σ̂φ<0 =
∫ 0
−π dσ̂/dφ and σ̂φ>0 =

∫ π
0 dσ̂/dφ. ÂCP is

a measure of how often the charged lepton from the W
decay flies above the production plane, relative to below
that plane, where above (below) the plane is defined by
)l · ()h× )u) > 0 (< 0). We describe next how to probe and
the expectations for such an asymmetry in both pp̄ and
pp colliders.

Up-down asymmetry at hadron colliders. Con-
sider the hadronic process h1h2 → Wh → lνbb̄ with

√
s

energy in the cmf. We consider both cases where the col-
liding hadrons h1h2 are pp̄ as at the Tevatron, and pp as
at the LHC. The differential cross-section for the above
process is [8]

d2σ

dτdφ
= Lqq̄ ′(τ)

dσ̂

dφ
(τ,φ) + Lq̄ ′q(τ)

dσ̂

dφ
(τ,−φ) , (9)

where τ ≡ ŝ/s and Lij(τ) ≡
∫ 1
τ

dx
x fi/h1

(x)fj/h2
(τ/x) ,

with fi/h(x) is the parton distribution function (PDF)
controlling the probability to find a parton i with a frac-
tion x of the h hadron momentum. The ij frame is
boosted relative to the h1h2 frame by a rapidity yb ≡
(yW + yh)/2 log(x/

√
τ), where yW,h are the rapidities of

the W and h bosons in the laboratory frame. The q̄ ′q ini-
tial parton configuration is related to the qq̄ ′ one through
a parity transformation under which the triple product
)l · ()h × )q ) flip sign, hence the extra minus sign in the
second term of Eq. (9).

We define the asymmetry

ACP ≡ N↑ −N↓
N↑ +N↓

, (10)

where N↑ (N↓) is the number of events satisfying )l.()h ×
)h1) > 0 (< 0), i.e with a charged lepton flying “above”
(“below”) the production plane. Eq. (9) yields

N↑ =

∫ 1

τ0

dτ [Lqq̄ ′(τ)σ̂φ>0(τ) + Lq̄ ′q(τ)σ̂φ<0(τ)] , (11)

with τ0 = (mW + mh)2/s, while N↓ is obtained from
N↑ through exchanging σ̂φ>0 and σ̂φ<0. In pp̄ collisions,
Lqq̄ ′ ( Lq̄ ′q, it is more likely for q = u, d to arise from the
proton and the up-down asymmetry is well approximated
by

App̄
CP "

∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ)− σ̂φ<0(τ)]∫
dτ Lqq̄ ′(τ) [σ̂φ>0(τ) + σ̂φ<0(τ)]

. (12)

[comment on irrelevance of Tevatron due to lack of
events.] Conversely, in pp collisions Lqq̄ ′ = Lq̄ ′q and
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We propose a new observable designed to probe CP violation in the Higgs boson interactions to
weak gauge bosons.

Introduction. The recent discovery at the LHC of
a Higgs-like particle with ! 126GeV mass and close to
Standard Model (SM) properties [1, 2] implies that weak
interactions are unitarized up to energies far above the
Fermi scale, (

√
2GF )−1/2 ! 246GeV. The Higgs mass in

such a theory is however not naturally light which advo-
cates for the existence of new physics (NP) not far beyond
the SM at the scale Λ ∼TeV. Such new physics may affect
the Higgs interactions to other SM fields in a non-trivial
way. The top quark and weak gauge bosons are the most
sensitive of all SM particles to the electroweak symmetry
breaking source and thus their couplings to the Higgs are
dedicated windows to look for signs of non-SM dynamics
associated with naturalness. [comments on ttbarh, hgg,
hγγ.] [argue for Higgs CP properties, justifying interest
of hWW̃ .]
We focus here on Higgs couplings to weak bosons V =

W,Z and we write the most generic hVµVν vertex as [6]

−igV mV

[
AV ηµν +BV p1νp2µ + CV εµναβp

β
1p

α
2

]
, (1)

where p1,2 (pointing inwards) are the four-momenta of

Vµ and Vν , gW = g, gZ =
√

g2 + g′ 2, where g and g′

are the SU(2)L×U(1)Y gauge couplings, and A,B,C are
generic functions of the Lorentz scalars p21,2 and p1 · p2,
whose SM values are ASM

V = 1 and BSM
V = CSM

V = 0.
While the first two term in Eq. (1) are CP-even, the last
one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
the 3-momenta of the charged lepton from the W decay,
the Higgs boson and the initial quark in the qq̄′ (q′ '= q)
partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]

Mp
± = ±gmWAT

(1∓ cos θ)√
2

e±iγ , (2)

Mp
0 = −gmWAL sin θ , (3)

for transverse W of helicity λ = ±1 and longitudinal W
of helicity λ = 0 in the final state, respectively, where
AT =

√
A2

W + (CW ŝβ)2/4, AL = AW (1− δ)+BW ŝβ2/2
and

tan γ =
CW ŝβ

2AW
, (4)

with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.

√
ŝ is the cmf energy and β ≡

√
1− 4m2/ŝ+ δ2,

with m2 ≡ (m2
W +m2

h)/2 and δ ≡ (m2
h −m2

W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)

Md
± = ∓gmW√

2

(1± cos θl)√
2

e±iφ , Md
0 =

gmW√
2

sin θl (5)

for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum
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one is CP-odd. Deviations from SM expectations in the
hZZ vertex can be obtained through a (multi-variate)
angular analysis of the h → 4l channel. In particular
present LHC data already constrain the presence of a
CP-odd interaction, i.e. CZ '= 0, in the hZZ vertex [3].
A similar approach for the hWW vertex is presumably
less effective due to the presence of missing energy in the
h → 2l2ν channel [need an estimate from experimental-
ists]. Measuring the total rate of the latter would not be
very efficient in testing for the presence of non-vanishing
CP-odd term, it i.e. CW '= 0, since the latter contributes
quadratically to the rate. [only true for EFT, need to
think.] We argue in this letter that the associated Wh
production channel offers a better probe of the presence
of CP-odd interaction in the hWW vertex. We propose
a new observable, which consists in an asymmetry in the
triple-product variable %l · (%h × %q ) where %l, %h and %q are
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partonic collision, respectively. Since triple-products

are Lorentz pseudo-scalars, the proposed asymmetry is
exclusively sensitive to and scales linearly with CW .

Helicity amplitudes for Wh production. We
evaluate here the cross-section for the partonic process
qq̄ ′ → Wh → lνbb̄, where the intermediate Higgs and the
W boson are assumed to decay into bb̄ and leptonically,
respectively, assuming the generic vertex of Eq. (1). We
further assume on-shell W and Higgs boson and rely on
the narrow width approximation (NWA) [? ] to evaluate
the total cross-section.

Consider first the partonic process ud̄ → W+h (similar
discussion follows for dū → W−h) with on-shell Higgs
and W boson. Upon neglecting the up and down quark
masses, the helicities of the initial quarks are fixed by
the V − A nature of the W interaction. Assuming the
generic form in Eq. (1) for the hWW vertex, one finds
the following amplitudes [7]
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with θ the scattering angle in the center-of-mass frame
(cmf) and we set the azimuth of the scattering plane to
zero.
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ŝ is the cmf energy and β ≡
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W )/ŝ. Note
that γ = 0 at the Wh threshold (β = 0). This is so be-
cause at thresholdW and h are have zero-momentum and
there are only two linearly independent vectors, e.g. %u
and %ελ, out of which no pseudo-scalar can be constructed.

The amplitudes for the subsequent polarized W+ →
l+ν decay (l = e, µ) are (neglecting lepton masses)
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(1± cos θl)√
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for transverse W (λ = ±1) and longitudinal W (λ = 0),
respectively. As shown in Fig. 1 θl is the angle in the
W rest frame between the charged lepton momentum

the asymmetry in the variable 

is linear in CP coefficient Delaunay et al ’13

should allow one to constrain the third CP direction➤

Another CP-odd observable can be constructed in h➛γγ channel
the CP operator impacts the correlation 
between the photon polarizations that 
can be tracked back to the correlation 

between the converted e-

KITP, July 8 2013J. Zupan     CPV in radiative Higgs decays

measuring cpv
• how to measure a polarization of a ~60 

GeV photon?

• ~50% of the photons convert in Si tracker

• can one use these?

9

challenging
(need to reconstruct the 

separation angles between the e) 
but interesting 

e.g. talk by J. Zupan at KITP ’13

no estimate of the sensitivity yet➤ ➤

The CP Higgs couplings are generated by operators that also induce TGC
that are already tested at the % level by LEP data 

and the constraints can certainly be improved at the LHC

Do we need 
Higgs data? 

Elias-Miro et al ’13 
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http://arxiv.org/abs/arXiv:1308.4930
http://arxiv.org/abs/arXiv:1306.2573
http://arxiv.org/abs/arXiv:1306.2573
http://online.kitp.ucsb.edu/online/lhc_c13/zupan/
http://online.kitp.ucsb.edu/online/lhc_c13/zupan/
http://arxiv.org/abs/arXiv:1308.1879
http://arxiv.org/abs/arXiv:1308.1879


Christophe Grojean Challenges/Questions in Higgs physics Wien, 31st Oct. 2o1317

Towards BSM Prec(ion Higgs Physics 

3



Christophe Grojean Challenges/Questions in Higgs physics Wien, 31st Oct. 2o1318

Chiral Lagrangian for a light Higgs-like scalar

A few (reasonable)
 assumptions:

γγ WW & ZZ

EWPD

Flavor

Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10 + many others refs.

a = b = c = d3 = d4 = 1
c2 = cWW = cZZ = cZ� = c�� = . . . = 0

SM

 spin-0 & CP-even

 custodial symmetry

 no Higgs FCNC         
(generalization of Glashow-Weinberg th.)

O(p2)

L =
1

2
(@µh)

2 � 1

2
m2

hh
2 � d3

6

✓
3m2

h

v

◆
h3 � d4

24

✓
3m2

h

v2

◆
h4 + . . .

�
✓
m2

W WµW
µ +

1

2
m2

Z ZµZ
µ

◆✓
1 + 2cV

h

v
+ bV

h2

v2
+ . . .

◆

�
X

 =u,d,l

m (i)  ̄(i) (i)

✓
1 + c 

h

v
+ b 

h2

v2
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◆}
+
↵em

8⇡

�
2 cWW W+

µ⌫W
�µ⌫ + cZZ Zµ⌫Z

µ⌫ + 2 cZ� Zµ⌫�
µ⌫ + c�� �µ⌫�

µ⌫
� h
v

+
↵s

8⇡
cgg G

a
µ⌫G

aµ⌫ h

v

+cW (W�
⌫ DµW

+µ⌫ +W+
⌫ DµW

�µ⌫)
h

v
+ cZ Z⌫@µZ

µ⌫ h

v

+O �
p6
�

+

✓
cW

sin ✓W cos ✓W
� cZ

tan ✓W

◆
Z⌫@µ�

µ⌫ h

v
}
O(p4)

http://arXiv.org/abs/1002.1011
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http://arXiv.org/abs/1002.1011
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Not enough data/sensitivity to 
determine all these parameters

But we can put some of the SM 
structures under probation

➾ ➾ ➾

➾ ➾ ➾

still large LO parameter space

4 operators @ O(p2): cV, ct, cb, cτ

2 operators @ O(p4): cg cγ

(contribute to the same order as O(p2) to gg➛h and h➛γγ)

➾ ➾ ➾
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Higgs power counting
extra derivative: extra Higgs leg:  

custodial breaking

loop-suppressed strong dynamicsminimal coupling: 

Genuine strong operators (sensitive to the scale f)

Form factor operators (sensitive to the scale mρ = gρ f) (gSM factors in V)

19
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Giudice, Grojean, Pomarol, Rattazzi ‘07
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Goldstone sym.
(PGB Higgs)
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Figure 2: The allowed parameter space of the e�ective theory given in Eq. (2.1), derived from

the combined ATLAS and CMS constraints for mh = 125 GeV. We display the 1⇤ allowed regions

generated from Higgs produced via gluon fusion (ggF) decaying to �� (pink), or to ZZ� � 4l (blue),

and Higgs produced via vector boson fusion (VBF) decaying to �� (beige). The “Combined” region

(green) shows the 90% CL allowed region arising from all channels. The dashed lines show the

SM values. The top left plot characterizes models in which loops containing beyond the SM fields

contribute to the e�ective 5-dimensional hGa
µ⇥G

a
µ⇥ and hAµ⇥Aµ⇥ operators, while leaving the lower-

dimension Higgs couplings in Eq. (2.1) unchanged relative to the SM prediction. The remaining

plots characterize top partner models where only scalars and fermions with the same charge and

color as the top quark contribute to the e�ective 5-dimensional operators, which implies the relation

⇥c� = (2/9)⇥cg. The results are shown for 3 di�erent sets of assumptions about the lower-dimension

Higgs couplings that can be realized in concrete models addressing the Higgs naturalness problem.

The top right plot was added in v2 to allow a direct comparison with the results of Refs. [27] and

[28]. 8
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Figure 9: Isocontours of 68%, 95% and 99% probability in the plane (a, c) for a 125 GeV Higgs

coming from CMS (left) and ATLAS (right). In each case the posterior probability has been

constructed using the method described in sec. 3.

channels performed by CMS also points to (see Fig. 4 of Ref. [24]). We thus find that such

a pattern of rates can be easily reproduced for c ⇤ �1, which ensures an enhanced ��

while predicting a gluon fusion production cross section close to its SM value. The second

maximum of the probability is for (a ⇧ 1.15, c ⇧ 1.0). It is smaller than the first peak, as

the shorter isocontours indicate. This solution roughly corresponds to the combined best fit

of CMS where all rates are 20% � 30% larger than their SM expectations (R�� ⇧ 1.4 and

RWW = RZZ ⇧ 1.3 for (a = 1.15, c = 1.0)). While the maximum at c ⇧ 1 already emerges

from the fit when including the channels WW , ZZ and �� alone, we find that the ⇥⇥ search

plays an important role in shaping the highest peak and excluding points with large and

negative c.

The plot on the right of Fig. 9 shows the best fit in the plane (a, c) obtained using the

full 2011 ATLAS data set (
�
dtL ⇥ 4.9 fb�1) [28]. Compared to the corresponding analysis

of CMS, the sensitivity of the h ⌅ WW inclusive search in ATLAS (in which the 2-jet VBF

category is not singled out) is much weaker in the fermiophobic region c ⇤ 0. This implies

a much broader region where the posterior probability is large, instead of two disconnected

smaller islands. Furthermore, the excess in the ZZ channel seen by ATLAS leads to a best
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Figure 7: The Tevatron constraints on the couplings (a, c) of a possible Higgs-like particle h
with mass ⇥ 125 GeV arising from the (left) b̄b and (centre) WW � final states, and (right)
their combination.

Figure 8: The constraints on the couplings (a, c) of a possible ‘Higgs’ h particle with mass
⇥ 125 GeV obtained from a global analysis of the available CMS, ATLAS, CDF and D0 data.

WW � and �� sub-channels discussed above.

The same features are visible in Fig. 9, where we see how the preference for the ‘anti-

dilaton’ scenario arises. As previously, the upper left panel is for the pseudo-dilaton scenario

with a = c, the upper right panel is for the anti-dilaton scenario with a = �c, the lower left

panel is for fermiophobic models, and the lower right panel is for the MCHM5 model. In the

case of the pseudo-dilaton scenario (which includes the Standard Model and the ⇥ ⇤ 0 limit

of the MCHM5 model when V = 246 GeV), we see that the values of V favoured by the

CMS, ATLAS and Tevatron data, while overlapping, do not coincide, whereas they coincide

perfectly in the ‘anti-dilaton’ case. The preference for a/c < 0 can be traced to the fact

that both CMS and ATLAS see �� signals that are somewhat enhanced compared to the

Standard Model, which can be explained by positive interference between the top and W±
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Figure 2: The allowed parameter space of the e�ective theory given in Eq. (2.1), derived from

the combined ATLAS and CMS constraints for mh = 125 GeV. We display the 1⇤ allowed regions

generated from Higgs produced via gluon fusion (ggF) decaying to �� (pink), or to ZZ� � 4l (blue),

and Higgs produced via vector boson fusion (VBF) decaying to �� (beige). The “Combined” region

(green) shows the 90% CL allowed region arising from all channels. The dashed lines show the

SM values. The top left plot characterizes models in which loops containing beyond the SM fields

contribute to the e�ective 5-dimensional hGa
µ⇥G

a
µ⇥ and hAµ⇥Aµ⇥ operators, while leaving the lower-

dimension Higgs couplings in Eq. (2.1) unchanged relative to the SM prediction. The remaining

plots characterize top partner models where only scalars and fermions with the same charge and

color as the top quark contribute to the e�ective 5-dimensional operators, which implies the relation

⇥c� = (2/9)⇥cg. The results are shown for 3 di�erent sets of assumptions about the lower-dimension

Higgs couplings that can be realized in concrete models addressing the Higgs naturalness problem.

The top right plot was added in v2 to allow a direct comparison with the results of Refs. [27] and
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Figure 9: Isocontours of 68%, 95% and 99% probability in the plane (a, c) for a 125 GeV Higgs

coming from CMS (left) and ATLAS (right). In each case the posterior probability has been

constructed using the method described in sec. 3.

channels performed by CMS also points to (see Fig. 4 of Ref. [24]). We thus find that such

a pattern of rates can be easily reproduced for c ⇤ �1, which ensures an enhanced ��

while predicting a gluon fusion production cross section close to its SM value. The second

maximum of the probability is for (a ⇧ 1.15, c ⇧ 1.0). It is smaller than the first peak, as

the shorter isocontours indicate. This solution roughly corresponds to the combined best fit

of CMS where all rates are 20% � 30% larger than their SM expectations (R�� ⇧ 1.4 and

RWW = RZZ ⇧ 1.3 for (a = 1.15, c = 1.0)). While the maximum at c ⇧ 1 already emerges

from the fit when including the channels WW , ZZ and �� alone, we find that the ⇥⇥ search

plays an important role in shaping the highest peak and excluding points with large and

negative c.

The plot on the right of Fig. 9 shows the best fit in the plane (a, c) obtained using the

full 2011 ATLAS data set (
�
dtL ⇥ 4.9 fb�1) [28]. Compared to the corresponding analysis

of CMS, the sensitivity of the h ⌅ WW inclusive search in ATLAS (in which the 2-jet VBF

category is not singled out) is much weaker in the fermiophobic region c ⇤ 0. This implies

a much broader region where the posterior probability is large, instead of two disconnected

smaller islands. Furthermore, the excess in the ZZ channel seen by ATLAS leads to a best
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Figure 7: The Tevatron constraints on the couplings (a, c) of a possible Higgs-like particle h
with mass ⇥ 125 GeV arising from the (left) b̄b and (centre) WW � final states, and (right)
their combination.

Figure 8: The constraints on the couplings (a, c) of a possible ‘Higgs’ h particle with mass
⇥ 125 GeV obtained from a global analysis of the available CMS, ATLAS, CDF and D0 data.

WW � and �� sub-channels discussed above.

The same features are visible in Fig. 9, where we see how the preference for the ‘anti-

dilaton’ scenario arises. As previously, the upper left panel is for the pseudo-dilaton scenario

with a = c, the upper right panel is for the anti-dilaton scenario with a = �c, the lower left

panel is for fermiophobic models, and the lower right panel is for the MCHM5 model. In the

case of the pseudo-dilaton scenario (which includes the Standard Model and the ⇥ ⇤ 0 limit

of the MCHM5 model when V = 246 GeV), we see that the values of V favoured by the

CMS, ATLAS and Tevatron data, while overlapping, do not coincide, whereas they coincide

perfectly in the ‘anti-dilaton’ case. The preference for a/c < 0 can be traced to the fact

that both CMS and ATLAS see �� signals that are somewhat enhanced compared to the

Standard Model, which can be explained by positive interference between the top and W±
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 custodial symmetry: CW=CZ?
 probing the weak isospin symmetry: Cu=Cd?
 quark and lepton symmetry: Cq=Cl?
 new non-SM particle contribution: BRinv? Cg=Cγ=0?

Δ
𝝌

2

Some tensions 
but no statistically significant deviations from the SM structure

ATLAS-CONF-2013-034

χ2 fit: other tests of the SM structures

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-034/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-034/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-034/
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Back to loop computations
There is a tremendous effort in computing radiative corrections in SM Higgs physics

it is now time to bring BSM Higgs computations to higher accuracy
at least to test/measure possible deviations

A lot has been done with the MSSM and contributed to explore the parameter space
Need to think in a model-independent way

L = LSM +
ci
⇤2

O6D
i + . . .

L ! LSM
ci ! 0

� ⇥ BRL ! � ⇥ BRLSM
ci ! 0

but

available to N...NLOavailable to LO
only

New frontier in Higgs precision physics: 
computing radiative corrections in the effective Lagrangian

For a discussion, see e.g. Contino, Ghezzi, Grojean, Muhlleitner, Spira ’13

Passarino ’12

http://arXiv.org/abs/1202.3697
http://arXiv.org/abs/1202.3697
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1209.5538
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RG-improved Higgs physics
Elias-Miro, Espinosa, Masso, Pomarol ’13

Integrating-out heavy degrees of freedom gives Wilson coefficients @ NP scale
Higgs physics is done around the weak scale

RG effects can give important effects

h
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W
W

W

h

W

W

h
h

Figure 1: One-loop diagrams contributing to h ! V V that feature the e↵ective vertex h(@µ�)2

implied by the dimension-6 operator OH . Their logarithmic divergence is associated to the running

of c̄W + c̄B and c̄HW + c̄HB, see text. The symbol ⌦ denotes the insertion of the e↵ective vertex.

will mix among each others. At leading order in the SM coupling ↵ (and in the number of

e↵ective vertices insertions), one has

c̄i(µ) '
✓

�ij + �(0)
ij

↵

8⇡
log

✓

µ2

M2

◆◆

c̄j(M) , (3.28)

where �(0)
ij is the leading-order coe�cient of the anomalous dimension. As usual, for µ⌧M

one can resum terms (↵ log(M/µ))n at all orders n by solving the renormalization group

equation for the ci.

In general, one-loop EW corrections mix all the operators of eqs.() except those with

gluon field strengths. In the case of a strongly-interacting Higgs, g⇤ � g, the leading e↵ects

– although with a few exceptions which we mention below – come from loops of only NG

and Higgs bosons. In this limit the (transversely polarized) gauge fields can be considered

as external classical sources, while the Yukawa couplings can be set to zero. This drastically

simplifies the matrix of anomalous dimensions, since there are only three operators which

mix among each other: OH , OW+B ⌘ OW + OB and OHW+HB ⌘ OHW + OHB. We find:

�(0)
ij =

0
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B

@

0 0 0

1/12 0 0
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A

, i, j = H, (W + B), (HW + HB) . (3.29)

The only non-vanishing elements are those corresponding to a renormalization of c̄W + c̄B

and c̄HW + c̄BH due to c̄H . Considering for example the process h ! V V , the relevant

one-loop diagrams are shown in Fig. 1. From the estimates c̄H(M) ⇠ (v2/f 2), c̄W,B(M) ⇠
O(m2

W /M2), see eq.(1.4), it follows that in the case of c̄W+B the RG evolution down to
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Figure 1: One-loop diagrams contributing to h ! V V that feature the e↵ective vertex h(@µ�)2

implied by the dimension-6 operator OH . Their logarithmic divergence is associated to the running

of c̄W + c̄B and c̄HW + c̄HB, see text. The symbol ⌦ denotes the insertion of the e↵ective vertex.
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where �(0)
ij is the leading-order coe�cient of the anomalous dimension. As usual, for µ⌧M

one can resum terms (↵ log(M/µ))n at all orders n by solving the renormalization group

equation for the ci.

In general, one-loop EW corrections mix all the operators of eqs.() except those with

gluon field strengths. In the case of a strongly-interacting Higgs, g⇤ � g, the leading e↵ects

– although with a few exceptions which we mention below – come from loops of only NG

and Higgs bosons. In this limit the (transversely polarized) gauge fields can be considered

as external classical sources, while the Yukawa couplings can be set to zero. This drastically

simplifies the matrix of anomalous dimensions, since there are only three operators which

mix among each other: OH , OW+B ⌘ OW + OB and OHW+HB ⌘ OHW + OHB. We find:
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The only non-vanishing elements are those corresponding to a renormalization of c̄W + c̄B

and c̄HW + c̄BH due to c̄H . Considering for example the process h ! V V , the relevant

one-loop diagrams are shown in Fig. 1. From the estimates c̄H(M) ⇠ (v2/f 2), c̄W,B(M) ⇠
O(m2

W /M2), see eq.(1.4), it follows that in the case of c̄W+B the RG evolution down to
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RG-improved Higgs physics
Elias-Miro, Espinosa, Masso, Pomarol ’13

Integrating-out heavy degrees of freedom gives Wilson coefficients @ NP scale
Higgs physics is done around the weak scale

RG effects can give important effects
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Figure 1: One-loop diagrams contributing to h ! V V that feature the e↵ective vertex h(@µ�)2

implied by the dimension-6 operator OH . Their logarithmic divergence is associated to the running

of c̄W + c̄B and c̄HW + c̄HB, see text. The symbol ⌦ denotes the insertion of the e↵ective vertex.
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ij is the leading-order coe�cient of the anomalous dimension. As usual, for µ⌧M

one can resum terms (↵ log(M/µ))n at all orders n by solving the renormalization group
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gluon field strengths. In the case of a strongly-interacting Higgs, g⇤ � g, the leading e↵ects

– although with a few exceptions which we mention below – come from loops of only NG

and Higgs bosons. In this limit the (transversely polarized) gauge fields can be considered

as external classical sources, while the Yukawa couplings can be set to zero. This drastically

simplifies the matrix of anomalous dimensions, since there are only three operators which
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The only non-vanishing elements are those corresponding to a renormalization of c̄W + c̄B

and c̄HW + c̄BH due to c̄H . Considering for example the process h ! V V , the relevant

one-loop diagrams are shown in Fig. 1. From the estimates c̄H(M) ⇠ (v2/f 2), c̄W,B(M) ⇠
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W /M2), see eq.(1.4), it follows that in the case of c̄W+B the RG evolution down to
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where �(0)
ij is the leading-order coe�cient of the anomalous dimension. As usual, for µ⌧M

one can resum terms (↵ log(M/µ))n at all orders n by solving the renormalization group

equation for the ci.

In general, one-loop EW corrections mix all the operators of eqs.() except those with
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FIG. 1: Global fit results in the (a, c) plane for all reported best fit values given by ATLAS and CMS, left

(right) without EWPD (with EWPD). In both plots we take mh = 125 GeV for the Tevatron and CMS7/8

and mh = 126.5 GeV for ATLAS7/8. The green, yellow, gray regions corresponds to the allowed 1, 2, 3 �

spaces for a two parameter fit. The best fit point in each region is also labeled with a point. The thicker

point indicates the one with the smaller �2
min.

interference between the top and W boson loops. When EWPD is used as in Figure 1 (right) we

find that the SM is similarly residing at ⇠ 2 � (C.L. of 0.93) away from the best fit point which is

now (a, c) = (1.0, 0.67) and the best fit region where c > 0 now has a (significantly) lower global

minimum. The minima are no longer as degenerate with the addition of the most recent ATLAS

data, ��2
(min1, min2) ⇠ 4.

In view of the different masses of the signal-strength peaks in the various experiments (which

can be due to the statistical effects mentioned above) and of the subtleties we have neglected in

properly combining the results of these different experiments, it is also of interest to perform the

fit in the (a, c) space for each experiment individually. We show these results in Figure 2. The

CMS experiment has the SM point residing about ⇠ 2� from the best fit point, with the C.L. of

the SM case compared to the best fit point at 93%. For ATLAS, the SM point is now at a C.L. of

41%, within the ⇠ 1� region. The Tevatron results have the SM point within the 1� region with a

C.L. of the SM case (compared to the best fit point) of 50%.

The allowed fit region for CMS can be compared to the recently presented public results [1],
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EW data prefer value of ‘a’ close to 1

Espinosa, Grojean, Muhlleitner, Trott ’12 
RG-Higgs physics: Don’t forget LEP!

by running, a shift of the coupling induced oblique corrections
that are already highly constrained by LEP data

for other more complete studies along this line, see 
Eboli et al ’12
Falkowski, Riva, Urbano ’13
Elias-Miro, Espinosa, Masso, Pomarol ’13
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 Beyond linear Higgs couplings

Does New Physics flow towards the SM in the IR?

need to promote the chiral Lagrangian to an SM gauge invariant Lagrangian
pioneering work by Buchmuller-Wyler ’86

complete classification by Grzadkowski et al ‘1008.4884

for PGB Higgs

production and decay rates in agreement with SM is a good hint
but can never exclude a malicious conspiracy

and the SU(2)xU(1) quantum # of the Higgs cannot be measured in single higgs processes

not an easy question at the LHC since we need multi-Higgs couplings

3.4 Double Higgs production via gluon fusion

Within the SM, double Higgs production via gluon fusion received interest mainly because it is
sensitive to the trilinear Higgs self-coupling [42], see the first diagram in Fig. 2. In composite Higgs

g

g
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mi

mj

h

h
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mi

mi

h

h

mi mj
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mi

h

h

mj
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mi mj

Figure 2: Generic diagrams contributing to double Higgs production via gluon fusion in composite Higgs
models with nf novel fermionic resonances of mass mi (i = 1, ..., nf ). The index j ⇧= i is introduced to
indicate that the fermions in the loops can be di�erent.

models, the process gg ⇤ hh is a�ected essentially in two ways. First, the nonlinearity of the
strong sector gives rise to a ff̄hh coupling (which vanishes in the SM) and thus to a genuinely
new contribution to the amplitude, see the second diagram in Fig. 2. Second, one should take into
account the e�ects of top partners, which include also new box diagrams involving o�-diagonal
Yukawa couplings (shown in the second line of Fig. 2). A first study of gg ⇤ hh in composite
Higgs models, neglecting top partners, was performed in Ref. [3], where it was found that a very
strong enhancement of the cross section is possible due to the new tt̄hh coupling. For example,
in MCHM5 with ⇤ = 0.25, which corresponds to f ⌅ 500GeV, the cross section was found to be
about 3.6 times larger than in the SM. Recently, Ref. [4] performed a model-independent study
of the process, making reference to the e�ective Lagrangian in Eq. (6) and thus again neglecting
the e�ects of top partners, and found a large sensitivity of the cross section to the c2 coe⇤cient
parameterizing the tt̄hh coupling.

In this paper we include for the first time the e�ects of top partners in double Higgs production
via gluon fusion. This is especially interesting in the light of the results of Refs. [49], where a light
composite Higgs was shown to be tightly correlated with the presence of light top partners, as such
light resonances can in principle a�ect the gg ⇤ hh cross section in a sizable way. Our analysis
will confirm that this is indeed the case.

We start by discussing the cross section in the LET approximation, which greatly simplifies
the computation. In this limit, the amplitude is simply the sum of two e�ective diagrams, one
with the e�ective hgg coupling followed by a trilinear Higgs coupling and the other involving the
e�ective hhgg coupling. Adopting the SILH formalism, and recalling the expressions of the relevant
Feynman rules, which we already derived and report here for convenience

hgg : i �s
3⌅v ⇥

ab(p⇤1p
µ
2 � p1 · p2gµ⇤)

⌥
1
2

⇧
⌃

⌃ logH log detM2(H)
⌃

H=v
� cH

2 ⇤
�
,

hhgg : i �s
3⌅v2 ⇥

ab(p⇤1p
µ
2 � p1 · p2gµ⇤)

⌥
1
2

⇧⇧
⌃2

⌃(logH)2 � ⌃
⌃ logH

⌃
log detM2(H)

⌃

H=v
� cr

4 ⇤
�
,

h3 : �i 3
m2

h
v

⇤
1 + ⇤

�
c6 � 3

2cH � 1
4cr

⇥⌅
(31)

(where p1,2 denote the momenta of the incoming gluons), we can write the amplitude as

Alet (gg ⇤ hh) =
�s

3⌅v2
⇥ab(p⇤1p

µ
2 � p1 · p2gµ⇤)C(ŝ) , (32)

9

g

g

t h

h

Gröber, Mûhlleitner ’10
Contino et al ’12
Gillioz et al ’12

bV-1 = 2(aV2-1)+O(aV2-1)2

h

h

W+

W-

Contino, Grojean, 
Moretti, Piccinini, Rattazzi  ’10

3b3V = 4 aV(bV-aV2)+O(aV2-1)2

h

h

W+

W-

h
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 Rattazzi, Thamm ’13

�SM
14TeV ⇡ 20 fb �SM

14TeV ⇡ 0.5 fb �SM
14TeV < 1 ab

( single Higgs production by gluon fusion:                      )�SM
14TeV ⇡ 50 pb

Is the Higgs part of an SU(2) doublet?
1.
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scattering amplitudes
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A high-energy e+e- collider 
(such as CLIC 3TeV) can 

provide a clean environment to 
make precision studies of 

scattering amplitudes

Example:

[  RC , Grojean, Pappadopulo, 
   Rattazzi, Thamm,  to appear  ]

dim 6:

dim 8:

if the Higgs is a Goldstone 
then non-linear symmetry relates operators of different dimensions
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Beyond linear Higgs couplings1.
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Beyond inclusive channels
the LHC measurements are plagued with several degeneracies

 ex: inability to resolve the top loops
 the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels
 the unbearable lightness: loops saturate and don’t reveal the physics @ energy physics (*)

contribution, evaluated in the large-mt approximation, and we normalize it with the exact mt-

dependent Born cross section, σLO(mt). More precisely, we multiply the O(α4
S) contributions by

the ratio σLO(mt)/σLO(mt → ∞).

2.1 Numerical results

We have implemented the exact heavy-quark mass dependence in a new version of the numerical

code HNNLO. The program HNNLO is a parton level event generator that allows the user to compute

the Higgs production cross section and the associated distributions up to NNLO in QCD perturba-

tion theory, and to apply arbitrary infrared-safe cuts on the Higgs decay products and the recoiling

QCD radiation. The program includes the H → γγ, H → WW → lνlν and H → ZZ → 4l decay
modes.

In the following, we present only a limited sample of the numerical results that can be obtained

with our program. We consider Higgs boson production in pp collisions at
√
s = 8 TeV and we

use the MSTW2008 sets of parton distributions [44], with densities and αS evaluated at each

corresponding order (i.e., we use (n + 1)-loop αS at N
n
LO). Unless stated otherwise, we set the

renormalization and factorization scales to the Higgs boson mass, µR = µF = mH , and we set

mt = 172.5 GeV and mb = 4.75 GeV.

The first quantity that is important to test with the modified program is the inclusive cross

section. In Table 1 we study the impact of heavy-quark masses at NLO. We report the NLO cross

sections evaluated with the exact top and bottom mass dependence, normalized to the NLO result

in the large-mt limit.

mH(GeV)
σNLO(mt)

σNLO(mt→∞)
σNLO(mt,mb)
σNLO(mt→∞)

125 1.061 0.988

150 1.093 1.028

200 1.185 1.134

Table 1: Impact of the heavy-quark masses on the inclusive NLO cross sections. All results are

normalized to the mt → ∞ result.

From Table 1 we see that the mass effects change the cross section at the few percent level,

and that the bottom contribution decreases the cross section by a few percent. This effect is

well known, and it is due to the negative interference with the top-quark contribution. We have

compared our results with those obtained with the numerical program HIGLU [5, 7] and found very

good agreement.

We now move to consider the impact of mass effects on the pT cross section. Such effects have
been studied at NLO in earlier works [45, 46, 47, 13, 48, 49].

In Fig. 1 (left panel) we plot the pT spectrum of the Higgs boson at NLO with full dependence

on the masses of the top and bottom quarks and we compare it with the corresponding result in

which only the top-quark contribution is considered. Both results are normalized to the result

obtained in the large-mt limit. To better emphasize the impact of the bottom quark, in the right

4

e.g. Grazzini, Sargsyan ’13 

the inclusive rate
doesn’t “see” the finite mass of the top 

(*) unless it doesn’t decouple 
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contribution, evaluated in the large-mt approximation, and we normalize it with the exact mt-

dependent Born cross section, σLO(mt). More precisely, we multiply the O(α4
S) contributions by

the ratio σLO(mt)/σLO(mt → ∞).

2.1 Numerical results

We have implemented the exact heavy-quark mass dependence in a new version of the numerical

code HNNLO. The program HNNLO is a parton level event generator that allows the user to compute

the Higgs production cross section and the associated distributions up to NNLO in QCD perturba-

tion theory, and to apply arbitrary infrared-safe cuts on the Higgs decay products and the recoiling

QCD radiation. The program includes the H → γγ, H → WW → lνlν and H → ZZ → 4l decay
modes.

In the following, we present only a limited sample of the numerical results that can be obtained

with our program. We consider Higgs boson production in pp collisions at
√
s = 8 TeV and we

use the MSTW2008 sets of parton distributions [44], with densities and αS evaluated at each

corresponding order (i.e., we use (n + 1)-loop αS at N
n
LO). Unless stated otherwise, we set the

renormalization and factorization scales to the Higgs boson mass, µR = µF = mH , and we set

mt = 172.5 GeV and mb = 4.75 GeV.

The first quantity that is important to test with the modified program is the inclusive cross

section. In Table 1 we study the impact of heavy-quark masses at NLO. We report the NLO cross

sections evaluated with the exact top and bottom mass dependence, normalized to the NLO result

in the large-mt limit.

mH(GeV)
σNLO(mt)

σNLO(mt→∞)
σNLO(mt,mb)
σNLO(mt→∞)

125 1.061 0.988

150 1.093 1.028

200 1.185 1.134

Table 1: Impact of the heavy-quark masses on the inclusive NLO cross sections. All results are

normalized to the mt → ∞ result.

From Table 1 we see that the mass effects change the cross section at the few percent level,

and that the bottom contribution decreases the cross section by a few percent. This effect is

well known, and it is due to the negative interference with the top-quark contribution. We have

compared our results with those obtained with the numerical program HIGLU [5, 7] and found very

good agreement.

We now move to consider the impact of mass effects on the pT cross section. Such effects have
been studied at NLO in earlier works [45, 46, 47, 13, 48, 49].

In Fig. 1 (left panel) we plot the pT spectrum of the Higgs boson at NLO with full dependence

on the masses of the top and bottom quarks and we compare it with the corresponding result in

which only the top-quark contribution is considered. Both results are normalized to the result

obtained in the large-mt limit. To better emphasize the impact of the bottom quark, in the right
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cut open the top loops

high pT ≈ Higgs off-shell 
 we “see” the details of the particles 

running inside the loops

panel of Fig. 1 we show the full NLO result normalized to the result obtained neglecting the

bottom quark.

We see that, when only the top contribution is considered, the cross section at low pT is larger

than the corresponding cross section in the large-mt limit. In this region the recoiling parton is soft

and/or collinear, and the differential cross section factorizes into a universal factor times the Born

level contribution. The limit of the solid and dashed histograms in the left panel of Fig. 1 thus

correspond to the ratios σLO(mt, mb)/σLO(mt → ∞) = 0.949 and σLO(mt)/σLO(mt → ∞) = 1.066,
respectively.

The results in Fig. 1 show that the impact of the bottom quark is important, especially in the

low-pT region, since it substantially deforms the shape of the spectrum. At large pT values, the

impact of the bottom quark becomes small and the differential cross section quickly departs from

its value in the large-mt limit. This is a well known feature of the large-mt approximation: at

large pT the parton recoiling against the Higgs boson is sensitive to the heavy-quark loop, and the

large-mt approximation breaks down.

Another feature that is evident from Fig. 1 is that the qualitative behaviour of the results is

rather different. When considering the NLO result with only the top quark included, in a wide

region of transverse momenta the shape of the spectrum is rather stable and in rough agreement

with what is obtained in the large-mt approximation. This is not the case when the bottom

contribution is included: the shape of the spectrum quickly changes in the small- and intermediate-

pT region and the spectrum becomes harder. We will come back to this point in Sec. 3.1.

Figure 1: Transverse momentum distribution for a SM Higgs with mH = 125 GeV computed

at NLO. Left: result normalized to the large-mt approximation. Right: normalized to the mt-

dependent result.

The mass effects in differential NLO distributions were previously discussed in Ref. [13]. We

have compared our results with those of Ref. [13] and found agreement.
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cut open the top loops

high pT tail discriminates short and long distance physics contribution to gg ➙ h

Grojean, Salvioni, Schlaffer, Weiler 
‘ in progress 

Beyond inclusive channels

Are the NLOm QCD corrections (not known) going to destroy all the sensitivity?
Frontier priority: N3LO∞ for inclusive xs or NLOmt for pT spectrum?

Competitive/complementary to htt channel to measure the top-Higgs coupling

➾➾

see also Azatov, Paul ’13 
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Boosted Higgs

23

Questions
1. Higgs transverse momentum distribution with full dependence on quark mass 

available only at LO in QCD, 

Large NLO corrections could affect our results sizably ? 

consider observable                                  

We checked that the effect of going LO  →  NLO  is < 10%, in

limit (MCFM code) 

2. Validity of effective theory (dim-6 operator to describe resonances) with a

pT cut as large as 600 GeV ?

Check in benchmark composite model:

for masses above , eff. theory

accurate within < 10%

OK for realistic spectra

(                                    from direct searches)

 QCD corrections?
 pT distribution with full quark mass dependence known at LO order. 

K-factor are known to be large. However, most of the QCD corrections drop out in xs ratios:

 scale variation around few % corrections only
 LO→NLO in mt=∞ limit (MCFM): less than 10% corrections 

 Validity of EFT approach?
 we rely on an EFT approach to describe the effects of heavy resonances 

but we impose a large pT cut potentially close to the cutoff

 for masses above pTmin,  
the effective theory is 
accurate within < 10%

�(pT > 650 GeV)/�(pT > 200 GeV)

2.
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Boosted SUSY Higgs
Further constraints on Xt and the stop masses can be obtained by examining the correc-

tions to the h ! �� and h $ gg rates:

�(h $ gg)

�(h $ gg)
SM

= (1 +�t)
2 ,

�(h ! ��)

�(h ! ��)
SM

= (1� 0.28�t)
2 , (3)

where, in the limit in which we decouple the pseudoscalar Higgs, we find

�t ⇡ m2

t

4

 
1

m2

˜t1

+
1

m2

˜t2

� X2

t

m2

S

!

. (4)

Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for m
˜t2 ⇡ 6m

˜t1 if we insist on having

X2

t ⇡ 6.

A few comments are in order:

• An independent indication of a large splitting between m
˜t2 and m

˜t1 can be obtained if

we assume that At is not significantly larger than the trace of the stop mass matrix.

Assuming A2

t < a(m2

˜t1
+m2

˜t2
), then (for large tan �) X2

t is bounded by

X2

t < a
m2

˜t1
+m2

˜t2

m
˜t1m˜t2

r⌧1' a

r
, r =

m
˜t1

m
˜t2

. (6)

Vacuum stability arguments imply a < 3 (assuming m2

Hu
⌧ m2

˜t2
), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X2

t ⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:

✓t =
1

2
arcsin

 
2mtmSXt

m2

˜t2
�m2

˜t1

!
r⌧1' rXtmt

mS

. (7)

So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to m
˜t1 ⇡ 200 GeV.

4

natural susy calls for light stop(s) that can affect the Higgs physics
Further constraints on Xt and the stop masses can be obtained by examining the correc-

tions to the h ! �� and h $ gg rates:

�(h $ gg)

�(h $ gg)
SM

= (1 +�t)
2 ,

�(h ! ��)

�(h ! ��)
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= (1� 0.28�t)
2 , (3)
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�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for m
˜t2 ⇡ 6m

˜t1 if we insist on having

X2

t ⇡ 6.

A few comments are in order:

• An independent indication of a large splitting between m
˜t2 and m

˜t1 can be obtained if

we assume that At is not significantly larger than the trace of the stop mass matrix.
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t < a(m2

˜t1
+m2

˜t2
), then (for large tan �) X2

t is bounded by

X2

t < a
m2

˜t1
+m2

˜t2

m
˜t1m˜t2

r⌧1' a

r
, r =

m
˜t1

m
˜t2

. (6)

Vacuum stability arguments imply a < 3 (assuming m2

Hu
⌧ m2

˜t2
), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X2

t ⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to m
˜t1 ⇡ 200 GeV.

4

... or not if Δt≈0, e.g. light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)
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Figure 1: The Higgs mass in low-energy super-
symmetry for large tan� ⇡ 20. The shaded re-
gion in the (Xt,mS) plane corresponds to the
observed value of mh. Higher-order corrections
and the uncertainty in the top mass amount to
an error of a few GeV in mh.

Figure 2: The white region is the range in the
(m

˜t1
,m

˜t2
) plane allowed by the mh constraint,

while shaded regions are excluded. The full,
dashed, and dotted lines correspond to fixed val-
ues of �t, satisfying the mh constraint with
|Xt| >

p
6 (blue) or |Xt| <

p
6 (black).

2 The light-stop window

2.1 Constraints from the Higgs mass and decay rates

The leading part of the supersymmetric prediction for the mass of the lightest Higgs boson

is

m2

h = m2

Z cos2 � +
3y2tm

2

t

(4⇡)2

"

log

 
m2

S

m2

t

!

+X2

t

 

1� X2

t

12

!#

+ · · · (1)

where Xt = (At + µ cot �)/mS, m2

S = m
˜t1m˜t2 is the average stop mass, yt = mt/v is the

top-quark Yukawa coupling, and v ⇡ 174 GeV is the Higgs vev. In fig. 1 we show the region

of the (Xt,mS) plane compatible with the observed Higgs mass (for tan � � 1), including

also the leading two-loop corrections to the Higgs mass not shown in eq. (1). The lightest

average stop mass that can lead to the observed Higgs mass is obtained for

mS ⇡ 500 GeV and X2

t ⇡ 6 . (2)

We focus on such configuration, the so-called “maximal mixing” case, since it reduces the

fine-tuning in electroweak symmetry breaking and can lead to observable signals.

3

 Higgs rates
 flavor constraints (εK, B→Xs+γ)
 RG evolution
 DM

 Delgado et al  ’12 

difficult direct search (trigger on stop+extra jet)

2.

http://arxiv.org/abs/1212.6847
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The light stop flat direction2.

For large enough At, the stop contribution can be made to vanish. In Fig. 5, we show

this cancellation as a function of the stop masses and At. This condition requires large At

and one might worry about vacuum stability. A large At leads to a large trilinear scalar

coupling / hAtt̃Lt̃⇤R. If all three fields aquire vevs, the potential can have a deep charge- and

color breaking minimum, separated only by a relatively low potential barrier from the usual

electro-weak vacuum. A rough but conservative estimate of the vacuum stability condition

is given by

A2
t + 3µ2 < a · �m2

t̃1
+m2

t̃2

�
, (4.17)

with a ⇡ 2.35, extracted from [30, 31]. We further identify the regions of parameter space

with real soft masses MQ3 ,MU3 . These vacuum stability and reality conditions are shown in

Fig. 5 as grey and orange regions, respectively.

Direct limits from ATLAS and CMS significantly constrain the allowed parameter space.

An exhaustive re-analysis of all possible light and mixed stop spectra and their decays is,

however, beyond the scope of our paper. Current experimental searches exclude stop masses

below XX GeV [ATLAS,CMS] assuming a 100% branching ratio into a top and a massless

neutralino. These limits soften considerably for larger neutralino masses, kinematical degen-

eracies, more complicated decay chains, or the absence of traditional missing ET signatures.

It is therefore interesting to ask if we can be sensitive to light and mixed stops independent

of assumptions on the decays and even if the contribution cancels in the inclusive rate.

We calculated the contributing Feynman diagrams using FeynArts-3.7 [32] and FormCalc-

8.0 [19], see Fig. 6. For the calculation of the boosted cross section we again used the MSTW

2008 LO PDFs [18] provided by LHAPDF-5.8.9 [33]. In all calculations we set tan � = 10,

MA0 = 500GeV, M2 = 1000GeV, µ = 200GeV and all trilinear couplings were set to

a common value At. The sfermion masses were set to 1000GeV except for M eQ and MeU

which were chosen such that the stop masses given below were obtained and the mass of the

lightest higgs was set to 125GeV. Unlike in the computation with the e↵ective operator the

renormalization scale was not chosen dynamically equal to the transverse mass but set to

the minimal transverse mass determined by the cut on pT .

TABLE would be better The points chosen for the plot in figure 7 are:

• P1: mt̃1 = 171GeV, mt̃2 = 440GeV, and At = 490GeV ) �t = 0.0026
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Boosted SUSY Higgs
Grojean, Salvioni, Schlaffer, Weiler   ‘ in progress 

~10% sensitivity on boosted h+j can 
close out the light stop window

2.
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Figure 6: Example Feynman diagrams for pp ! h+ jet involving supersymmetric particles.

In addition, diagrams like in figure 1 with the loop quark replaced by a squark are present,

too.
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Figure 7: Cross section for boosted higgs in the MSSM, normalized by the SM value. The

di↵erent lines correspond to stop masses and choices for At.
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Figure 5: We show the relative deviation due to the stop contribution �t = 0,±0.1 (solid

and dashed lines). Additionally we plot the parameter space allowing for real soft masses

(orange) and an estimate for the vacuum stability constraint (grey).

Point mt̃1 [GeV] mt̃2 [GeV] At [GeV] �t

P1 171 440 490 0.0026

P2 192 1224 1220 0.013

P3 259 1212 0 0.12

P4 226 484 532 0.015

interpretation and discussion of susy results. waiting for matthias plot with

overlaying pT dependence At large vs. 0

14

Boosted Higgs 
breaks 

stop degeneracy

flat direction in 
inclusive

�t ⇡ 0

t̃, b̃
L

L

L

L
R

g g

g h

t̃, b̃
LL

L R

g g

g h

g

g

g

ht̃, b̃

q

g

q

ht̃, b̃

Figure 6: Example Feynman diagrams for pp ! h+ jet involving supersymmetric particles.

In addition, diagrams like in figure 1 with the loop quark replaced by a squark are present,

too.

100 200 300 400 500 600 700 800

1.0

1.1

1.2

1.3

1.4

pT
min@GeVD

s
M

SS
M
ês SM

P1
P2
P3
P4

Figure 7: Cross section for boosted higgs in the MSSM, normalized by the SM value. The

di↵erent lines correspond to stop masses and choices for At.

15

http://arXiv.org/abs/1002.1011
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Conclusions: Executive Summary

DESY
LC2013 G. Dissertori 22

BSM Searches: Executive Summary

1 · 0 = ?
number of already
performed BSM 

searches

number of 
significant/

interesting/exciting 
deviations from 
SM predictions

general state of (our) 
mind (?)

Dissertori, ECFA ’13

The LHC leaves us with the deepest mathematical pb:

Understanding the scalar sector of the SM 
will help us grasping what lays beyond the SM

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
https://ilcagenda.linearcollider.org/getFile.py/access?contribId=18&sessionId=30&resId=0&materialId=slides&confId=5840
https://ilcagenda.linearcollider.org/getFile.py/access?contribId=18&sessionId=30&resId=0&materialId=slides&confId=5840
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BSM
Higgs

[picture courtesy to Andreas Weiler]

“Higgs = emergency tire of the SM”  
Altarelli @ Blois’10

mailto:christophe.grojean@cern.ch,%20Andreas.Weiler@cern.ch%20?subject=Higgs-as-an-emergency-tire
mailto:christophe.grojean@cern.ch,%20Andreas.Weiler@cern.ch%20?subject=Higgs-as-an-emergency-tire
http://confs.obspm.fr/Blois2010/Altarelli2.pdf
http://confs.obspm.fr/Blois2010/Altarelli2.pdf

