K semileptonic form factors from lattice QCD

Elvira Gámiz

(with Lattice Fermilab and MILC Collaborations)

Universidad de Granada / CAFPE

(Spain)

 \cdot Universität Wien, 20 June 2012 \cdot

Contents

1. Introduction

2. Highlights of flavour physics on the lattice: decay constants, neutral meson mixing, semileptonic decays.

- **3**. *K* semileptonic decays: $f_{+}^{K\pi}(0)$ and extraction of $|V_{us}|$.
- 4. Conclusions and outlook.

1. Introduction

Searching for New Physics via precise measurements/SM predictions of flavor observables.

Constraining possible NP models.

1. Introduction

Searching for New Physics via precise measurements/SM predictions of flavor observables.

Constraining possible NP models.

Laiho,Lunghi,Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements

1. Introduction

Searching for New Physics via precise measurements/SM predictions of flavor observables.

Constraining possible NP models.

Laiho,Lunghi,Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements \rightarrow use lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

- # Define quantum field theory on an Euclidean spacetime lattice with length L (provides an IR cutoff in the path integral) and lattice spacing a (provides and UV cutoff in the path integral).
 - * Replace derivatives by discrete differences and integrals by sums

$$\partial \psi(x) \rightarrow \frac{\psi(x+a) - \psi(x-a)}{2a}$$

$$\psi(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{\psi}(k) \to \sum_k e^{-ik \cdot x} \tilde{\psi}(x)$$

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

- # Define quantum field theory on an Euclidean spacetime lattice with length L (provides an IR cutoff in the path integral) and lattice spacing a (provides and UV cutoff in the path integral).
 - * Replace derivatives by discrete differences and integrals by sums

$$\partial \psi(x) \rightarrow \frac{\psi(x+a) - \psi(x-a)}{2a}$$

$$\psi(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{\psi}(k) \to \sum_k e^{-ik \cdot x} \tilde{\psi}(x)$$

* Recover continuum action when $a \to 0$ and $L, L_4 \to \infty$.

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)

goal (for flavour physics): Precise calculations ($\leq 5\%$ error)

Control over systematic errors

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)

goal (for flavour physics): Precise calculations ($\leq 5\%$ error)

Control over systematic errors:

- * Unquenched calculations: Incorporate the vacuum polarization effects (in a realistic way).
 - ** Quenching the strange quark could have an error as large as 5% and need a $N_f = 2 + 1$ to have an estimate \rightarrow want $N_f = 2 + 1$
 - ** Neglecting sea charm has effects O(1%) (can be estimated with HQET). Starting to need sea charm effects.

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)

goal (for flavour physics): Precise calculations ($\leq 5\%$ error)

Control over systematic errors:

- * Unquenched calculations: Incorporate the vacuum polarization effects (in a realistic way).
 - ** Quenching the strange quark could have an error as large as 5% and need a $N_f = 2 + 1$ to have an estimate \rightarrow want $N_f = 2 + 1$
 - ** Neglecting sea charm has effects O(1%) (can be estimated with HQET). Starting to need sea charm effects.
 - * Discretization: improved actions (a^2 errors suppressed) + simulations at several $a's \rightarrow$ continuum limit.

Control over systematic errors:

- * Chiral extrapolation: The lightest the quarks the most expensive to simulate \rightarrow in most of the simulations $m_{\pi}^{\text{lat}} > m_{\pi}^{\text{phys}}$.
 - \rightarrow simulate at several m_{π} and extrapolate to $m_{\pi}^{\rm phys}$ using ChPT techniques

Control over systematic errors:

- * Chiral extrapolation: The lightest the quarks the most expensive to simulate \rightarrow in most of the simulations $m_{\pi}^{\text{lat}} > m_{\pi}^{\text{phys}}$.
 - \rightarrow simulate at several m_{π} and extrapolate to $m_{\pi}^{\rm phys}$ using ChPT techniques
- * Renormalization: non-perturbative, perturbative.
- * Tuning lattice scale and quark masses (parameters of the lattice action)
- * Finite volume, isospin effects, electromagnetic effects, ...

Systematically improvable

1. Introduction: Overview of simulations parameters

Several $N_f = 2 + 1$ and even $N_f = 2 + 1 + 1$, and **physical quark masses**.

First results with simulations with physical light plot by C. Hoelbling, quark masses starting to appear.

1. Introduction: Averaging lattice QCD results

J. Laiho, E. Lunghi, and R. Van de Water (LLV)

Phys.Rev.D81:034503,2010, most updated results in www.latticeaverages.org

- * Phenomenologically relevant light and heavy quantities + UT fits with lattice inputs.
- * Include only $N_f = 2 + 1$.
- * Only published results (including proceedings).
- # Flavianet Lattice Average group: (FLAG)

Eur. Phys. J. C71(2011)1695, updated results in http://itpwiki.unibe.ch/flag

- * K and π physics, including LEC's.
- # Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.
 - * Light and heavy quantities. First review by summer 2013

1. Introduction: Heavy quarks on the lattice

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

- * Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{}$
 - ****** HQET (static,...): sytematic expansion in $1/m_h$.
 - ****** NRQCD: systematic (non-relativistic) expansion in (v_h/c) .
 - ** Fermilab, RHQ, ...

1. Introduction: Heavy quarks on the lattice

- # Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.
 - * Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{}$
 - ****** HQET (static,...): sytematic expansion in $1/m_h$.
 - ****** NRQCD: systematic (non-relativistic) expansion in (v_h/c) .
 - ** Fermilab, RHQ, ...
 - * Relativistic (improved) formulations:
 - ** Allow accurate results for charm (especially twisted mass, HISQ (Highly improved staggered quarks)).
 - ** Advantages of having the same formulation for light and heavy: ratios light/heavy, PCAC for heavy-light, ... Also simpler tuning of masses.
 - ** Also for bottom: Results for $m_c \cdots \leq m_b$ and extrapolation to m_b (twisted mass, HISQ).

2. Highlights of flavour physics on the lattice

2.1. Decay constants

- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle = if_Pp_\mu \rightarrow$ precise calculations on the lattice
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

2.1. Decay constants

- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle = if_Pp_\mu \rightarrow$ precise calculations on the lattice
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

$$\frac{f_K}{f_\pi}$$
: 0.6 – 2% errors, 0.4% average

Many $N_f = 2 + 1$ lattice calculations \rightarrow good test of lattice QCD

2.1. Decay constants

- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle = if_Pp_\mu \rightarrow$ precise calculations on the lattice
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

$$\frac{f_K}{f_\pi}$$
: 0.6 – 2% errors, 0.4% average

Many $N_f = 2 + 1$ lattice calculations \rightarrow good test of lattice QCD

New: First calculation with physical quark masses

 $\frac{f_K}{f_\pi} = 1.1947(26)(37)$

FNAL/MILC, 1301.5855

Reduction of errors in f_D and f_{D_s} due to the use of relativistic actions.

(experimental averages use $|V_{cs}| = 0.97345(22)$, $|V_{cd}| = 0.2245(12)$)

 $f_D^{\text{LLV}} = (213.5 \pm 4.1) \ MeV \qquad f_{D_s}^{\text{LLV}} = (248.6 \pm 3.0) \ MeV$ $f_{D_s}^{\text{exp}} = (255.6 \pm 4.2) \ MeV \rightarrow \text{tension is now down to} \sim 2\sigma.$

Needed for processes potentially sensitive to NP: $B_{(s)} \rightarrow \mu^+ \mu^-$.

Check agreement theory-experiment $Br(B^- \to \tau^- \bar{\nu}_{\tau})$.

UT inputs.

HPQCD relativistic, PRD 85 (2012) 031503: $N_f = 2 + 1$ with four a's.

* Using relativistic description (HISQ) for b reduce the error to 2%.

** No effective theory errors, no renormalization.

- * Cross-checks: $m_b^{\overline{MS}}$, $m_{B_s} m_{\eta_b}/2$, f_K , f_π .
- * First empirical evidence for $1/\sqrt{m_{B_s}}$ depende predicted by HQET.

 $f_{B_s} = 224(4) \text{ MeV}$

First calculation with physical light quark masses: HPQCD, 1302.2644

- * $N_f = 2 + 1 + 1$ MILC configurations. Three *a*'s.
- * NRQCD description of b quarks.
- * New estimate of matching errors:
 - fit α_s^2 terms instead of power counting.

 $f_B = 186(4) \text{ GeV}$ $f_{B_s} = 224(5) \text{ GeV}$ $f_{B_s}/f_B = 1.205(7)$

Using f_B above: $Br(B^+ \to \tau \nu)/|V_{ub}|^2 = 6.05(20)$ 1302.2644 Belle, 1208.4678: $Br(B^+ \to \tau \nu)/|V_{ub}^{exc.}|^2 = 6.9 \pm 3.1$ $Br(B^+ \to \tau \nu)/|V_{ub}^{inc.}|^2 = 3.9 \pm 1.7$

Averages in, 1201.2401: $Br(B^+ \to \tau \nu) / |V_{ub}^{exc.}|^2 = 16.1 \pm 4.2$ $Br(B^+ \to \tau \nu) / |V_{ub}^{inc.}|^2 = 9.2 \pm 2.3$

Using f_B above: $Br(B^+ \to \tau \nu)/|V_{ub}|^2 = 6.05(20)$ 1302.2644

Belle, 1208.4678:
$$Br(B^+ \to \tau \nu) / |V_{ub}^{exc.}|^2 = 6.9 \pm 3.1$$

 $Br(B^+ \to \tau \nu) / |V_{ub}^{inc.}|^2 = 3.9 \pm 1.7$

Averages in, 1201.2401: $Br(B^+ \to \tau \nu) / |V_{ub}^{exc.}|^2 = 16.1 \pm 4.2$ $Br(B^+ \to \tau \nu) / |V_{ub}^{inc.}|^2 = 9.2 \pm 2.3$

In progress: FNAL/MILC, ALPHA, ETMC, RBC/UKQCD

2.2.1 $K^0 - \bar{K}^0$ mixing

One of the most stringent constraints in UT analyses comes from indirect CP violation in K decays.

$$\epsilon_K | = e^{i\phi_\epsilon} \kappa_\epsilon C_\epsilon \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1-\bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

* Lattice QCD techniques have reduced \hat{B}_K errors to ~ 1.3%:

 $\hat{B}_{K}^{\mathbf{LLV}} = 0.7643 \pm 0.0097$

 $\rightarrow \hat{B}_{K}$ is no longer the dominant source of uncertainty in neutral K mixing, but $|V_{cb}|$ and the NNLO pert. QCD coeficient η_{cc}

2.2.1 $K^0 - \bar{K}^0$ mixing

One of the most stringent constraints in UT analyses comes from indirect CP violation in K decays.

$$\epsilon_K | = e^{i\phi_\epsilon} \kappa_\epsilon C_\epsilon \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1-\bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

* Lattice QCD techniques have reduced \hat{B}_K errors to ~ 1.3%:

 $\hat{B}_{K}^{\mathbf{LLV}} = 0.7643 \pm 0.0097$

 $\rightarrow \hat{B}_{K}$ is no longer the dominant source of uncertainty in neutral K mixing, but $|V_{cb}|$ and the NNLO pert. QCD coeficient η_{cc}

- # First unquenched calculations of complete set of $\Delta S = 2$ effective operators describing $K \bar{K}$ mixing
 - * $N_f = 2$: **ETMC**, 1207.1287

* $N_f = 2 + 1$: No extrapolation to the continuum **RBC/UKQCD**, 1206.5737

* In progress: $N_f = 2 + 1 + 1$ ETMC, $N_f = 2 + 1$ SWME

Hints of NP in neutral *B*-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions . . .

Not confirmed by recent analyses (B_s) Lenz et al, 1203.0238, or by recent LHCb measurements.

Still room for important effects in B mixing. Lenz et al, 1203.0238

SM predictions + BSM contributions = experiment → constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...

Hints of NP in neutral *B*-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions . . .

Not confirmed by recent analyses (B_s) Lenz et al, 1203.0238, or by recent LHCb measurements.

Still room for important effects in B mixing. Lenz et al, 1203.0238

SM predictions + BSM contributions = experiment → constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...

Need matrix elements of all operators in $\Delta B = 2$ effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{eff}^{\Delta B=2} &= \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i} \quad \text{with} \\ Q_{1}^{q} &= \left(\bar{b}^{\alpha} \gamma_{\mu}L \, q^{\alpha}\right) \left(\bar{b}^{\beta} \gamma^{\mu}L \, q^{\beta}\right) \\ Q_{2}^{q} &= \left(\bar{b}^{\alpha} \, L \, q^{\alpha}\right) \left(\bar{b}^{\beta} \, L \, q^{\beta}\right) \quad Q_{3}^{q} &= \left(\bar{b}^{\alpha} \, L \, q^{\beta}\right) \left(\bar{b}^{\beta} \, L \, q^{\alpha}\right) \\ Q_{4}^{q} &= \left(\bar{b}^{\alpha} \, L \, q^{\alpha}\right) \left(\bar{b}^{\beta} \, R \, q^{\beta}\right) \quad Q_{5}^{q} &= \left(\bar{b}^{\alpha} \, L \, q^{\beta}\right) \left(\bar{b}^{\beta} \, R \, q^{\alpha}\right) \end{aligned}$$

 $\tilde{Q}_{1,2,3} = Q_{1,2,3}$ with the replacement $L(R) \rightarrow R(L)$

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{eff}^{\Delta B=2}$ yet.

* Only for $\langle \bar{B_q^0} | O_1^q | B_q^0 \rangle(\mu) \equiv \frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2$:

$$f_{B_s} \sqrt{\hat{B}_{B_s}}^{\text{LLV}} = 279(15) \text{MeV} \qquad f_{B_d} \sqrt{\hat{B}_{B_d}}^{\text{LLV}} = 227(19) \text{MeV}$$

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{eff}^{\Delta B=2}$ yet.

* Only for $\langle \bar{B_q^0} | O_1^q | B_q^0 \rangle(\mu) \equiv \frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2$:

$$f_{B_s} \sqrt{\hat{B}_{B_s}}^{\text{LLV}} = 279(15) \text{MeV} \qquad f_{B_d} \sqrt{\hat{B}_{B_d}}^{\text{LLV}} = 227(19) \text{MeV}$$

which leads to the SM predictions:

 $\Delta M_s^{SM} = (19.6 \pm 2.1)ps^{-1} \text{ Lenz,Nierste} + \text{ above average}$ $\Delta M_s^{SM} = (16.9 \pm 1.2)ps^{-1} \text{ Lenz,Nierste} + \text{ aver. } f_{B_s} + B_{B_s} \text{ below}$ $\Delta M_s^{exp} = (17.768 \pm 0.023 \pm 0.006)ps^{-1} \text{ LHCb Moriond 2013 preliminary}$

(bag parameter, $B_{B_s}^{\overline{MS}}(m_b) = 0.86(4)$, from HPQCD, 0902.1815)
2.2.2. Neutral *B*-meson mixing

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{eff}^{\Delta B=2}$ yet.

* Only for $\langle \bar{B_q^0} | O_1^q | B_q^0 \rangle(\mu) \equiv \frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2$:

$$f_{B_s} \sqrt{\hat{B}_{B_s}}^{\text{LLV}} = 279(15) \text{MeV} \qquad f_{B_d} \sqrt{\hat{B}_{B_d}}^{\text{LLV}} = 227(19) \text{MeV}$$

which leads to the SM predictions:

 $\Delta M_s^{SM} = (19.6 \pm 2.1)ps^{-1} \text{ Lenz,Nierste} + \text{ above average}$ $\Delta M_s^{SM} = (16.9 \pm 1.2)ps^{-1} \text{ Lenz,Nierste} + \text{ aver. } f_{B_s} + B_{B_s} \text{ below}$ $\Delta M_s^{exp} = (17.768 \pm 0.023 \pm 0.006)ps^{-1} \text{ LHCb Moriond 2013 preliminary}$

(bag parameter, $B_{B_s}^{\overline{MS}}(m_b) = 0.86(4)$, from HPQCD, 0902.1815)

* And the SU(3) ratio $\xi \equiv \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$:

$$\xi^{\text{aver. } \mathbf{N_f} = \mathbf{2} + \mathbf{1}} = 1.251 \pm 0.032$$

2.2.2 Neutral B-meson mixing

In progress: Among others ETMC ($N_f = 2 + 1 + 1$), FNAL/MILC ($N_f = 2 + 1$)

	В	d^{0}	B_s^0		
$[GeV^2]$	BBGLN	BJU	BBGLN	BJU	
$f_{B_q}^2 B_{B_q}^{(1)}$	0.0411(75)		0.0559(68)		
$f_{B_q}^2 B_{B_q}^{(2)}$	0.0574(92)	0.0538(87)	0.086(11)	0.080(10)	
$f_{B_q}^2 B_{B_q}^{(3)}$	0.058(11)	0.058(11)	0.084(13)	0.084(13)	
$f_{B_q}^2 B_{B_q}^{(4)}$	0.093(10)		0.135(15)		
$f_{B_q}^2 B_{B_q}^{(5)}$	0.127(15)		0.178(20)		

Preliminary results from FNAL/MILC, 1112.5642 $N_f = 2 + 1$

* $\langle Q_1 \rangle, \langle Q_3 \rangle$ will also allow new prediction for $\Delta \Gamma_s$.

 $\Delta\Gamma_s^{SM} = (0.075 \pm 0.020) ps^{-1}$ Nierste, CKM2012 using preliminary results above $\Delta\Gamma_s^{exp} = (0.106 \pm 0.011 \pm 0.007) ps^{-1}$ LHCb, Moriond 2013

2.3 Rare decays $\mathcal{B}r(B_{s(d)} \rightarrow \mu^+\mu^-)$

Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B}r(B \to \mu^+ \mu^-)$ Buras, hep-ph/0303060

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W}\right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Need to include the effects of a non-vanishing $\Delta\Gamma_s$ to compare with experiment K. de Bruyn et al., 1204.1737

$$\mathcal{B}r(B_q \to \mu^+ \mu^-)_{SM} \to \mathcal{B}r(B_q \to \mu^+ \mu^-)_{y_s} \equiv \mathcal{B}r(B_q \to \mu^+ \mu^-)_{SM} \times \frac{1}{1-y_s}$$

with $y_s \equiv \Delta \Gamma_s / (2\Gamma_s)$.

2.3 Rare decays $\mathcal{B}r(B_{s(d)} \to \mu^+\mu^-)$

Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B}r(B \to \mu^+ \mu^-)$ Buras, hep-ph/0303060

$$\frac{\Im r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W}\right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Need to include the effects of a non-vanishing $\Delta\Gamma_s$ to compare with experiment K. de Bruyn et al., 1204.1737

$$\mathcal{B}r(B_q \to \mu^+ \mu^-)_{SM} \to \mathcal{B}r(B_q \to \mu^+ \mu^-)_{y_s} \equiv \mathcal{B}r(B_q \to \mu^+ \mu^-)_{SM} \times \frac{1}{1-y_s}$$

with $y_s \equiv \Delta \Gamma_s / (2\Gamma_s)$.

* Using $\hat{B}_{B_s} = 1.33(6)$, $\hat{B}_{B_d} = 1.26(11)$ HPQCD, 0902.1815, $y_s = 0.087 \pm 0.014$ LHCb,1212.4140

$$\mathcal{B}r(B_s \to \mu^+ \mu^-)_{y_s} = (3.71 \pm 0.17) \times 10^{-9}$$
 Buras et al. 1303.3820
 $\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.03 \pm 0.09) \times 10^{-10}$

Error dominated by uncertainty in the bag parameter **Buras et al.** 1303.3820

2.3 Rare decays $\mathcal{B}r(B_{s(d)} \rightarrow \mu^+\mu^-)$

Indirect determination

$$\mathcal{B}r(B_s \to \mu^+ \mu^-)_{y_s} = (3.71 \pm 0.17) \times 10^{-9} \qquad \text{Buras et al. 1303.3820}$$
$$\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.03 \pm 0.09) \times 10^{-10} \qquad \text{Buras et al. 1208.0934}$$

Improved $f_{B_{s,d}}^{lattice}$ makes direct theoretical calculation competitive Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_B = (185 \pm 3) MeV$ and $f_{B_s} = (225 \pm 3) MeV$.

 $\mathcal{B}r(B_s \to \mu^+ \mu^-)_{y_s} = (3.56 \pm 0.18) \times 10^{-9}$ Buras et al. 1303.3820 Dominant errors: $|V_{tb}^* V_{ts}|$ 4%, f_{B_s} 2.7%

 $\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.01 \pm 0.05 \pm 0.03_{f_{B_d}}) \times 10^{-10}$

2.3 Rare decays $\mathcal{B}r(B_{s(d)} \rightarrow \mu^+\mu^-)$

Indirect determination

$$\mathcal{B}r(B_s \to \mu^+ \mu^-)_{y_s} = (3.71 \pm 0.17) \times 10^{-9} \qquad \text{Buras et al. 1303.3820}$$
$$\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.03 \pm 0.09) \times 10^{-10} \qquad \text{Buras et al. 1208.0934}$$

Improved $f_{B_{s,d}}^{lattice}$ makes direct theoretical calculation competitive Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_B = (185 \pm 3) MeV$ and $f_{B_s} = (225 \pm 3) MeV$.

 $\mathcal{B}r(B_s \to \mu^+ \mu^-)_{y_s} = (3.56 \pm 0.18) \times 10^{-9}$ Buras et al. 1303.3820 Dominant errors: $|V_{tb}^* V_{ts}|$ 4%, f_{B_s} 2.7%

$$\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.01 \pm 0.05 \pm 0.03_{f_{B_d}}) \times 10^{-10}$$

Most stringent experimental bounds LHCb Moriond 2013:

$$\mathcal{B}r(B_s \to \mu^+ \mu^-) = \left(3.2^{+1.4+0.5}_{-1.2-0.3}\right) \times 10^{-9}$$
$$\mathcal{B}r(B_d \to \mu^+ \mu^-) < 9.4 \times 10^{-10} \text{ at } 95\% \text{ CL}$$

$2-3\sigma$'s disagreement between exclusive and inclusive determinations of $|V_{ub}|$ and $|V_{cb}|$ G. Ricciardi, 1305.2844

2 – 3 σ 's disagreement between exclusive and inclusive determinations of $|V_{ub}|$ and $|V_{cb}|$ G. Ricciardi, 1305.2844 x^{2/dof = 58.9/31; p=0.022}

Exclusive $|V_{ub}|$: $B \to \pi l \nu$

Combined fit of lattice data

FNAL/MILC, 0811.3604

and experimental data

HFAG 2012, from BaBar and Belle data

from different q^2 regions using z-expansion.

$$V_{ub}^{exc.}| = (3.23 \pm 0.30) \times 10^{-3}$$

^{*} In progress: FNAL/MILC, HPQCD, RBC/UKQCD, ALPHA

$2 - 3\sigma$'s disagreement between exclusive and inclusive determinations of $|V_{ub}|$ and $|V_{cb}|$ G. Ricciardi, 1305.2844

Exclusive $|V_{ub}|$: $B \to \pi l \nu$

Combined fit of lattice data

FNAL/MILC, 0811.3604

and experimental data

HFAG 2012, from BaBar and Belle data

from different q^2 regions using z-expansion.

$|V_{ub}^{exc.}| = (3.23 \pm 0.30) \times 10^{-3}$

* In progress: FNAL/MILC, HPQCD, RBC/UKQCD, ALPHA

Alternative to $B \to \pi l \nu$ to extract $|V_{ub}|$: $B_s \to K l \nu$

* Experiment: Expect to be measured by LHCb and Belle II

* On the lattice: Corresponding form factors can be calculated with smaller errors (spectator quark is heavier (strange)

Extraction of V_{cb} from exclusive B decays ($w = v \cdot v'$ is the velocity transfer):

$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{1/2} |\mathcal{F}(w)|^2$$
$$\frac{d\Gamma(B \to D l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

State-of-the-art calculation: **FNAL/MILC** determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + **BaBar** and **Belle**

$$|V_{cb}|_{excl} = (39.54 \pm 0.50_{exp} \pm 0.74_{LQCD}) \times 10^{-3}$$

* Will be updated soon. Expected error: 1.6%. J. Laiho, CKM2012

Extraction of V_{cb} from exclusive B decays ($w = v \cdot v'$ is the velocity transfer):

$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{1/2} |\mathcal{F}(w)|^2$$
$$\frac{d\Gamma(B \to D l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

State-of-the-art calculation: **FNAL/MILC** determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + **BaBar** and **Belle**

$$|V_{cb}|_{excl} = (39.54 \pm 0.50_{exp} \pm 0.74_{LQCD}) \times 10^{-3}$$

* Will be updated soon. Expected error: 1.6%. J. Laiho, CKM2012

Need $B \to Dl\nu$ form factors at non-zero recoil to match $B \to D^* l\nu$ precision in the determination of $|V_{cb}|$.

Extraction of V_{cb} from exclusive B decays ($w = v \cdot v'$ is the velocity transfer):

$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{1/2} |\mathcal{F}(w)|^2$$
$$\frac{d\Gamma(B \to D l\nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

State-of-the-art calculation: **FNAL/MILC** determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + **BaBar** and **Belle**

$$|V_{cb}|_{excl} = (39.54 \pm 0.50_{exp} \pm 0.74_{LQCD}) \times 10^{-3}$$

* Will be updated soon. Expected error: 1.6%. J. Laiho, CKM2012

- # Need $B \to Dl\nu$ form factors at non-zero recoil to match $B \to D^* l\nu$ precision in the determination of $|V_{cb}|$.
- # Calculation of non-zero recoil form factors $B \rightarrow D^{(*)} l\nu$ in progress **FNAL/MILC**, arXiv:1111.0677.

 \rightarrow will allow complementary extraction of $|V_{cb}|$.

2.5. $B \rightarrow D\tau\nu$ and NP hints?

BaBar recently measured the ratio of branching fractions

 $R(D) = \frac{\mathcal{B}r(B \to D\tau\nu)}{\mathcal{B}r(B \to Dl\nu)} = 0.440(72), \quad R(D^*) = 0.332 \pm 0.030 \qquad \text{PRL109 (2012)101802}$

Using form factors in Kamenik, Mescia, 0802.3790 (quenched lattice)

 \rightarrow (3.4) σ exclusion of SM PRL109 (2012)101802

 $(2\sigma \text{ exclusion with only } R(D))$

2.5. $B \rightarrow D\tau\nu$ and NP hints?

BaBar recently measured the ratio of branching fractions

 $R(D) = \frac{\mathcal{B}r(B \to D\tau\nu)}{\mathcal{B}r(B \to Dl\nu)} = 0.440(72), \quad R(D^*) = 0.332 \pm 0.030 \qquad \text{PRL109 (2012)101802}$

Using form factors in Kamenik, Mescia, 0802.3790 (quenched lattice)

 \rightarrow (3.4) σ exclusion of SM PRL109 (2012)101802

 $(2\sigma \text{ exclusion with only } R(D))$

$N_f = 2 + 1$ form factor calculation by FNAL/MILC, PRL109 (2012)071802

 $R(D) = 0.316(12)(7) \rightarrow 1.7\sigma$ from experiment

Becirevic, Kosnik, Tayduganov, 1206.4977: R(D) = 0.31(2)

* In progress: Analysis in the complete $N_f = 2 + 1$ FNAL/MILC data set \rightarrow important reduction of errors in R(D)

* Another target: unquenched lattice calculation of $R(D^*)$

Potentially sensitive to NP effects.

Active effort to constraint NP with experimental results for $B \rightarrow K l^+ l^-$, usually in combination with other rare B decays

Becirevic et al, 1205.5811, Bobeth et al, 111.2558, 1212.2321, Beaujean et al, 1205.1838, Altmannshofer and Straub, 1206.0273

Potentially sensitive to NP effects.

Active effort to constraint NP with experimental results for $B \rightarrow K l^+ l^-$, usually in combination with other rare B decays

Becirevic et al, 1205.5811, Bobeth et al, 111.2558, 1212.2321,

Beaujean et al, 1205.1838, Altmannshofer and Straub, 1206.0273

First unquenched determination of the form factors describing $B \rightarrow K l^+ l^-$ for $l = e, \mu, \tau$ HPQCD, 1306.0434, 1306.2384

NRQCD description for b quarks, two lattice spacings, ChPT for the chiral extrapolation, shape from z-expansion (data at $q^2 \ge 17 \text{ GeV}^2$)

- # First unquenched determination of the form factors describing $B \to K l^+ l^-$ for $l = e, \mu, \tau$ HPQCD, 1306.0434, 1306.2384
 - * SM differential branching fractions $dB/dq^2(B \rightarrow Kll)$ for $l = e, \mu\tau$ obtained with these form factors agree with experiment.
 - * They calculate the ratio of branching fractions $R_e^{\mu} = 1.00029(69)$ and the flat term in the angular distribution of the differential decay rate $F_H^{e,\mu,\tau}$ in experimentally motivated q^2 bins.

$$\frac{1}{\Gamma_l}\frac{d\Gamma_l}{d\cos\theta_l} = \frac{1}{2}F_H^l + A_{FB}^l\cos\theta_l + \frac{3}{4}(1-F_H^l)(1-\cos^2\theta_l)$$

* They predict $B(B \to K\tau^+\tau^-) = (1.41 \pm 0.15) \cdot 10^{-7}$ and the ratio of branching fractions $R_l^{\tau} = 1.176(40)$, for $l = e, \mu$.

- # First unquenched determination of the form factors describing $B \to K l^+ l^-$ for $l = e, \mu, \tau$ HPQCD, 1306.0434, 1306.2384
 - * SM differential branching fractions $dB/dq^2(B \rightarrow Kll)$ for $l = e, \mu\tau$ obtained with these form factors agree with experiment.
 - * They calculate the ratio of branching fractions $R_e^{\mu} = 1.00029(69)$ and the flat term in the angular distribution of the differential decay rate $F_H^{e,\mu,\tau}$ in experimentally motivated q^2 bins.

$$\frac{1}{\Gamma_l}\frac{d\Gamma_l}{d\cos\theta_l} = \frac{1}{2}F_H^l + A_{FB}^l\cos\theta_l + \frac{3}{4}(1 - F_H^l)(1 - \cos^2\theta_l)$$

* They predict $B(B \to K\tau^+\tau^-) = (1.41 \pm 0.15) \cdot 10^{-7}$ and the ratio of branching fractions $R_l^{\tau} = 1.176(40)$, for $l = e, \mu$.

Similar results from **FNAL/MILC** soon.

Lattice studies of $B \to K^* l^+ l^-$ in progress. Some preliminary results in M. Wingate, talk at Lattice2012

At zero momentum transfer, $q^2 = 0$: Extraction of the CKM matrix elements $|V_{cd(cs)}|$.

At non-zero momentum transfer, $q^2 \neq 0$: Testing lattice QCD: shape of the form factors \rightarrow use same methodology for processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$

Correlated signals of NP to those in leptonic decays.

At zero momentum transfer, $q^2 = 0$: Extraction of the CKM matrix elements $|V_{cd(cs)}|$.

At non-zero momentum transfer, $q^2 \neq 0$: Testing lattice QCD: shape of the form factors \rightarrow use same methodology for processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$

Correlated signals of NP to those in leptonic decays.

The erros on those studies are still dominated by errors in the calculation of the relevant form factors.

$$\frac{d}{dq^2}\Gamma(D \to K(\pi)l\nu) \quad \propto \quad |V_{cs(cd)}|^2 |f_+^{D \to K(\pi)}(q^2)|^2$$

where the vector form factor for any semileptonic decay $P_1 \to P_2 l \nu$ is defined by

$$\langle P_2 | V^{\mu} | P_1 \rangle = f_+^{P_1 P_2}(q^2) \left[p_{P_1}^{\mu} + p_{P_2}^{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu} \right] + f_0^{P_1 P_2}(q^2) \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu}$$

Important reduction of errors in the lattice determination of the form factors $f_+^{D(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

- * Use a relativistic action, HISQ, to describe light and charm quarks.
- * Use the Ward identity $(S = \bar{a}b)$

$$q^{\mu} \langle P_2 | V_{\mu}^{cont.} | P_1 \rangle = (m_b - m_a) \langle P_2 | S^{cont} | P_1 \rangle$$

that relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P_2 | V_{\mu}^{lat.} | P_1 \rangle Z = (m_b - m_a) \langle P_2 | S^{lat.} | P_1 \rangle$$

Important reduction of errors in the lattice determination of the form factors $f_+^{D(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

- * Use a relativistic action, HISQ, to describe light and charm quarks.
- * Use the Ward identity $(S = \bar{a}b)$

$$q^{\mu}\langle P_2|V_{\mu}^{cont.}|P_1\rangle = (m_b - m_a)\langle P_2|S^{cont}|P_1\rangle$$

that relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P_2 | V_{\mu}^{lat.} | P_1 \rangle Z = (m_b - m_a) \langle P_2 | S^{lat.} | P_1 \rangle$$

 \rightarrow replace the V_{μ} with an S current in the 3-point function

$$f_0^{P_1P_2}(q^2) = \frac{m_b - m_a}{m_{P_1}^2 - m_{P_2}^2} \langle P_2 | S | P_1 \rangle_{q^2} \Longrightarrow \int_{+}^{P_1P_2} (0) = f_0^{P_1P_2}(0) = \frac{m_b - m_a}{m_{P_1}^2 - m_{P_2}^2} \langle S \rangle_{q^2 = 0}$$

- # Advantages of the HPQCD method based on Ward identity:
 - * No need of renormalization factors Z.
 - * Need less inversions than the traditional double ratio method.
 - * S currents used are local.

- # Advantages of the HPQCD method based on Ward identity:
 - * No need of renormalization factors Z.
 - * Need less inversions than the traditional double ratio method.
 - * S currents used are local.
- # Downside: can get $f_+^{K\pi}(q^2)$ only at $q^2 = 0 \rightarrow$ concentrate on the calculation of $f_0(q^2 = 0)$ (\equiv extraction of $|V_{cd,cs,us}|$)

 $|V_{cs}| = 0.961(11)_{exp}(24)_{lat} \text{ compatible with unitarity value } |V_{cs}|^{unit.} = 0.97345(16)$ $|V_{cd}| = 0.225(6)_{exp}(10)_{lat} \text{ compatible with unitarity value } |V_{cd}|^{unit.} = 0.2252(7)$ * competitive with ν scattering determination $|V_{cd}|^{\nu} = 0.230(11)$

2.6 *D* semileptonic decays: Form factors at $q^2 \neq 0$

Calculation of $f_0^{DK}(q^2)$ (using Ward identity method) and $f_+^{DK}(q^2)$ (using definition, needs renormalization) HPQCD, 1305.1462

* Global fit to available experimental data \rightarrow extraction of $|V_{cs}|$ using all experimental q^2 bins.

3. *K* semileptonic decays: $f_{+}^{K\pi}(0)$ and extraction of $|V_{us}|$

FNAL/MILC, 1212.4993

The photon-inclusive decay rate for all $K \rightarrow \pi l \nu$ decay modes can be related to $|V_{us}|$ via

$$\Gamma_{K_{l3(\gamma)}} = \frac{G_F^2 M_K^5 C_K^2}{128\pi^3} S_{\rm EW} |V_{us} f_+^{K^0 \pi^-}(0)|^2 I_{Kl}^{(0)} \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

with $C_K = 1(1/\sqrt{2})$ for neutral (charged) K, $S_{EW} = 1.0223(5)$, $I_{Kl}^{(0)}$ a phase integral depending on shape of $f_{\pm}^{K\pi}$, and $\delta_{\rm EM}^{Kl}$, $\delta_{\rm SU(2)}^{K\pi}$ are long-distance em and strong isospin corrections respectively

The photon-inclusive decay rate for all $K \rightarrow \pi l \nu$ decay modes can be related to $|V_{us}|$ via

$$\Gamma_{K_{l3(\gamma)}} = \frac{G_F^2 M_K^5 C_K^2}{128\pi^3} S_{\rm EW} |V_{us} f_+^{K^0 \pi^-}(0)|^2 I_{Kl}^{(0)} \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

with $C_K = 1(1/\sqrt{2})$ for neutral (charged) K, $S_{EW} = 1.0223(5)$, $I_{Kl}^{(0)}$ a phase integral depending on shape of $f_{\pm}^{K\pi}$, and $\delta_{\rm EM}^{Kl}$, $\delta_{\rm SU(2)}^{K\pi}$ are long-distance em and strong isospin corrections respectively

Experimental average, Moulson, 1209.3426

$$|V_{us}| f_{+}(0)^{K \to \pi} = 0.2163(\pm 0.23\%)$$
 $f_{+}(0)^{K \to \pi} : 0.4\%$ error
FNAL/MILC, 1212.4993

* Check unitarity in the first row of CKM matrix.

$$\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008(6)$$

fits to K_{l3}, K_{l2} exper. data and lattice results for $f_+(0)^{K \to \pi}$ and f_K/f_{π} $\to \mathcal{O}(11 \text{ TeV})$ bound on the scale of new physics Cirigliano et al, 0908.1754

* Look for new physics effects in the comparison of $|V_{us}|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed K_{l3}

$$R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+^{K\pi}(0)}\right) \times \text{experim. data on } K_{\mu 2}\pi_{\mu 2} \text{ and } K_{l3}$$

- * In the SM $R_{\mu 23} = 1$. Not true for some BSM theories (for example, charged Higgs)
- * With **FNAL/MILC** inputs: $R_{\mu 23} = 1.005(7)$. Limited by lattice inputs

* Look for new physics effects in the comparison of $|V_{us}|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed K_{l3}

$$R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+^{K\pi}(0)}\right) \times \text{experim. data on } K_{\mu 2}\pi_{\mu 2} \text{ and } K_{l3}$$

* In the SM $R_{\mu 23} = 1$. Not true for some BSM theories (for example, charged Higgs)

* With **FNAL/MILC** inputs: $R_{\mu 23} = 1.005(7)$. Limited by lattice inputs

On the lattice: Calculate $f_{+}^{K^{0}\pi^{-}}$ (set mesons masses to phys. ones).

* Follow **HPQCD** method developed for *D* semileptonic decays

$$f_{+}^{K\pi}(0) = f_{0}^{K\pi}(0) = \frac{m_{s} - m_{l}}{m_{K}^{2} - m_{\pi}^{2}} \langle \pi | S | K \rangle_{q^{2} = 0}$$

3.2. Methodology

* Twisted boundary conditions \rightarrow allow generating correlation functions with non-zero external momentum such that $K(t_{scurce} + T)$ $q^2 \simeq 0$ (or any other q^2)

Avoids extrapolation $q^2 \rightarrow 0$

Twisted boundary conditions: $\psi(x_k + L) = e^{i\theta_k}\psi(x_k)$ (with k a spatial direction and L the spatial length of the lattice).

 \rightarrow the propagator carries a momentum $p_k = \pi \frac{\theta_k}{L}$

* We inject momentum in either K (moving K data) or π (moving pion data).

3.3. Analysis on the asqtad $N_f = 2 + 1$ MILC ensembles

3.3.1 Simulation details

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

(HISQ action has smaller a^2 errors, specially designed for charm)

pprox a (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T	$a M^{val}_{\pi,P}$
0.12	0.4	$20^3 \times 64$	2052	4	5	0.31315
	0.2	$20^3 \times 64$	2243	4	8	0.22587
	0.14	$20^3 \times 64$	2109	4	5	0.18907
	0.1	$24^3 \times 64$	2098	8	5	0.15657
0.09	0.4	$28^3 \times 96$	1996	4	5	0.20341
	0.2	$28^3 \times 96$	1946	4	5	0.14572

with N_T is the number of source-sink separations.

3.3.1 Simulation details

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

(HISQ action has smaller a^2 errors, specially designed for charm)

pprox a (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T	$a M^{val}_{\pi,P}$
0.12	0.4	$20^3 \times 64$	2052	4	5	0.31315
	0.2	$20^3 \times 64$	2243	4	8	0.22587
	0.14	$20^3 \times 64$	2109	4	5	0.18907
	0.1	$24^3 \times 64$	2098	8	5	0.15657
0.09	0.4	$28^3 \times 96$	1996	4	5	0.20341
	0.2	$28^3 \times 96$	1946	4	5	0.14572

with N_T is the number of source-sink separations.

* Strange valence quark masses are tuned to their physical values

C.T.H. Davies et al, PRD81(2010)

3.3.1 Simulation details

HISQ valence quarks on $N_f = 2 + 1$ Asqtad MILC configurations

(HISQ action has smaller a^2 errors, specially designed for charm)

$\approx a$ (fm)	am_l/am_s	Volume	N_{conf}	$N_{sources}$	N_T	$a M^{val}_{\pi,P}$
0.12	0.4	$20^3 \times 64$	2052	4	5	0.31315
	0.2	$20^3 \times 64$	2243	4	8	0.22587
	0.14	$20^3 \times 64$	2109	4	5	0.18907
	0.1	$24^3 \times 64$	2098	8	5	0.15657
0.09	0.4	$28^3 \times 96$	1996	4	5	0.20341
	0.2	$28^3 \times 96$	1946	4	5	0.14572

with N_T is the number of source-sink separations.

* Strange valence quark masses are tuned to their physical values C.T.H. Davies et al, PRD81(2010)

* Light valence quark masses: $\frac{m_l^{val}(HISQ)}{m_s^{phys}(HISQ)} = \frac{m_l^{sea}(Asqtad)}{m_s^{phys}(Asqtad)}$
The form factor $f_+(0)$ can be written in ChPT as

 $f_{+}(0) = 1 + f_{2} + f_{4} + f_{6} + \dots = 1 + f_{2} + \Delta f$

$f_+(0)$ goes to 1 in the SU(3) limit due to vector current conservation

Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $(m_K^2 - m_{\pi}^2)$ and f_2 is completely fixed in terms of experimental quantities.

The form factor $f_+(0)$ can be written in ChPT as

 $f_{+}(0) = 1 + f_{2} + f_{4} + f_{6} + \dots = 1 + f_{2} + \Delta f$

$f_+(0)$ goes to 1 in the SU(3) limit due to vector current conservation

- # Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $(m_K^2 - m_{\pi}^2)$ and f_2 is completely fixed in terms of experimental quantities.
 - * At finite lattice spacing systematic errors can enter due to violations of the dispersion relation needed to derive

$$f_{+}(0) = f_{0}(0) = \frac{m_{s} - m_{q}}{m_{K}^{2} - m_{\pi}^{2}} \langle S \rangle_{q^{2} = 0}$$

Dispersion relation violations in our data are $\leq 0.15\%$.

* One-loop (NLO) partially quenched Staggered ChPT +

** Staggered ChPT: logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking a^2 effects \rightarrow remove the dominant light discretization errors (remain $a^2 \alpha_s^2, a^4$)

$$f_{+}^{K\pi}(0) = 1 + f_{2}^{PQ,stag.}(a) + \frac{K_{1}^{(a)}}{r_{1}} \left(\frac{a}{r_{1}}\right)^{2} + \frac{K_{1}^{(a)}}{r_{1}}$$

* One-loop (NLO) partially quenched Staggered ChPT +

- ** Staggered ChPT: logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking a^2 effects \rightarrow remove the dominant light discretization errors (remain $a^2 \alpha_s^2, a^4$)
- * Two-loop (NNLO) continuum ChPT by Bijnens & Talavera, arXiv:0303103.

$$\begin{split} f_{+}^{K\pi}(0) &= 1 + f_{2}^{PQ,stag.}(a) + K_{1}^{(a)} \left(\frac{a}{r_{1}}\right)^{2} + f_{4}^{cont.}(\log s) + f_{4}^{cont.}(L_{i}'s) \\ &+ r_{1}^{4} (m_{\pi}^{2} - m_{K}^{2})^{2} \left[\frac{C_{6}'^{(1)}}{r_{1}} + K_{2}^{a} \left(\frac{a}{r_{1}}\right)^{2}\right] \end{split}$$

where $C_6'^{(1)} \propto C_{12} + C_{34} - L_5^2$. L_5 is an $\mathcal{O}(p^4)$ LEC and $C_{12,34}$ are $\mathcal{O}(p^6)$ LECs

* One-loop (NLO) partially quenched Staggered ChPT +

- ** Staggered ChPT: logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking a^2 effects \rightarrow remove the dominant light discretization errors (remain $a^2 \alpha_s^2, a^4$)
- * Two-loop (NNLO) continuum ChPT by Bijnens & Talavera, arXiv:0303103.

$$\begin{aligned} f_{+}^{K\pi}(0) &= 1 + f_{2}^{PQ,stag.}(a) + K_{1}^{(a)} \left(\frac{a}{r_{1}}\right)^{2} + f_{4}^{cont.}(\log s) + f_{4}^{cont.}(L_{i}'s) \\ &+ r_{1}^{4} (m_{\pi}^{2} - m_{K}^{2})^{2} \left[\frac{C_{6}'^{(1)}}{c_{6}'} + K_{2}^{a} \left(\frac{a}{r_{1}}\right)^{2}\right] \end{aligned}$$

where $C_6'^{(1)} \propto C_{12} + C_{34} - L_5^2$. L_5 is an $\mathcal{O}(p^4)$ LEC and $C_{12,34}$ are $\mathcal{O}(p^6)$ LECs

* Free parameters of the fit: $C_6^{\prime(1)}$, $K_1^{(a)}$, $L_i^{\prime}s$ (priors equal to values in Amoros et al, 0101127, with enlarged errors), δ_A^{mix} , δ_V^{mix} ($\mathcal{O}(a^2)$ SChPT param.)

* One-loop (NLO) partially quenched Staggered ChPT +

- ** Staggered ChPT: logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking a^2 effects \rightarrow remove the dominant light discretization errors (remain $a^2 \alpha_s^2, a^4$)
- * Two-loop (NNLO) continuum ChPT by Bijnens & Talavera, arXiv:0303103.

$$\begin{split} f_{+}^{K\pi}(0) &= 1 + f_{2}^{PQ,stag.}(a) + K_{1}^{(a)} \left(\frac{a}{r_{1}}\right)^{2} + f_{4}^{cont.}(\log s) + f_{4}^{cont.}(L_{i}'s) \\ &+ r_{1}^{4} (m_{\pi}^{2} - m_{K}^{2})^{2} \left[\frac{C_{6}'^{(1)}}{c_{6}'} + K_{2}^{a} \left(\frac{a}{r_{1}}\right)^{2}\right] \end{split}$$

where $C_6'^{(1)} \propto C_{12} + C_{34} - L_5^2$. L_5 is an $\mathcal{O}(p^4)$ LEC and $C_{12,34}$ are $\mathcal{O}(p^6)$ LECs

- * Free parameters of the fit: $C_6^{\prime(1)}$, $K_1^{(a)}$, $L_i^{\prime}s$ (priors equal to values in Amoros et al, 0101127, with enlarged errors), δ_A^{mix} , δ_V^{mix} ($\mathcal{O}(a^2)$ SChPT param.)
- * Check: Use analytical parametrization for NNLO contribution \rightarrow central value changes by less than 0.2%

3.3.3 Results

	Source of uncertainty	Error $f_{+}(0)$ (%)
	Statistics	0.24
	Chiral ext. & fitting*	0.3
	Discretization	0.1
	Scale	0.06
	Finite volume	0.1
	Total Error	0.42
*	Difference between m_s^{sec}	a and m_{s}^{val} at

two loops

 $f_{+}(0) = 0.9667 \pm 0.0023 \pm 0.0033$

 $(C_{12}^r + C_{34}^r)(M_{\rho}) = (4.57 \pm 0.44 \pm 0.90) \cdot 10^{-6}$

3.3.3 Results: Comparison with previous work and unitarity

this work	0.9667(23)(33)	$N_f = 2 + 1$
RBC/UKQCD 13	$0.9670(20)^{+(18)}_{-(46)}$	$N_f = 2 + 1$
RBC/UKQCD 10	$0.9599(34) \begin{pmatrix} +31\\ -43 \end{pmatrix}$	$N_f = 2 + 1$
ETMC	0.9560(57)(62)	$N_f = 2$
Kastner & Neufeld	0.986(8)	ChPT
Cirigliano	0.984(12)	χ PT
Jamin, Oller, & Pich	0.974(11)	ChPT
Bijnens & Talavera	0.976(10)	ChPT
Leutwyler & Roos	0.961(8)	Quark model

3.3.3 Results: Comparison with previous work and unitarity

With this value of $f_{+}^{K\pi}(0)$ and latest experimental data $(|V_{us}|f_{+}(0) = 0.2163(5)$ Moulson, 1209.3426):

 $|V_{us}| = 0.2238 \pm 0.0009 \pm 0.0005$

 $\rightarrow \Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008(6)$

3.4. Analysis on the HISQ $N_f = 2 + 1 + 1$ MILC ensembles

3.4.1 Simulation parameters

a(fm)	m_l/m_s	Volume	$N_{conf.} \times N_{t_s}$	am_s^{sea}	am_s^{val}	
0.15	0.035	$32^3 \times 48$	1000×4	0.0647	0.0691	
0.12	0.200	$24^3 \times 64$	1053 imes 8	0.0509	0.0535	
	0.100	$32^3 \times 64$	993 imes 4	0.0507	0.053	
	0.100	$40^3 \times 64$	391×4	0.0507	0.053	FV check
	0.035	$48^3 \times 64$	945×8	0.0507	0.0531	
0.09	0.200	$32^3 \times 96$	775×4	0.037	0.038	
	0.100	$48^3 \times 96$	853×4	0.0363	0.038	
	0.035	$64^3 \times 96$	625×4	0.0363	0.0363	

* Physical quark mass ensembles

- * HISQ action on the sea: smaller discretization effects.
- * Charm quarks on the sea.
- * Better tuned strange quark mass on the sea.

3.4.2 Preliminary results

- # Statistical errors: 0.2-0.4%. Still larger than in the previous calculation (need more statistics).
- # We do not see discretization effects except in the $a \approx 0.15 \ fm$ ensemble.

3.4.2 Preliminary results

Try the same chiral+continuum extrapolation strategy: one-loop partially quenched SChPT + two loops continuum ChPT.

In progress: Include finite volume corrections at one loop in the SChPT fit function, C. Bernard, J. Bijnens, E.G.

3.4.2 Preliminary results

Investigating the extrapolation strategy and systematic errors. Some checks:

- * Substituting two-loop ChPT by NNLO analytical param.: $\leq 0.15\%$ shift
- * Non including physical quark mass ensembles in the chiral+cont. fit

Preliminary

 $f_{+}(0) = 0.9734(30)$ stat. error only

State-of-the-art calculation of $f_+^{K\pi}(0)$:

 $f_{\pm}^{K\pi}(0) = 0.9667 \pm 0.0023 \pm 0.0033$

(together with RBC/UKQCD, 1305.7217, $f_{+}^{K\pi}(0) = 0.9670 \pm 0.0020^{+18}_{-46}$)

* Keys of precision:

****** $N_f = 2 + 1$ MILC ensembles (great statistics, variety of quark masses)

****** HISQ action on the valence (small discretization error)

** one-loop SChPT + two-loop ChPT (controlled extrapolation to the continuum and physical point).

* With this value of $f_{+}^{K\pi}(0)$ and the latest experimental average for $|V_{us}|f_{+}^{K\pi}(0)$ we get:

 $|V_{us}| = 0.2238 \pm 0.0009_{lat.} \pm 0.0005_{exp.}$

(1.5σ smaller than unitarity value)

** Form factor error still dominates the determination of $|V_{us}|$.

- # Working on a new determination to try to reduce previous dominant sources of error using MILC HISQ $N_f = 2 + 1 + 1$ ensembles
 - * Physical light quark masses: Reduce chiral extrapolation error.
 - * HISQ action on the sea: Smaller discretization errors.
 - * Better tunning of sea quark masses: Reduce chiral extrapolation error.
 - * Include sea charm quark effects

Very preliminary error budget

Source of uncertainty	Error $f_{+}(0)$ (%)
Statistics	0.2 - 0.3
Chiral ext. & fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	0.3-0.37

Very preliminary error budget

Source of uncertainty	Error $f_{+}(0)$ (%)
Statistics	0.2 - 0.3
Chiral ext. & fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	0.3-0.37

* This is just the first calculation on the HISQ ensembles. We can improve in: statistics, discretization errors (smaller lattice spacings), finite volume uncertainty (ChPT calculation) ...

Goal: match experimental error 0.23%

Very preliminary error budget

Source of uncertainty	Error $f_{+}(0)$ (%)
Statistics	0.2 - 0.3
Chiral ext. & fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	0.3-0.37

* This is just the first calculation on the HISQ ensembles. We can improve in: statistics, discretization errors (smaller lattice spacings), finite volume uncertainty (ChPT calculation) ...

Goal: match experimental error 0.23%

Study chiral behaviour of the vector and scalar form factors (at $q^2 = 0$ and $q^2 \neq 0$).

2.2.1. $K \rightarrow \pi\pi$ and $\varepsilon'_K / \varepsilon_K$

Going beyond gold-plated quantities.

$\Delta I = 3/2$ contribution:

* **RBC**: First quantitative results at the 20% level from a direct calculation at a small pion mass.

arXiv:1111.1699,1111.4889

 * Laiho and Van de Water: New method developed based on combining ChPT (indirect) and direct methods.

arXiv:1011.4524

$\Delta I = 1/2$ contribution: * RBC: First calculation using the direct method on small volume and large pion mass with a 25%. Feasibility study.

arXiv:1111.1699

asqtad and HISQ data

