K semileptonic form factors from lattice QCD

Elvira Gámiz
(with Lattice Fermilab and MILC Collaborations)

Universidad de Granada / CAFPE
(Spain)

- Universität Wien, 20 June 2012 .

Contents

1. Introduction
2. Highlights of flavour physics on the lattice: decay constants, neutral meson mixing, semileptonic decays.
3. K semileptonic decays: $f_{+}^{K \pi}(0)$ and extraction of $\left|V_{u s}\right|$.
4. Conclusions and outlook.

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of flavor observables.
\# Constraining possible NP models.

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of flavor observables.
\# Constraining possible NP models.

Laiho,Lunghi, Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of flavor observables.
\# Constraining possible NP models.

Laiho,Lunghi, Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements \rightarrow use lattice QCD

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

$$
L=N_{s} a
$$

\# Define quantum field theory on an Euclidean spacetime lattice with length L (provides an IR cutoff in the path integral) and lattice spacing a (provides and UV cutoff in the path integral).

* Replace derivatives by discrete differences and integrals by sums

$$
\partial \psi(x) \rightarrow \frac{\psi(x+a)-\psi(x-a)}{2 a}
$$

$$
\psi(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot x} \tilde{\psi}(k) \rightarrow \sum_{k} e^{-i k \cdot x} \tilde{\psi}(x)
$$

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles) using Monte Carlo methods.

$$
L=N_{s} a
$$

\# Define quantum field theory on an Euclidean spacetime lattice with length L (provides an IR cutoff in the path integral) and lattice spacing a (provides and UV cutoff in the path integral).

* Replace derivatives by discrete differences and integrals by sums

$$
\partial \psi(x) \rightarrow \frac{\psi(x+a)-\psi(x-a)}{2 a}
$$

$$
\psi(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot x} \tilde{\psi}(k) \rightarrow \sum_{k} e^{-i k \cdot x} \tilde{\psi}(x)
$$

* Recover continuum action when $a \rightarrow 0$ and $L, L_{4} \rightarrow \infty$.

1. Introduction: Lattice QCD

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)

1. Introduction: Lattice QCD

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)
goal (for flavour physics): Precise calculations ($\leq 5 \%$ error)
Control over systematic errors

1. Introduction: Lattice QCD

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)
goal (for flavour physics): Precise calculations ($\leq 5 \%$ error)
Control over systematic errors:
* Unquenched calculations: Incorporate the vacuum polarization effects (in a realistic way).
** Quenching the strange quark could have an error as large as 5\% and need a $N_{f}=2+1$ to have an estimate \rightarrow want $N_{f}=2+1$
** Neglecting sea charm has effects $\mathcal{O}(1 \%)$ (can be estimated with HQET). Starting to need sea charm effects.

1. Introduction: Lattice QCD

* Parameters: lattice scale (lattice spacing) and quark masses (fixed with experimental inputs: hadron masses, decay constants, mass splittings ...)
goal (for flavour physics): Precise calculations ($\leq 5 \%$ error)
Control over systematic errors:
* Unquenched calculations: Incorporate the vacuum polarization effects (in a realistic way).
** Quenching the strange quark could have an error as large as 5\% and need a $N_{f}=2+1$ to have an estimate \rightarrow want $N_{f}=2+1$
** Neglecting sea charm has effects $\mathcal{O}(1 \%)$ (can be estimated with HQET). Starting to need sea charm effects.
* Discretization: improved actions (a^{2} errors suppressed) + simulations at several $a^{\prime} s \rightarrow$ continuum limit.

1. Introduction: Lattice QCD

Control over systematic errors:

* Chiral extrapolation: The lightest the quarks the most expensive to simulate \rightarrow in most of the simulations $m_{\pi}^{\text {lat }}>m_{\pi}^{\text {phys }}$.
\rightarrow simulate at several m_{π} and extrapolate to $m_{\pi}^{\text {phys }}$ using ChPT techniques

1. Introduction: Lattice QCD

Control over systematic errors:

* Chiral extrapolation: The lightest the quarks the most expensive to simulate \rightarrow in most of the simulations $m_{\pi}^{\text {lat }}>m_{\pi}^{\text {phys }}$.
\rightarrow simulate at several m_{π} and extrapolate to $m_{\pi}^{\text {phys }}$ using ChPT techniques
* Renormalization: non-perturbative, perturbative.
* Tuning lattice scale and quark masses (parameters of the lattice action)
* Finite volume, isospin effects, electromagnetic effects, ...

Systematically improvable

1. Introduction: Overview of simulations parameters

Several $N_{f}=2+1$ and even $N_{f}=2+1+1$, and physical quark masses.

First results with simulations with physical light
plot by C. Hoelbling, quark masses starting to appear.

1. Introduction: Averaging lattice QCD results

\# J. Laiho, E. Lunghi, and R. Van de Water (LLV)
Phys.Rev.D81:034503,2010, most updated results in www.latticeaverages.org

* Phenomenologically relevant light and heavy quantities + UT fits with lattice inputs.
* Include only $N_{f}=2+1$.
* Only published results (including proceedings).

```
# Flavianet Lattice Average group: (FLAG)
```

Eur. Phys. J. C71(2011)1695, updated results in http://itpwiki.unibe.ch/flag

* K and π physics, including LEC's.
\# Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.
* Light and heavy quantities.

First review by summer 2013

1. Introduction: Heavy quarks on the lattice

\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

* Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{ }$
** HQET (static,...): sytematic expansion in $1 / m_{h}$.
** NRQCD: systematic (non-relativistic) expansion in $\left(v_{h} / c\right)$.
** Fermilab, RHQ, ...

1. Introduction: Heavy quarks on the lattice

\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

* Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{ }$
** HQET (static,...): sytematic expansion in $1 / m_{h}$.
** NRQCD: systematic (non-relativistic) expansion in $\left(v_{h} / c\right)$.
** Fermilab, RHQ, ...
* Relativistic (improved) formulations:
** Allow accurate results for charm (especially twisted mass, HISQ (Highly improved staggered quarks)).
** Advantages of having the same formulation for light and heavy: ratios light/heavy, PCAC for heavy-light, ... Also simpler tuning of masses.
** Also for bottom: Results for $m_{c} \cdots \leq m_{b}$ and extrapolation to m_{b} (twisted mass, HISQ).

2. Highlights of flavour physics on the lattice

2.1. Decay constants

\# Decay constants come from simple matrix element $\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations on the lattice

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

2.1. Decay constants

\# Decay constants come from simple matrix element
$\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations on the lattice

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties
$\frac{f_{K}}{f_{\pi}}: 0.6-2 \%$ errors, 0.4% average
\# Many $N_{f}=2+1$ lattice calculations \rightarrow good test of lattice QCD

$f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053$

2.1. Decay constants

\# Decay constants come from simple matrix element
$\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations on the lattice

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties
$\frac{f_{K}}{f_{\pi}}: 0.6-2 \%$ errors, 0.4% average
\# Many $N_{f}=2+1$ lattice calculations \rightarrow good test of lattice QCD

New: First calculation with physical quark masses

$$
\frac{f_{K}}{f_{\pi}}=1.1947(26)(37)
$$

FNAL/MILC, 1301.5855

$$
f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053
$$

2.1.1. D and D_{s} decay constants

Reduction of errors in f_{D} and $f_{D_{s}}$ due to the use of relativistic actions.

(experimental averages use $\left|V_{c s}\right|=0.97345(22),\left|V_{c d}\right|=0.2245(12)$)

$$
\begin{aligned}
& f_{D}^{\mathrm{LLV}}=(213.5 \pm 4.1) \mathrm{MeV} \quad f_{D_{s}}^{\mathrm{LLV}}=(248.6 \pm 3.0) \mathrm{MeV} \\
& f_{D_{s}}^{\exp }=(255.6 \pm 4.2) \mathrm{MeV} \rightarrow \text { tension is now down to } \sim 2 \sigma .
\end{aligned}
$$

2.1.2. B and B_{s} decay constants

\# Needed for processes potentially sensitive to NP: $B_{(s)} \rightarrow \mu^{+} \mu^{-}$.
\# Check agreement theory-experiment $\operatorname{Br}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)$.
\# UT inputs.

2.1.2. B and B_{s} decay constants

\# HPQCD relativistic, PRD 85 (2012) 031503: $N_{f}=2+1$ with four a 's.

* Using relativistic description (HISQ) for b reduce the error to 2%. ** No effective theory errors, no renormalization.
* Cross-checks: $m_{b}^{\overline{M S}}, m_{B_{s}}-m_{\eta_{b}} / 2, f_{K}, f_{\pi}$.
* First empirical evidence for $1 / \sqrt{m_{B_{s}}}$ depende predicted by HQET.

$$
f_{B_{s}}=224(4) \mathrm{MeV}
$$

2.1.2. B and B_{s} decay constants

\# First calculation with physical light quark masses: HPQCD, 1302.2644

* $N_{f}=2+1+1$ MILC configurations. Three a 's.
* NRQCD description of b quarks.
* New estimate of matching errors:
fit α_{s}^{2} terms instead of power counting.

$$
\begin{aligned}
& f_{B}=186(4) \mathrm{GeV} \\
& f_{B_{s}}=224(5) \mathrm{GeV} \\
& f_{B_{s}} / f_{B}=1.205(7)
\end{aligned}
$$

2.1.2. B and B_{s} decay constants

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) M e V \\
f_{B_{s}}=(225 \pm 3) M e V \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

2.1.2. B and B_{s} decay constants

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) M e V \\
f_{B_{s}}=(225 \pm 3) M e V \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

Using f_{B} above: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}\right|^{2}=6.05(20) 1302.2644$
Belle, 1208.4678: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{e x c .}\right|^{2}=6.9 \pm 3.1$

$$
\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c .}\right|^{2}=3.9 \pm 1.7
$$

Averages in, 1201.2401: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{\text {exc. }}\right|^{2}=16.1 \pm 4.2$

$$
B r\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c .}\right|^{2}=9.2 \pm 2.3
$$

2.1.2. B and B_{s} decay constants

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) \mathrm{MeV} \\
f_{B_{s}}=(225 \pm 3) \mathrm{MeV} \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

Using f_{B} above: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}\right|^{2}=6.05(20) 1302.2644$
Belle, 1208.4678: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{\text {exc. }}\right|^{2}=6.9 \pm 3.1$

$$
\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c .}\right|^{2}=3.9 \pm 1.7
$$

Averages in, 1201.2401: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{e x c .}\right|^{2}=16.1 \pm 4.2$

$$
B r\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c \cdot}\right|^{2}=9.2 \pm 2.3
$$

\# In progress: FNAL/MILC, ALPHA, ETMC, RBC/UKQCD

2.2. Neutral meson mixing

2.2.1 $K^{0}-\bar{K}^{0}$ mixing

One of the most stringent constraints in UT analyses comes from indirect CP violation in K decays.
$\left|\epsilon_{K}\right|=e^{i \phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

* Lattice QCD techniques have reduced \hat{B}_{K} errors to $\sim 1.3 \%$:

$$
\hat{B}_{K}^{\mathrm{LLV}}=0.7643 \pm 0.0097
$$

$\rightarrow \hat{B}_{K}$ is no longer the dominant source of uncertainty in neutral K mixing, but $\left|V_{c b}\right|$ and the NNLO pert. QCD coeficient $\eta_{c c}$

2.2.1 $K^{0}-\bar{K}^{0}$ mixing

One of the most stringent constraints in UT analyses comes from indirect CP violation in K decays.
$\left|\epsilon_{K}\right|=e^{i \phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

* Lattice QCD techniques have reduced \hat{B}_{K} errors to $\sim 1.3 \%$:

$$
\hat{B}_{K}^{\mathrm{LLV}}=0.7643 \pm 0.0097
$$

$\rightarrow \hat{B}_{K}$ is no longer the dominant source of uncertainty in neutral K mixing, but $\left|V_{c b}\right|$ and the NNLO pert. QCD coeficient $\eta_{c c}$
\# First unquenched calculations of complete set of $\Delta S=2$ effective operators describing $K-\bar{K}$ mixing

* $N_{f}=2$: ETMC, 1207.1287
* $N_{f}=2+1$: No extrapolation to the continuum RBC/UKQCD, 1206.5737
* In progress: $N_{f}=2+1+1$ ETMC, $N_{f}=2+1$ SWME

2.2.2. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry $1106.6308+$ UT tensions ...

Not confirmed by recent analyses $\left(B_{s}\right)$ Lenz et al, 1203.0238, or by recent LHCb measurements.

Still room for important effects in B mixing. Lenz et al, 1203.0238
\# SM predictions + BSM contributions $=$ experiment \rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras
and Girrbach, 1201.1302

2.2.2. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions ...

Not confirmed by recent analyses (B_{s}) Lenz et al, 1203.0238, or by recent LHCb measurements.

Still room for important effects in B mixing. Lenz et al, 1203.0238
\# SM predictions + BSM contributions $=$ experiment \rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...

Need matrix elements of all operators in $\Delta B=2$ effective Hamiltonian

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i} Q_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{Q}_{i} \quad \text { with } \\
Q_{1}^{q}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma^{\mu} L q^{\beta}\right) \\
Q_{2}^{q}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) \quad Q_{3}^{q}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right) \\
Q_{4}^{q}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} R q^{\beta}\right) \quad Q_{5}^{q}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} R q^{\alpha}\right) \\
\tilde{Q}_{1,2,3}=Q_{1,2,3} \text { with the replacement } L(R) \rightarrow R(L)
\end{gathered}
$$

2.2.2. Neutral B-meson mixing

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{\text {eff }}^{\Delta B=2}$ yet.

* Only for $\left\langle\overline{B_{q}^{0}}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu) \equiv \frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}$:

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV} \quad f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\mathrm{LLV}}=227(19) \mathrm{MeV}
$$

2.2.2. Neutral B-meson mixing

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{\text {eff }}^{\Delta B=2}$ yet.

* Only for $\left\langle\overline{B_{q}^{0}}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu) \equiv \frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}$:

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV} \quad f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\mathrm{LLV}}=227(19) \mathrm{MeV}
$$

which leads to the SM predictions:

$$
\begin{gathered}
\Delta M_{s}^{S M}=(19.6 \pm 2.1) p s^{-1} \text { Lenz,Nierste }+ \text { above average } \\
\Delta M_{s}^{S M}=(16.9 \pm 1.2) p s^{-1} \text { Lenz, Nierste }+ \text { aver. } f_{B_{s}}+B_{B_{s}} \text { below } \\
\Delta M_{s}^{e x p}=(17.768 \pm 0.023 \pm 0.006) p s^{-1} \text { LHCb Moriond } 2013 \text { preliminary }
\end{gathered}
$$

(bag parameter, $B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)=0.86(4)$, from HPQCD, 0902.1815)

2.2.2. Neutral B-meson mixing

There is not a complete unquenched lattice calculation of all the operators in $\mathcal{H}_{\text {eff }}^{\Delta B=2}$ yet.

* Only for $\left\langle\overline{B_{q}^{0}}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu) \equiv \frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}$:

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV} \quad f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\mathrm{LLV}}=227(19) \mathrm{MeV}
$$

which leads to the SM predictions:

$$
\begin{gathered}
\Delta M_{s}^{S M}=(19.6 \pm 2.1) p s^{-1} \text { Lenz,Nierste }+ \text { above average } \\
\Delta M_{s}^{S M}=(16.9 \pm 1.2) p s^{-1} \text { Lenz, Nierste }+ \text { aver. } f_{B_{s}}+B_{B_{s}} \text { below } \\
\Delta M_{s}^{e x p}=(17.768 \pm 0.023 \pm 0.006) p s^{-1} \text { LHCb Moriond } 2013 \text { preliminary }
\end{gathered}
$$

(bag parameter, $B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)=0.86(4)$, from HPQCD, 0902.1815)

* And the $S U(3)$ ratio $\xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$:

$$
\xi^{\text {aver. } \mathrm{N}_{\mathrm{f}}=2+1}=1.251 \pm 0.032
$$

2.2.2 Neutral B-meson mixing

In progress: Among others ETMC $\left(N_{f}=2+1+1\right)$, FNAL/MILC $\left(N_{f}=2+1\right)$

B_{d}^{0}			B_{s}^{0}	
$\left[\mathrm{GeV}^{2}\right]$	BBGLN	BJU	BBGLN	BJU
$f_{B_{q}}^{2} B_{B_{q}}^{(1)}$	$0.0411(75)$	$0.0559(68)$		
$f_{B_{q}}^{2} B_{B_{q}}^{(2)}$	$0.0574(92)$	$0.0538(87)$	$0.086(11)$	$0.080(10)$
$f_{B_{q}}^{2} B_{B_{q}}^{(3)}$	$0.058(11)$	$0.058(11)$	$0.084(13)$	$0.084(13)$
$f_{B_{q}}^{2} B_{B_{q}}^{(4)}$	$0.093(10)$	$0.135(15)$		
$f_{B_{q}}^{2} B_{B_{q}}^{(5)}$	$0.127(15)$	$0.178(20)$		

Preliminary results from
FNAL/MILC, 1112.5642

$$
N_{f}=2+1
$$

* $\left\langle Q_{1}\right\rangle,\left\langle Q_{3}\right\rangle$ will also allow new prediction for $\Delta \Gamma_{s}$.
$\Delta \Gamma_{S}^{S M}=(0.075 \pm 0.020) p s^{-1}$ Nierste, CKM2012 using preliminary results above

$$
\Delta \Gamma_{s}^{e x p}=(0.106 \pm 0.011 \pm 0.007) p s^{-1} \text { LHCb, Moriond } 2013
$$

2.3 Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B} r\left(B \rightarrow \mu^{+} \mu^{-}\right) \quad$ Buras, hep-ph/0303060

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Need to include the effects of a non-vanishing $\Delta \Gamma_{s}$ to compare with experiment K. de Bruyn et al., 1204.1737

$$
\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \rightarrow \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}} \equiv \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \times \frac{1}{1-y_{s}}
$$

with $y_{s} \equiv \Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)$.

2.3 Rare decays $\operatorname{Br}\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B r}\left(B \rightarrow \mu^{+} \mu^{-}\right) \quad$ Buras, hep-ph/0303060

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Need to include the effects of a non-vanishing $\Delta \Gamma_{s}$ to compare with experiment K. de Bruyn et al., 1204.1737

$$
\mathcal{B r} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \rightarrow \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}} \equiv \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \times \frac{1}{1-y_{s}}
$$

with $y_{s} \equiv \Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)$.
$*$ Using $\hat{B}_{B_{s}}=1.33(6), \hat{B}_{B_{d}}=1.26(11) \mathrm{HPQCD}, 0902.1815, y_{s}=0.087 \pm 0.014$

$$
\begin{aligned}
& \mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
& \mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10}
\end{aligned}
$$

Error dominated by uncertainty in the bag parameter Buras et al. 1303.3820

2.3 Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Indirect determination

$$
\begin{array}{cc}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} & \text { Buras et al. } 1303.3820 \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10} & \text { Buras et al. } 1208.0934
\end{array}
$$

\# Improved $f_{B_{s, d}}^{l a t t i c e}$ makes direct theoretical calculation competitive
Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_{B}=(185 \pm 3) \mathrm{MeV}$ and $f_{B_{s}}=(225 \pm 3) M e V$.

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.56 \pm 0.18) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
\text { Dominant errors: }\left|V_{t b}^{*} V_{t s}\right| 4 \%, f_{B_{s}} 2.7 \%
\end{gathered}
$$

$$
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.01 \pm 0.05 \pm 0.03_{f_{B_{d}}}\right) \times 10^{-10}
$$

2.3 Rare decays $\mathcal{B r}\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Indirect determination

$$
\begin{aligned}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} & \text { Buras et al. } 1303.3820 \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10} & \text { Buras et al. } 1208.0934
\end{aligned}
$$

\# Improved $f_{B_{s, d}}^{l a t t i c e}$ makes direct theoretical calculation competitive

Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_{B}=(185 \pm 3) \mathrm{MeV}$ and $f_{B_{s}}=(225 \pm 3) \mathrm{MeV}$.

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.56 \pm 0.18) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
\text { Dominant errors: }\left|V_{t b}^{*} V_{t s}\right| 4 \%, f_{B_{s}} 2.7 \%
\end{gathered}
$$

$$
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.01 \pm 0.05 \pm 0.03_{f_{B_{d}}}\right) \times 10^{-10}
$$

\# Most stringent experimental bounds LHCb Moriond 2013:

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.2_{-1.2-0.3}^{+1.4+0.5}\right) \times 10^{-9} \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<9.4 \times 10^{-10} \text { at } 95 \% \mathrm{CL}
\end{gathered}
$$

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# $2-3 \sigma$'s disagreement between exclusive and inclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ G. Ricciardi, 1305.2844

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# 2-3 - 's disagreement between exclusive and inclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ G. Ricciardi, 1305.2844

$$
\text { Exclusive }\left|V_{u b}\right|: B \rightarrow \pi l \nu
$$

Combined fit of lattice data
FNAL/MILC, 0811.3604
and experimental data
HFAG 2012, from BaBar and Belle data

from different q^{2} regions using z-expansion.

$$
\left|V_{u b}^{e x c .}\right|=(3.23 \pm 0.30) \times 10^{-3}
$$

* In progress: FNAL/MILC, HPQCD, RBC/UKQCD, ALPHA

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# $2-3 \sigma$'s disagreement between exclusive and inclusive determinations
of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ G. Ricciardi, 1305.2844

Exclusive $\left|V_{u b}\right|: B \rightarrow \pi l \nu$
Combined fit of lattice data
FNAL/MILC, 0811.3604
and experimental data

HFAG 2012, from BaBar and Belle data

from different q^{2} regions using z-expansion.

$$
\left|V_{u b}^{e x c .}\right|=(3.23 \pm 0.30) \times 10^{-3}
$$

* In progress: FNAL/MILC, HPQCD, RBC/UKQCD, ALPHA

Alternative to $B \rightarrow \pi l \nu$ to extract $\left|V_{u b}\right|: B_{s} \rightarrow K l \nu$

* Experiment: Expect to be measured by LHCb and Belle II
* On the lattice: Corresponding form factors can be calculated with smaller errors (spectator quark is heavier (strange)

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# Extraction of $V_{c b}$ from exclusive B decays $\left(w=v \cdot v^{\prime}\right.$ is the velocity transfer):

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

State-of-the-art calculation: FNAL/MILC determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + BaBar and Belle

$$
\left|V_{c b}\right|_{e x c l}=\left(39.54 \pm 0.50_{\exp } \pm 0.74_{L Q C D}\right) \times 10^{-3}
$$

* Will be updated soon. Expected error: 1.6\%. J. Laiho, CKM2012

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# Extraction of $V_{c b}$ from exclusive B decays $\left(w=v \cdot v^{\prime}\right.$ is the velocity transfer):

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

State-of-the-art calculation: FNAL/MILC determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + BaBar and Belle

$$
\left|V_{c b}\right|_{e x c l}=\left(39.54 \pm 0.50_{e x p} \pm 0.74_{L Q C D}\right) \times 10^{-3}
$$

* Will be updated soon. Expected error: 1.6\%. J. Laiho, CKM2012
\# Need $B \rightarrow D l \nu$ form factors at non-zero recoil to match $B \rightarrow D^{*} l \nu$ precision in the determination of $\left|V_{c b}\right|$.

2.4 Exclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

\# Extraction of $V_{c b}$ from exclusive B decays $\left(w=v \cdot v^{\prime}\right.$ is the velocity transfer):

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

State-of-the-art calculation: FNAL/MILC determination of \mathcal{F} at zero recoil (blind anlysis based on HQ expasion and double ratio methods) + BaBar and Belle

$$
\left|V_{c b}\right|_{e x c l}=\left(39.54 \pm 0.50_{\exp } \pm 0.74_{L Q C D}\right) \times 10^{-3}
$$

* Will be updated soon. Expected error: 1.6\%. J. Laiho, CKM2012
\# Need $B \rightarrow D l \nu$ form factors at non-zero recoil to match $B \rightarrow D^{*} l \nu$ precision in the determination of $\left|V_{c b}\right|$.
\# Calculation of non-zero recoil form factors $B \rightarrow D^{(*)} l \nu$ in progress FNAL/MILC, arXiv:1111.0677.
\rightarrow will allow complementary extraction of $\left|V_{c b}\right|$.

2.5. $B \rightarrow D \tau \nu$ and NP hints?

\# BaBar recently measured the ratio of branching fractions

$$
R(D)=\frac{\mathcal{B} r(B \rightarrow D \tau \nu)}{\mathcal{B} r(B \rightarrow D l \nu)}=0.440(72), \quad R\left(D^{*}\right)=0.332 \pm 0.030
$$

Using form factors in Kamenik, Mescia, 0802.3790 (quenched Iattice)
$\rightarrow(3.4) \sigma$ exclusion of SM PRL109 (2012)101802
(2σ exclusion with only $R(D)$)

2.5. $B \rightarrow D \tau \nu$ and NP hints?

\# BaBar recently measured the ratio of branching fractions
$R(D)=\frac{\mathcal{B} r(B \rightarrow D \tau \nu)}{\mathcal{B} r(B \rightarrow D l \nu)}=0.440(72), \quad R\left(D^{*}\right)=0.332 \pm 0.030$
Using form factors in Kamenik, Mescia, 0802.3790 (quenched lattice)
$\rightarrow(3.4) \sigma$ exclusion of SM PRL109 (2012)101802
(2σ exclusion with only $R(D)$)
$\# N_{f}=2+1$ form factor calculation by FNAL/MILC, PRL109 (2012)071802

$$
R(D)=0.316(12)(7) \rightarrow 1.7 \sigma \text { from experiment }
$$

Becirevic, Kosnik, Tayduganov, 1206.4977: $R(D)=0.31(2)$

* In progress: Analysis in the complete $N_{f}=2+1$ fNAL/milc data set \rightarrow important reduction of errors in $R(D)$
* Another target: unquenched lattice calculation of $R\left(D^{*}\right)$
2.5. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# Potentially sensitive to NP effects.
\# Active effort to constraint NP with experimental results for $B \rightarrow K l^{+} l^{-}$, usually in combination with other rare B decays

Becirevic et al, 1205.5811, Bobeth et al, 111.2558, 1212.2321,
Beaujean et al, 1205.1838, Altmannshofer and Straub, 1206.0273
2.5. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# Potentially sensitive to NP effects.
\# Active effort to constraint NP with experimental results for $B \rightarrow K l^{+} l^{-}$, usually in combination with other rare B decays

Becirevic et al, 1205.5811, Bobeth et al, 111.2558, 1212.2321,

Beaujean et al, 1205.1838, Altmannshofer and Straub, 1206.0273

\# First unquenched determination of the form factors describing $B \rightarrow K l^{+} l^{-}$for $l=e, \mu, \tau$ HPQCD, 1306.0434, 1306.2384

NRQCD description for b quarks, two lattice spacings, ChPT for the chiral extrapolation, shape from z-expansion (data at $q^{2} \geq 17 \mathrm{GeV}^{2}$)
2.5. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# First unquenched determination of the form factors describing $B \rightarrow K l^{+} l^{-}$for $l=e, \mu, \tau$ HPQCD, 1306.0434, 1306.2384

* SM differential branching fractions $d B / d q^{2}(B \rightarrow K l l)$ for $l=e, \mu \tau$ obtained with these form factors agree with experiment.
* They calculate the ratio of branching fractions $R_{e}^{\mu}=1.00029$ (69) and the flat term in the angular distribution of the differential decay rate $F_{H}^{e, \mu, \tau}$ in experimentally motivated q^{2} bins.

$$
\frac{1}{\Gamma_{l}} \frac{d \Gamma_{l}}{d \cos \theta_{l}}=\frac{1}{2} F_{H}^{l}+A_{F B}^{l} \cos \theta_{l}+\frac{3}{4}\left(1-F_{H}^{l}\right)\left(1-\cos ^{2} \theta_{l}\right)
$$

* They predict $B\left(B \rightarrow K \tau^{+} \tau^{-}\right)=(1.41 \pm 0.15) \cdot 10^{-7}$ and the ratio of branching fractions $R_{l}^{\tau}=1.176(40)$, for $l=e, \mu$.
2.5. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# First unquenched determination of the form factors describing $B \rightarrow K l^{+} l^{-}$for $l=e, \mu, \tau \quad \mathrm{HPQCD}, 1306.0434,1306.2384$
* SM differential branching fractions $d B / d q^{2}(B \rightarrow K l l)$ for $l=e, \mu \tau$ obtained with these form factors agree with experiment.
* They calculate the ratio of branching fractions $R_{e}^{\mu}=1.00029$ (69) and the flat term in the angular distribution of the differential decay rate $F_{H}^{e, \mu, \tau}$ in experimentally motivated q^{2} bins.

$$
\frac{1}{\Gamma_{l}} \frac{d \Gamma_{l}}{d \cos \theta_{l}}=\frac{1}{2} F_{H}^{l}+A_{F B}^{l} \cos \theta_{l}+\frac{3}{4}\left(1-F_{H}^{l}\right)\left(1-\cos ^{2} \theta_{l}\right)
$$

* They predict $B\left(B \rightarrow K \tau^{+} \tau^{-}\right)=(1.41 \pm 0.15) \cdot 10^{-7}$ and the ratio of branching fractions $R_{l}^{\tau}=1.176(40)$, for $l=e, \mu$.
\# Similar results from FNAL/MILC soon.
\# Lattice studies of $B \rightarrow K^{*} l^{+} l^{-}$in progress. Some preliminary results in M. Wingate, talk at Lattice2012

2.6 D semileptonic decays

\# At zero momentum transfer, $q^{2}=0$:
Extraction of the CKM matrix elements $\left|V_{c d(c s)}\right|$.
\# At non-zero momentum transfer, $q^{2} \neq 0$:
Testing lattice QCD: shape of the form factors
\rightarrow use same methodology for processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
\# Correlated signals of NP to those in leptonic decays.

2.6 D semileptonic decays

\# At zero momentum transfer, $q^{2}=0$:
Extraction of the CKM matrix elements $\left|V_{c d(c s)}\right|$.
\# At non-zero momentum transfer, $q^{2} \neq 0$:
Testing lattice QCD: shape of the form factors
\rightarrow use same methodology for processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
\# Correlated signals of NP to those in leptonic decays.
The erros on those studies are still dominated by errors in the calculation of the relevant form factors.

$$
\frac{d}{d q^{2}} \Gamma(D \rightarrow K(\pi) l \nu) \quad \propto \quad\left|V_{c s(c d)}\right|^{2}\left|f_{+}^{D \rightarrow K(\pi)}\left(q^{2}\right)\right|^{2}
$$

where the vector form factor for any semileptonic decay $P_{1} \rightarrow P_{2} l \nu$ is defined by
$\left\langle P_{2}\right| V^{\mu}\left|P_{1}\right\rangle=f_{+}^{P_{1} P_{2}}\left(q^{2}\right)\left[p_{P_{1}}^{\mu}+p_{P_{2}}^{\mu}-\frac{m_{P_{1}}^{2}-m_{P_{2}}^{2}}{q^{2}} q^{\mu}\right]+f_{0}^{P_{1} P_{2}}\left(q^{2}\right) \frac{m_{P_{1}}^{2}-m_{P_{2}}^{2}}{q^{2}} q^{\mu}$

2.6 D semileptonic decays

Important reduction of errors in the lattice determination of the form factors $f_{+}^{D(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

* Use a relativistic action, HISQ, to describe light and charm quarks.
* Use the Ward identity ($S=\bar{a} b$)

$$
q^{\mu}\left\langle P_{2}\right| V_{\mu}^{\text {cont. }}\left|P_{1}\right\rangle=\left(m_{b}-m_{a}\right)\left\langle P_{2}\right| S^{\text {cont }}\left|P_{1}\right\rangle
$$

that relates matrix elements of vector and scalar currents. In the lattice

$$
q^{\mu}\left\langle P_{2}\right| V_{\mu}^{l a t} \cdot\left|P_{1}\right\rangle Z=\left(m_{b}-m_{a}\right)\left\langle P_{2}\right| S^{l a t} \cdot\left|P_{1}\right\rangle
$$

2.6 D semileptonic decays

Important reduction of errors in the lattice determination of the form factors $f_{+}^{D(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

* Use a relativistic action, HISQ, to describe light and charm quarks.
* Use the Ward identity ($S=\bar{a} b$)

$$
q^{\mu}\left\langle P_{2}\right| V_{\mu}^{\text {cont. }}\left|P_{1}\right\rangle=\left(m_{b}-m_{a}\right)\left\langle P_{2}\right| S^{\text {cont }}\left|P_{1}\right\rangle
$$

that relates matrix elements of vector and scalar currents. In the lattice

$$
q^{\mu}\left\langle P_{2}\right| V_{\mu}^{l a t} \cdot\left|P_{1}\right\rangle Z=\left(m_{b}-m_{a}\right)\left\langle P_{2}\right| S^{l a t} \cdot\left|P_{1}\right\rangle
$$

\rightarrow replace the V_{μ} with an S current in the 3-point function

$$
f_{0}^{P_{1} P_{2}}\left(q^{2}\right)=\frac{m_{b}-m_{a}}{m_{P_{1}}^{2}-m_{P_{2}}^{2}}\left\langle P_{2}\right| S\left|P_{1}\right\rangle_{q^{2}} \Longrightarrow f_{+}^{P_{1} P_{2}}(0)=f_{0}^{P_{1} P_{2}}(0)=\frac{m_{b}-m_{a}}{m_{P_{1}}^{2}-m_{P_{2}}^{2}}\langle S\rangle_{q^{2}=0}
$$

2.6 D semileptonic decays

\# Advantages of the HPQCD method based on Ward identity:

* No need of renormalization factors Z.
* Need less inversions than the traditional double ratio method.
* S currents used are local.

2.6 D semileptonic decays

\# Advantages of the HPQCD method based on Ward identity:

* No need of renormalization factors Z.
* Need less inversions than the traditional double ratio method.
* S currents used are local.
\# Downside: can get $f_{+}^{K \pi}\left(q^{2}\right)$ only at $q^{2}=0 \rightarrow$ concentrate on the calculation of $f_{0}\left(q^{2}=0\right)\left(\equiv\right.$ extraction of $\left.\left|V_{c d, c s, u s}\right|\right)$

2.6 D semileptonic decays

$$
\begin{aligned}
& \text { error } f_{+}^{D \rightarrow K}: 11 \% \rightarrow 2.5 \% \text {. } \\
& \text { error } f_{+}^{D \rightarrow \pi}: 10 \% \rightarrow 5 \% .
\end{aligned}
$$

$\left|V_{c s}\right|=0.961(11)_{\exp }(24)_{l a t}$ compatible with unitarity value $\left|V_{c s}\right|^{\text {unit. }}=0.97345(16)$
$\left|V_{c d}\right|=0.225(6)_{\exp }(10)_{l a t}$ compatible with unitarity value $\left|V_{c d}\right|^{\text {unit. }}=0.2252(7)$

* competitive with ν scattering determination $\left|V_{c d}\right|^{\nu}=0.230(11)$

2.6 D semileptonic decays: Form factors at $q^{2} \neq 0$

\# Calculation of $f_{0}^{D K}\left(q^{2}\right)$ (using Ward identity method) and $f_{+}^{D K}\left(q^{2}\right)$ (using definition, needs renormalization) HPQCD, 1305.1462

* Global fit to available experimental data \rightarrow extraction of $\left|V_{c s}\right|$ using all experimental q^{2} bins.

$$
\left|V_{c s}\right|=0.963(5)_{\exp }(14)_{l a t}
$$

1.5\% error
3. K semileptonic decays:

$$
f_{+}^{K \pi}(0) \text { and extraction of }\left|V_{u s}\right|
$$

FNAL/MILC, 1212.4993

3.1. Introduction

The photon-inclusive decay rate for all $K \rightarrow \pi l \nu$ decay modes can be related to $\left|V_{u s}\right|$ via

$$
\Gamma_{K_{l 3(\gamma)}}=\frac{G_{F}^{2} M_{K}^{5} C_{K}^{2}}{128 \pi^{3}} S_{\mathrm{EW}}\left|V_{u s} f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K l}^{(0)}\left(1+\delta_{\mathrm{EM}}^{K l}+\delta_{\mathrm{SU}(2)}^{K \pi}\right)
$$

with $C_{K}=1(1 / \sqrt{2})$ for neutral (charged) $K, S_{E W}=1.0223(5), I_{K l}^{(0)}$ a phase integral depending on shape of $f_{ \pm}^{K \pi}$, and $\delta_{\mathrm{EM}}^{K l}, \delta_{\mathrm{SU}(2)}^{K \pi}$ are long-distance em and strong isospin corrections respectively

3.1. Introduction

The photon-inclusive decay rate for all $K \rightarrow \pi l \nu$ decay modes can be related to $\left|V_{u s}\right|$ via

$$
\Gamma_{K_{l 3(\gamma)}}=\frac{G_{F}^{2} M_{K}^{5} C_{K}^{2}}{128 \pi^{3}} S_{\mathrm{EW}}\left|V_{u s} f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K l}^{(0)}\left(1+\delta_{\mathrm{EM}}^{K l}+\delta_{\mathrm{SU}(2)}^{K \pi}\right)
$$

with $C_{K}=1(1 / \sqrt{2})$ for neutral (charged) $K, S_{E W}=1.0223(5)$, $I_{K i}^{(0)}$ a phase integral depending on shape of $f_{ \pm}^{K \pi}$, and $\delta_{\mathrm{EM}}^{K l}, \delta_{\mathrm{SU}(2)}^{K \pi}$ are long-distance em and strong isospin corrections respectively
\# Experimental average, Moulson, 1209.3426

$$
\left|V_{u s}\right| f_{+}(0)^{K \rightarrow \pi}=0.2163(\pm 0.23 \%) \quad f_{+}(0)^{K \rightarrow \pi}: 0.4 \% \text { error }
$$

FNAL/MILC, 1212.4993

* Check unitarity in the first row of CKM matrix.

$$
\Delta_{C K M}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=-0.0008(6)
$$

fits to $K_{l 3}, K_{l 2}$ exper. data and lattice results for $f_{+}(0)^{K \rightarrow \pi}$ and f_{K} / f_{π}
$\rightarrow \mathcal{O}(11 \mathrm{TeV})$ bound on the scale of new physics Cirigliano et al, 0908.1754

3.1. Introduction

* Look for new physics effects in the comparison of $\left|V_{u s}\right|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed $K_{l 3}$

$$
R_{\mu 23}=\left(\frac{f_{K} / f_{\pi}}{f_{+}^{K \pi}(0)}\right) \times \text { experim. data on } K_{\mu 2} \pi_{\mu 2} \text { and } K_{l 3}
$$

* In the $\mathrm{SM} R_{\mu 23}=1$. Not true for some BSM theories (for example, charged Higgs)
* With FNAL/MILC inputs: $R_{\mu 23}=1.005(7)$. Limited by lattice inputs

3.1. Introduction

* Look for new physics effects in the comparison of $\left|V_{u s}\right|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed $K_{l 3}$

$$
R_{\mu 23}=\left(\frac{f_{K} / f_{\pi}}{f_{+}^{K \pi}(0)}\right) \times \text { experim. data on } K_{\mu 2} \pi_{\mu 2} \text { and } K_{l 3}
$$

* In the $\mathrm{SM} R_{\mu 23}=1$. Not true for some BSM theories (for example, charged Higgs)
* With FNAL/MILC inputs: $R_{\mu 23}=1.005(7)$. Limited by lattice inputs \# On the lattice: Calculate $f_{+}^{K^{0}} \pi^{-}$(set mesons masses to phys. ones).
* Follow HPQCD method developed for D semileptonic decays

$$
f_{+}^{K \pi}(0)=f_{0}^{K \pi}(0)=\frac{m_{s}-m_{l}}{m_{K}^{2}-m_{\pi}^{2}}\langle\pi| S|K\rangle_{q^{2}=0}
$$

3.2. Methodology

$*$ Twisted boundary conditions \rightarrow allow
generating correlation functions with
non-zero external momentum such that
$q^{2} \simeq 0$ (or any other $\left.q^{2}\right)$

Avoids extrapolation $q^{2} \rightarrow 0$

Twisted boundary conditions: $\psi\left(x_{k}+L\right)=e^{i \theta_{k}} \psi\left(x_{k}\right)$
(with k a spatial direction and L the spatial length of the lattice).
\rightarrow the propagator carries a momentum $p_{k}=\pi \frac{\theta_{k}}{L}$

* We inject momentum in either K (moving K data) or π (moving pion data).

3.3. Analysis on the asqtad $N_{f}=2+1$ MILC ensembles

3.3.1 Simulation details

\# HISQ valence quarks on $N_{f}=2+1$ Asqtad MILC configurations (HISQ action has smaller a^{2} errors, specially designed for charm)

$\approx a(\mathrm{fm})$	$a m_{l} / a m_{s}$	Volume	$N_{\text {conf }}$	$N_{\text {sources }}$	N_{T}	$a M_{\pi, P}^{v a l}$
0.12	0.4	$20^{3} \times 64$	2052	4	5	0.31315
	0.2	$20^{3} \times 64$	2243	4	8	0.22587
	0.14	$20^{3} \times 64$	2109	4	5	0.18907
	0.1	$24^{3} \times 64$	2098	8	5	0.15657
0.09	0.4	$28^{3} \times 96$	1996	4	5	0.20341
	0.2	$28^{3} \times 96$	1946	4	5	0.14572

with N_{T} is the number of source-sink separations.

3.3.1 Simulation details

\# HISQ valence quarks on $N_{f}=2+1$ Asqtad MILC configurations (HISQ action has smaller a^{2} errors, specially designed for charm)

$\approx a(\mathrm{fm})$	$a m_{l} / a m_{s}$	Volume	$N_{\text {conf }}$	$N_{\text {sources }}$	N_{T}	$a M_{\pi, P}^{v a l}$
0.12	0.4	$20^{3} \times 64$	2052	4	5	0.31315
	0.2	$20^{3} \times 64$	2243	4	8	0.22587
	0.14	$20^{3} \times 64$	2109	4	5	0.18907
	0.1	$24^{3} \times 64$	2098	8	5	0.15657
0.09	0.4	$28^{3} \times 96$	1996	4	5	0.20341
	0.2	$28^{3} \times 96$	1946	4	5	0.14572

with N_{T} is the number of source-sink separations.

* Strange valence quark masses are tuned to their physical values C.T.H. Davies et al, PRD81(2010)

3.3.1 Simulation details

\# HISQ valence quarks on $N_{f}=2+1$ Asqtad MILC configurations (HISQ action has smaller a^{2} errors, specially designed for charm)

$\approx a(\mathrm{fm})$	$a m_{l} / a m_{s}$	Volume	$N_{\text {conf }}$	$N_{\text {sources }}$	N_{T}	$a M_{\pi, P}^{\text {val }}$
0.12	0.4	$20^{3} \times 64$	2052	4	5	0.31315
	0.2	$20^{3} \times 64$	2243	4	8	0.22587
	0.14	$20^{3} \times 64$	2109	4	5	0.18907
	0.1	$24^{3} \times 64$	2098	8	5	0.15657
0.09	0.4	$28^{3} \times 96$	1996	4	5	0.20341
	0.2	$28^{3} \times 96$	1946	4	5	0.14572

with N_{T} is the number of source-sink separations.

* Strange valence quark masses are tuned to their physical values C.T.H. Davies et al, PRD81(2010)
* Light valence quark masses: $\frac{m_{l}^{v a l}(H I S Q)}{m_{s}^{p h y s}(H I S Q)}=\frac{m_{l}^{s e a}(\text { Asqtad })}{m_{s}^{\text {phs }}(\text { Asqtad })}$

3.3.2 Chiral and continuum extrapolation

The form factor $f_{+}(0)$ can be written in ChPT as

$$
f_{+}(0)=1+f_{2}+f_{4}+f_{6}+\ldots=1+f_{2}+\Delta f
$$

\# $f_{+}(0)$ goes to 1 in the $S U(3)$ limit due to vector current conservation
\# Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $\left(m_{K}^{2}-m_{\pi}^{2}\right)$ and f_{2} is completely fixed in terms of experimental quantities.

3.3.2 Chiral and continuum extrapolation

The form factor $f_{+}(0)$ can be written in ChPT as

$$
f_{+}(0)=1+f_{2}+f_{4}+f_{6}+\ldots=1+f_{2}+\Delta f
$$

\# $f_{+}(0)$ goes to 1 in the $S U(3)$ limit due to vector current conservation
\# Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $\left(m_{K}^{2}-m_{\pi}^{2}\right)$ and f_{2} is completely fixed in terms of experimental quantities.

* At finite lattice spacing systematic errors can enter due to violations of the dispersion relation needed to derive

$$
f_{+}(0)=f_{0}(0)=\frac{m_{s}-m_{q}}{m_{K}^{2}-m_{\pi}^{2}}\langle S\rangle_{q^{2}=0}
$$

Dispersion relation violations in our data are $\leq 0.15 \%$.

3.3.2 Chiral and continuum extrapolation

* One-loop (NLO) partially quenched Staggered ChPT +
** Staggered ChPT: logs are known non-analytical functions of $m_{K, \pi}$ containing dominant taste-breaking a^{2} effects
\rightarrow remove the dominant light discretization errors (remain $a^{2} \alpha_{s}^{2}, a^{4}$)

$$
f_{+}^{K \pi}(0)=1+f_{2}^{P Q, \text { stag. }}(a)+K_{1}^{(a)}\left(\frac{a}{r_{1}}\right)^{2}+
$$

3.3.2 Chiral and continuum extrapolation

* One-loop (NLO) partially quenched Staggered ChPT +
** Staggered ChPT: logs are known non-analytical functions of $m_{K, \pi}$ containing dominant taste-breaking a^{2} effects
\rightarrow remove the dominant light discretization errors (remain $a^{2} \alpha_{s}^{2}, a^{4}$)
* Two-loop (NNLO) continuum ChPT by Bijnens \& Talavera, arXiv:0303103.

$$
\begin{array}{r}
f_{+}^{K \pi}(0)=1+f_{2}^{P Q, \text { stag. }}(a)+K_{1}^{(a)}\left(\frac{a}{r_{1}}\right)^{2}+f_{4}^{\text {cont. }}(\operatorname{logs})+f_{4}^{\text {cont. }}\left(L_{i}^{\prime} s\right) \\
+r_{1}^{4}\left(m_{\pi}^{2}-m_{K}^{2}\right)^{2}\left[C_{6}^{\prime(1)}+K_{2}^{a}\left(\frac{a}{r_{1}}\right)^{2}\right]
\end{array}
$$

where $C_{6}^{\prime(1)} \propto C_{12}+C_{34}-L_{5}^{2} . L_{5}$ is an $\mathcal{O}\left(p^{4}\right)$ LEC and $C_{12,34}$ are $\mathcal{O}\left(p^{6}\right)$ LECs

3.3.2 Chiral and continuum extrapolation

* One-loop (NLO) partially quenched Staggered ChPT +
** Staggered ChPT: logs are known non-analytical functions of $m_{K, \pi}$ containing dominant taste-breaking a^{2} effects
\rightarrow remove the dominant light discretization errors (remain $a^{2} \alpha_{s}^{2}, a^{4}$)
* Two-loop (NNLO) continuum ChPT by Bijnens \& Talavera, arXiv:0303103.

$$
\begin{array}{r}
f_{+}^{K \pi}(0)=1+f_{2}^{P Q, \text { stag. }}(a)+K_{1}^{(a)}\left(\frac{a}{r_{1}}\right)^{2}+f_{4}^{\text {cont. }(\operatorname{logs})+f_{4}^{\text {cont. }}\left(L_{i}^{\prime} s\right)} \\
+r_{1}^{4}\left(m_{\pi}^{2}-m_{K}^{2}\right)^{2}\left[C_{6}^{\prime(1)}+K_{2}^{a}\left(\frac{a}{r_{1}}\right)^{2}\right]
\end{array}
$$

where $C_{6}^{\prime(1)} \propto C_{12}+C_{34}-L_{5}^{2} . L_{5}$ is an $\mathcal{O}\left(p^{4}\right)$ LEC and $C_{12,34}$ are $\mathcal{O}\left(p^{6}\right)$ LECs

* Free parameters of the fit: $C_{6}^{\prime(1)}, K_{1}^{(a)}, L_{i}^{\prime} s$ (priors equal to values in Amoros et al, 0101127, with enlarged errors), $\delta_{A}^{\text {mix }}, \delta_{V}^{\text {mix }}\left(\mathcal{O}\left(a^{2}\right)\right.$ SChPT param.)

3.3.2 Chiral and continuum extrapolation

* One-loop (NLO) partially quenched Staggered ChPT +
** Staggered ChPT: logs are known non-analytical functions of $m_{K, \pi}$ containing dominant taste-breaking a^{2} effects
\rightarrow remove the dominant light discretization errors (remain $a^{2} \alpha_{s}^{2}, a^{4}$)
* Two-Ioop (NNLO) continuum ChPT by Bijnens \& Talavera, arXiv:0303103.

$$
\begin{array}{r}
f_{+}^{K \pi}(0)=1+f_{2}^{P Q, \text { stag. }}(a)+K_{1}^{(a)}\left(\frac{a}{r_{1}}\right)^{2}+f_{4}^{\text {cont. }(\text { logs })}+f_{4}^{\text {cont. }}\left(L_{i}^{\prime} s\right) \\
+r_{1}^{4}\left(m_{\pi}^{2}-m_{K}^{2}\right)^{2}\left[C_{6}^{\prime(1)}+K_{2}^{a}\left(\frac{a}{r_{1}}\right)^{2}\right]
\end{array}
$$

where $C_{6}^{\prime(1)} \propto C_{12}+C_{34}-L_{5}^{2} . L_{5}$ is an $\mathcal{O}\left(p^{4}\right)$ LEC and $C_{12,34}$ are $\mathcal{O}\left(p^{6}\right)$ LECs

* Free parameters of the fit: $C_{6}^{\prime(1)}, K_{1}^{(a)}, L_{i}^{\prime} s$ (priors equal to values in Amoros et al, 0101127, with enlarged errors), $\delta_{A}^{m i x}, \delta_{V}^{m i x}\left(\mathcal{O}\left(a^{2}\right)\right.$ SChPT param.)
* Check: Use analytical parametrization for NNLO contribution
\rightarrow central value changes by less than 0.2%

3.3.3 Results

Source of uncertainty	Error $f_{+}(0)(\%)$
Statistics	0.24
Chiral ext. \& fitting*	0.3
Discretization	0.1
Scale	0.06
Finite volume	0.1
Total Error	0.42
Difference between $m_{s}^{s e a}$ and $m_{s}^{v a l}$ at	
two loops	

$$
\left(C_{12}^{r}+C_{34}^{r}\right)\left(M_{\rho}\right)=(4.57 \pm 0.44 \pm 0.90) \cdot 10^{-6}
$$

3.3.3 Results: Comparison with previous work and unitarity

this work	$0.9667(23)(33)$	$N_{f}=2+1$
RBC/UKQCD 13	$0.9670(20)_{-(46)}^{+(18)}$	$N_{f}=2+1$
RBC/UKQCD 10	$0.9599(34)\left(\begin{array}{l}+31 \\ -43)\end{array}\right.$	$N_{f}=2+1$
ETMC	$0.9560(57)(62)$	$N_{f}=2$
Kastner \& Neufeld	$0.986(8)$	ChPT
Cirigliano	$0.984(12)$	χ PT
Jamin, Oller, \& Pich	$0.974(11)$	ChPT
Bijnens \& Talavera	$0.976(10)$	ChPT
Leutwyler \& Roos	$0.961(8)$	Quark model

3.3.3 Results: Comparison with previous work and unitarity

this work	$0.9667(23)(33)$
RBC/UKQCD 13	$0.9670(20)_{-(46)}^{+(18)}$
RBC/UKQCD 10	$0.9599(34)\binom{+41}{-43}$
ETMC	$0.9560(57)(62)$
Kastner \& Neufeld	$0.986(8)$
Cirigliano	$0.984(12)$
Jamin, Oller, \& Pich	$0.974(11)$
Bijnens \& Talavera	$0.976(10)$
Leutwyler \& Roos	$0.961(8)$

With this value of $f_{+}^{K \pi}(0)$ and latest experimental data ($\left|V_{u s}\right| f_{+}(0)=0.2163(5) \quad$ Moulson, 1209.3426):

$$
\left|V_{u s}\right|=0.2238 \pm 0.0009 \pm 0.0005
$$

$$
\rightarrow \Delta_{\mathrm{CKM}} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=-0.0008(6)
$$

3.4. Analysis on the HISQ $N_{f}=2+1+1$ MILC ensembles

3.4.1 Simulation parameters

$a(f m)$	m_{l} / m_{s}	Volume	$N_{\text {conf. }} \times N_{t_{s}}$	$a m_{s}^{\text {sea }}$	$a m_{s}^{\text {val }}$	
0.15	0.035	$32^{3} \times 48$	1000×4	0.0647	0.0691	
0.12	0.200	$24^{3} \times 64$	1053×8	0.0509	0.0535	
	0.100	$32^{3} \times 64$	993×4	0.0507	0.053	
	0.100	$40^{3} \times 64$	391×4	0.0507	0.053	FV check
	0.035	$48^{3} \times 64$	945×8	0.0507	0.0531	
0.09	0.200	$32^{3} \times 96$	775×4	0.037	0.038	
	0.100	$48^{3} \times 96$	853×4	0.0363	0.038	
	0.035	$64^{3} \times 96$	625×4	0.0363	0.0363	

* Physical quark mass ensembles
* HISQ action on the sea: smaller discretization effects.
* Charm quarks on the sea.
* Better tuned strange quark mass on the sea.

3.4.2 Preliminary results

\# Statistical errors: 0.2-0.4\%. Still larger than in the previous calculation (need more statistics).
\# We do not see discretization effects except in the $a \approx 0.15 \mathrm{fm}$ ensemble.

3.4.2 Preliminary results

Try the same chiral+continuum extrapolation strategy: one-loop partially quenched SChPT + two loops continuum ChPT.

Preliminary

Only statistical errors included in plot

In progress: Include finite volume corrections at one loop in the SChPT fit function, C. Bernard, J. Bijnens, E.G.

3.4.2 Preliminary results

Investigating the extrapolation strategy and systematic errors.
Some checks:

* Substituting two-loop ChPT by NNLO analytical param.: $\leq 0.15 \%$ shift
* Non including physical quark mass ensembles in the chiral+cont. fit

Preliminary

$$
f_{+}(0)=0.9734(30) \text { stat. error only }
$$

4. Conclusions and outlook

\# State-of-the-art calculation of $f_{+}^{K \pi}(0)$:

$$
f_{+}^{K \pi}(0)=0.9667 \pm 0.0023 \pm 0.0033
$$

(together with RBC/UKQCD, 1305.7217, $f_{+}^{K \pi}(0)=0.9670 \pm 0.0020_{-46}^{+18}$)

* Keys of precision:
** $N_{f}=2+1$ MILC ensembles (great statistics, variety of quark masses)
** HISQ action on the valence (small discretization error)
** one-loop SChPT + two-loop ChPT (controlled extrapolation to the continuum and physical point).
* With this value of $f_{+}^{K \pi}(0)$ and the latest experimental average for $\left|V_{u s}\right| f_{+}^{K \pi}(0)$ we get:

$$
\left|V_{u s}\right|=0.2238 \pm 0.0009_{l a t .} \pm 0.0005_{e x p}
$$

(1.5σ smaller than unitarity value)
** Form factor error still dominates the determination of $\left|V_{u s}\right|$.

4. Conclusions and outlook

\# Working on a new determination to try to reduce previous dominant sources of error using MILC HISQ $N_{f}=2+1+1$ ensembles

* Physical light quark masses: Reduce chiral extrapolation error.
* HISQ action on the sea: Smaller discretization errors.
* Better tunning of sea quark masses: Reduce chiral extrapolation error.
* Include sea charm quark effects

Very preliminary error budget	
Source of uncertainty	Error $f_{+}(0)(\%)$
Statistics	$0.2-0.3$
Chiral ext. \& fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	$0.3-0.37$

4. Conclusions and outlook

Very preliminary error budget

Source of uncertainty	Error $f_{+}(0)(\%)$
Statistics	$0.2-0.3$
Chiral ext. \& fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	$0.3-0.37$

* This is just the first calculation on the HISQ ensembles. We can improve in: statistics, discretization errors (smaller lattice spacings), finite volume uncertainty (ChPT calculation) ...

Goal: match experimental error 0.23%

4. Conclusions and outlook

Very preliminary error budget

Source of uncertainty	Error $f_{+}(0)(\%)$
Statistics	$0.2-0.3$
Chiral ext. \& fitting	≤ 0.15
Discretization	≤ 0.1
Scale	0.06
Finite volume	≤ 0.1
Total Error	$0.3-0.37$

* This is just the first calculation on the HISQ ensembles. We can improve in: statistics, discretization errors (smaller lattice spacings), finite volume uncertainty (ChPT calculation) ...

Goal: match experimental error 0.23%
\# Study chiral behaviour of the vector and scalar form factors (at $q^{2}=0$ and $q^{2} \neq 0$).
\times
2.2.1. $K \rightarrow \pi \pi$ and $\varepsilon_{K}^{\prime} / \varepsilon_{K}$

Going beyond gold-plated quantities.
\# $\Delta I=3 / 2$ contribution:

* RBC: First quantitative results at the 20% level from a direct calculation at a small pion mass.
arXiv:1111.1699,1111.4889
* Laiho and Van de Water: New method developed based on combining ChPT (indirect) and direct methods.
arXiv:1011.4524
\# $\Delta I=1 / 2$ contribution: $\quad *$ RBC: First calculation using the direct method on small volume and large pion mass with a 25%. Feasibility study.

asqtad and HISQ data

