Neutrino Oscillations: Experimental Status and Outlook

Caren Hagner,

Institut für Experimentalphysik, Universität Hamburg

- Neutrino Masses and Mixing
- 2 Flavor Neutrino Oscillation Experiments
 - MINOS, OPERA
- Measurement of 3rd Mixing Angle θ₁₃
 Double Chooz, Daya Bay , Reno, MINOS, T2K
- Mass Hierarchy (and CP-phase)
 - Long Baseline Projects: LAGUNA
 - Reactor Neutrinos: Daya Bay 2
- Solar Neutrinos:
 - Borexino
 - Future Project: LENA
- Summary

Neutrino Masses and Mixing

3 massive neutrinos: v_1 , v_2 , v_3 with masses: m_1 , m_2 , m_3

Flavor-Eigenstates $v_e, v_\mu, v_\tau \neq Mass-Eigenstates$

Example:
$$|v_e\rangle = U_{e1}|v_1\rangle + U_{e2}|v_2\rangle + U_{e3}|v_3\rangle$$

Neutrino Mixing

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Parametrisation of Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

- 3 mixing angles: θ_{12} , θ_{23} , θ_{13} SINCE 2012: all measured!
- 1 Dirac-phase (CP violating): δ

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Θ₂₃ ≈ 45°

Θ₁₂ ≈ 33°

atmospheric neutrinos, neutrino beams

reactor neutrinos, neutrino beams solar neutrinos, reactor neutrinos

What do we know about neutrino masses? $\Delta m_{solar}^2 \approx 8.10^{-5} eV^2$, $\Delta m_{atm}^2 \approx 2.10^{-3} eV^2$

Neutrino Oscillations

Simplified Picture: 2 Flavor Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2(2\theta_{23}) \cdot \sin^2\left(1.267 \frac{\Delta m_{23}^2 (\operatorname{in} \mathrm{eV}^2) \cdot L(\operatorname{in} \mathrm{km})}{E(\operatorname{in} \mathrm{GeV})}\right)$$

Präzisionsmessung der Neutrino-Oszillationen

The MINOS Experiment

A large detector at Soudan

> The "far detector" or FD

A smaller detector at Fermilab

> The "near detector" or ND

Measure the beam and neutrino energy spectrum near the source

> See how it differs far away

MINOS: Disappearance of v_{μ}

for 7.25.1020 pot

$$\left|\Delta m_{32}^{2}\right| = 2.32_{-0.08}^{+0.12} \times 10^{-3} \text{eV}^{2} \text{ (90\% CL)}$$

 $\sin^{2} 2\theta_{23} > 0.90 \qquad (90\% \text{CL})$

"Measurement of the neutrino mass splitting and flavor mixing by MINOS "**MINOS Coll.**, Phys.Rev.Lett.106:181801,2011 (arXiv:1103.0340)

MINOS: Anti-Neutrinos

Old Analysis (2010) "Tension" between Neutrino and Antineutrino result New Analysis (2011) for 2.95x10²⁰ pot: good agreement of Neutrinos and Antineutrinos!

Physics runs: 2008, 2009, 2010, 2011, 2012 completed.

OPERA: v_{τ} Detection Method

OPERA Target: Lead-Emulsion-Bricks

Lead-Emulsion-Bricks (total ≈ 150.000)

Target Mass: ≈ 1,25 kton

105000 m² of lead surface 111000 m² of film surface (9 million films)

"Emulsion Cloud Chamber" (ECC)

OPERA - Detector

Magnetic Spectrometer:

Magnet-Region:
Iron & RPCsPrecision Tracker:
6 Planes of Drifttubes

BMS robot to remove bricks

OPERA Statistics and Scanning Status

CNGS neutrino beam operation terminated (12/2012).

ca. 18000 events collected in electronic detectors,

brick extraction still ongoing,

Scanning of data still ongoing (next 1-2 years), present status: 5844 located interactions (2008-2009 completed, 2010-2012 ongoing with optimized strategy)

date

First v_{Tau} Candidate Event (22/08/2009)

Opera Coll., "Search for nu-mu - nu-tau oscillation with the OPERA experiment in the CNGS beam", New J. Phys. 14 (2012) 033017

2nd v_{Tau} Candidate Event (23/04/2011)

$$\tau \to v_\tau + h + h + h$$

2nd v_{Tau} Candidate Event (23/04/2011)

$$\tau \to v_\tau + h + h + h$$

3rd v_{Tau} Candidate Event (02/05/2012): $\tau \rightarrow \mu v_{\tau}$

Zoom into the brick:

Decay in the plastic base

Extended sample (including the 3 tau candidates)				
Signal	Background	Charm	μ scattering	had int
0.66	0.045	0.029		0.016
0.61	0.090	0.087		0.003
0.56	0.026	0.0084	0.018	
0.49	0.065	0.065		
2.32	0.226	0.19	0.018	0.019
	e (including the 2 Signal 0.66 0.61 0.56 0.49 2.32	e (including the 3 tau candidates) Signal Background 0.66 0.045 0.61 0.090 0.56 0.026 0.49 0.065 2.32 0.226	Signal Background Charm 0.66 0.045 0.029 0.61 0.090 0.087 0.56 0.026 0.0084 0.49 0.065 0.065 2.32 0.226 0.19	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- 3 observed events (in $\tau \rightarrow h$, $\tau \rightarrow 3h$, $\tau \rightarrow \mu$ channels)
- Pvalue = $P_0 = 1.125 \cdot 10^{-4}$
- Probability to be explained by background = $7.29 \cdot 10^{-4}$
- Significance of non-null observation: 3.2σ

Search for $v_{\mu} \rightarrow v_{e}$ Oscillations (Data 2008-2009)

Search for $v_{\mu} \rightarrow v_{e}$ Oscillations (Data 2008-2009)

19 events found in sample of 505 neutrino interactions without muon

Search for $v_{\mu} \rightarrow v_{e}$ Oscillations (Data 2008-2009)

arXiv1303.3953: Opera Coll., "Search for $v_{\mu} \rightarrow v_{e}$ oscillations with the OPERA experiment in the CNGS beam", submitted to JHEP

Analysis for $v_{\mu} \rightarrow v_{e}$ non-standard oscillations

- CNGS beam stopped 12/2012.
- Data Analysis ongoing (2015).
- So far: 3 tau-neutrino candidate events found (2.3 expected) corresponding to ≈3σ.
- First results of electron-neutrino search .

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Status 2011: CHOOZ (and Palo Verde) reactor neutrino experiments:

$$\sin^2(2\theta_{13}) < 0.15$$
 for $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{eV}^2$

Measurement of θ_{13} (method A)

A) **Disappearance of** $\bar{\mathbf{v}}_{e}$ from nuclear reactors

$$P(\overline{v}_e \to \overline{v}_e) = 1 - \sin^2(2\theta_{13}) \cdot \sin^2\left(1.267 \frac{\Delta m_{atm}^2 (\text{in eV}^2) \cdot L(\text{in m})}{E(\text{in MeV})}\right)$$

Compare rates of near detector (few 100m) and far detector (1km)

Running Experiments:

- Double Chooz (France)
- Daya Bay (China)
- RENO (South Korea)

Antineutrino Detection in Reactor Experiments

Inverse Beta Decay: $\overline{v_e} + p \rightarrow n + e^+$

Prompt Event: e⁺ gives neutrino energy E_v $E_v = E_{vis} + 1.8 \text{MeV} - 2m_e$

Delayed Event: n capture on Gd (8MeV γ-emmission) Delay: ca. 30μs

Double Chooz experiment

Ve

Chooz Reactors 4.27GW_{th} x 2 cores

Near Detector L = 400m 10m³ target 120m.w.e. 2014

Far Detector L = 1050m 10m³ target 300m.w.e. since 2011

Double Chooz: Result

Caren Hagner, Kolloquium Wien, 16.5.2013

Double Chooz: Background

7.53 days (2011 und 2012),

during which both reactors had been switched off -> background measurement!

Dominant background contributions:

- Spallation products induced by cosmic μ's (9Li and 8He) cause β-n events.
 Estimate: 1.25 ± 0.54 per day
- Stopping muons and
- Fast neutrons
 Estimate: 0.44 ± 0.20 per day
- Accidental coincidences Estimate: 0.26 ± 0.02 per day
 Estimated BG : 2.0 ± 0.6 per day
 Measured BG: 1.0 ± 0.4 per day

Double Chooz Coll., "Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz", arxiv:1210.3748

Status of Near Detector in Double Chooz

Under construction, start data taking in 2014

The Daya Bay Experiment

Adjacent mountains with horizontal access provide 860 (250) m.w.e cosmic shielding.

Daya Bay

Ling Ao I + II

6 commercial reactor cores with 17.4 GW_{th} total power.

6 Antineutrino Detectors (ADs) +2 (Future) give 120 tons total target mass.

Daya Bay: Result

submitted and accepted by Chinese Physics C, arxiv:1210.6327

Measurement of θ_{13} (and δ_{CP}) (Method B)

B) Appearance of v_e in a beam of v_{μ}

Oscillation probability $P(v_{\mu} \rightarrow v_{e})$ is approximately given by:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2}\theta_{23}\frac{\sin^{2}2\theta_{13}}{(\hat{A}-1)^{2}}\sin^{2}((\hat{A}-1)\Delta) \\ &+\alpha\frac{\sin\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}}{\hat{A}(1-\hat{A})}\sin(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta) \\ &+\alpha\frac{\cos\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}}{\hat{A}(1-\hat{A})}\cos(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta) \\ &+\alpha^{2}\frac{\cos^{2}\theta_{23}\sin^{2}2\theta_{12}}{\hat{A}^{2}}\sin^{2}(\hat{A}\Delta) \end{split}$$
with:

$$\alpha = \Delta m_{21}^{2}/\Delta m_{31}^{2} << 1 \\ \Delta = \Delta m_{31}^{2}L/4E \end{split}$$
• Potential to measure θ_{13} and δ_{CP} !
• All other parameters have to be known with high precision

matter dependent quantities :

$$\hat{A} = 2VE / \Delta m_{31}^2$$

 $V = \sqrt{2}G_F n_e$, with electronen density n_e

MINOS: Electron Neutrino Appearance

First result:

Phys. Rev. Lett. 107, 181802 (2011)

Update summer 2012:

T2K: Electron Neutrino Appearance

First Result in 2011 (1.43×10²⁰) : T2K Coll., "Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam", arXiv:1106.2822v1

Update for 3.01×10²⁰ p.o.t. (summer 2012)

Comparison of θ_{13} results

Global Fit to Data of all Neutrino Experiments

Example: Fogli et al., arxiv:1205.5254

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH.

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15-8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75-3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.33 - 2.49	2.27 - 2.55	2.19 - 2.62
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42	2.31-2.49	2.26-2.53	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.41	2.16 - 2.66	1.93-2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19-2.67	1.94-2.91	1.71 - 3.15
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63
δ/π (NH)	1.08	0.77-1.36		
δ/π (IH)	1.09	0.83-1.47	—	

relative precision of globally determined neutrino parameters:

 δ m² (2.6%), Δm² (3.0%), sin² ₁₂ (5.4%), sin²₁₃ (10%), and sin²₂₃ (14%)

How to determine the mass hierarchy:

LAGUNA-LBNO Design Study FP7 (2011-2014)

DESY - Pyhäsalmi (1500km), Protvino – Pyhäsalmi (1100km)

CN2PY (2300km): Mass Hierarchy

Potential to determine CP-Phase with CN2PY

S.Pascoli NOW2012

Determination of Mass Hierarchy in a Reactor Neutrino Experiment

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\begin{array}{rcl} \Delta m_{31}^2 &=& \Delta m_{32}^2 + \Delta m_{21}^2 \\ \mathrm{NH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \mathrm{IH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{array}$$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022 L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008, PRD79:073007, 2009

From NOW2012

$6.5 \cdot 10^{10} v_{e}/cm^{2}s$

CNO cycle

Energy Spectrum of Solar Neutrinos

Solar Neutrino Experiments

Measure Δm_{12}^2 and (at present) most precise value of θ_{12}

Detector	Target mass	Threshold [MeV]	Data taking
Homestake	615 tons C ₂ Cl ₄	0.814	1970-1994
Kamiokande	3ktons H ₂ O	7.5	1983-1990
SAGE	50tons molted metal Ga	0.233	1989-present
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003
Super-Kamiokande 22.5ktons		4.5 6.5 4.5 4	1996-2001 2003-2005 2006-2008 2008-present
SNO	1kton D ₂ O	5[3.5]	1999-2006
Borexino	300ton C ₉ H ₁₂	0.2 MeV	2007-present

Compilation shown by Aldo Ianni at NOW2012

BOREXINO @ LNGS

Main Measurement: Flux of ⁷Be Neutrinos

elastic scattering of neutrinos on electrons: neutrino "lines" \rightarrow Compton-like edge in spectrum of recoil electrons

Main Borexino Result: Flux of 7Be Neutrinos

Borexino Coll. "precision measurement of the 7Be solar neutrino interaction rate in Borexino", PRL 107, 141301 (2011)

Borexino Highlight 2012:

First Observation of pep-Neutrinos (+ best limit on CNO)

Solar Neutrino Flux: Theory vs Experiment

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux (Borexino) [cm ⁻² s ⁻¹] Data			
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	6.06(1 ^{+0.003} -0.01)×10 ¹⁰			
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.60(1±0.19)×10 ⁸			
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.84(1±0.05)×10 ⁹			
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.40(1±0.031)×10 ⁶			
¹³ N	2.96(1±0.15)×10 ⁸	3.76(1±0.15)×10 ⁸	<6.7×10 ⁸			
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	<3.2×10 ⁸			
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	<59×10 ⁶			
CNO	5.24×10 ⁸	3.76×10 ⁸	<7.7×10 ⁸ (2σ)			
(2004 prediction was 10.8)						
Next G	Next Godin Final					

More data points in transition region needed! (BSM and/or solar physics)

Borexino: Geo Neutrinos (New)

Borexino Coll., "Measurement of geoneutrinos from 1353 days of Borexino", Phys. Lett. B, April 2013, arXiv:1303.2573 Exposure x2.4 compared to first publication: Borexino Coll., Phys. Lett. B 687 (2010) 299.

Assume chondritic ratio U/Th = 3.9: Geo neutrino flux: **38.8 ± 12.0 TNU** (terristrial neutrino units) 1TNU = 1 event / year / 10³² protons **First time:** U, Th contribution and mantle signal e Still big uncertainties, agreement with geophysical models

Next Generation Liquid Scintillator Detector: 50kt LENA (Low Energy Neutrino Astronomy)

LENA Physics Program

Neutrinos at low energies

- Galactic Supernovae v's
- DSNB
- Solar neutrinos
- Dark matter annihilation
- Geoneutrinos
- Reactor neutrinos
- Radioactive sources
- Pion decay-at-rest beams

GeV energies

- Long-baseline neutrino beam
- Atmospheric neutrinos
- Proton decay

Astrophysical neutrino sources

- stellar core collapse/fusion processes
- Earth heat flow, elemental composition

Neutrino physics

- mixing parameters
- neutrino mass hierarchy
- sterile flavors
- neutrino-antineutrino conversion
- non-standard interactions

Particle physics

- baryon number violation
- light dark matter

The Reactor Neutrino Anomaly

• Improved Reactor Neutrino Energy Spectra: +3,5% Flux Increase Müller et al., Phys.Rev.RC83, 054615 (2011), Huber, Phys.Rev.C84, 024617 (2011) gegenüber Schreckenbach et al., Phys.Lett.B160, 325 (1985)

- New calculation of σ(inverse β decay): +1% (new value of neutron lifetime)
- Taking into account long lived Isotopes: +1%

Flux(SBL Experiments)/New Flux = 0.94 ± 0.02

G.Mention et al., Phys.Rev.D83:073006,2011

Sterile Neutrinos and Reactor Neutrino Anomaly

Tests in Future Experiments

Complementary Methods:

- Neutrino flux very close (<15m) to reactor core e.g. NUCIFER at Osiris reactor (CEA/Saclay)
- "Short Baseline" O(1km) neutrino beam e.g. Icarus & Nessie proposal at CERN
- Strong radioactive neutrino sources
 - 51Cr neutrino source O(MCi)
 inside detector: Baksan, LENS, SNO+
 outside detector: Borexino
 - ¹⁴⁴Ce-¹⁴⁴Pr Anti neutrino source O(10kCi) inside: CeLAND, Borexino outside: Daya Bay

Sensitivity of planned Experiments

from arXiv:1204.5379: "Light Sterile Neutrinos: A White Paper"

Neutrino Oscillometry in LENA

Radioactive neutrino sources

- anti- v_e (monoenergetic) from EC sources: ⁵¹Cr, ³⁷Ar
- v_e (E=1.8-2.3MeV) from ⁹⁰Sr (⁹⁰Y)
- Iarge activity necessary: 1MCi or more

Oscillation baseline

- for $\Delta m_{32}^2(\theta_{13})$: 750m for ⁵¹Cr (747keV)
- for Δm_{41}^2 (sterile): 1.3m

Summary:

- Neutrino Oscillationes have been observed in a large variety of experiments.
- The 2 mass differences have been measured.
- All 3 mixing angles have been measured.
- The mixing matrix of quarks and leptons has a very different structure.
- Goals for next generation of oscillation experiments:
 - Mass hierarchy
 - CP-phase
 - Clarification of MiniBoone/LSND and Reactor/Gallium anomaly (sterile neutrinos?)
- Use neutrinos as probes for Sun, Earth, Supernovae...
- Upcoming: GERDA will announce first result in June

3rd v_{Tau} Candidate Event (02/05/2012): $\tau \rightarrow \mu v_{\tau}$

Caren Hagner, Kolloquium Wien, 16.5.2013

anananti l

Desease.

OPERA

..........

Double Chooz: Aufbau Ferndetektor

Outer Veto (OV)

plastic scintillator strips

Outer Steel Shielding 250 t steel (15 cm)

Inner Veto (IV)

90 m³ of scintillator in a steel vessel (10 mm) equipped with 78 PMTs (8 inches)

Buffer

110 m³ of mineral oil in a steel vessel (3 mm) equipped with 390 PMTs (10 inches)

y-Catcher (GC)

22.3 m³ scintillator in an acrylic vessel (12 mm)

Target

10.3 m³ scintillator doped with 1g/l of Gd compound in an acrylic vessel (8 mm)

Daya Bay Neutrino Detektoren

photosensors: 192 8"-PMTs energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

RENO Detektor

RENO (South Korea)

RENO: Result (220 days)

Caren Hagner, Kolloquium Wien, 16.5.2013

T2K

Unterbrochen wegen Erdbeben und Tsunami im März 2011 (Infrastruktur beschädigt) Beschleuniger im Dezember 2011 wieder gestartet. Datennahme läuft.

T2K: Hinweis auf Erscheinen von v_e in v_{μ} Strahl

Atmosphärische Neutrinos und Massenhierarchie (1): ICAL @ INO

50kt magnetized iron calorimeter using glass RPCs (ICAL), Underground Lab INO in Tamil Nadu (India)

Mass hierarchy results possible before 2025, but < 3σ even with most optimistic assumptions on energy and angular resolution of ICAL (10% and 10°, respectively)

Atmosphärische Neutrinos und Massenhierarchie (2): PINGU (und ähnlich ORCA)

Massenhierarchie mit PINGU/ORCA

Akhmedov, Smirnov, Razzaque (arxiv:1205.7071)

"After 5 years of PINGU 20 operation: Significance of the determination of the hierarchy can range from 4σ to 11σ (without taking into account parameter degeneracies), depending on the accuracy of reconstruction of the neutrino energy and zenith angle."

Caren Hagner, Kolloquium Wien, 16.5.2013

Experimente die nicht ins Standard Oszillationsbild passen: LSND/MiniBoone

• LSND:

Pion-Zerfall in Ruhe, Oszillation Anti-Myon-Neutrino in Anti-Elektron-Neutrino beobachtet?

 MiniBoone: Short Baseline, Oszillation Anti-Myon-Neutrino in Anti-Elektron-Neutrino beobachtet?

Könnten durch 4. Neutrino (steril) im 1eV Bereich erklärt werden.

Caren Hagner, Kolloquium Wien, 16.5.2013