Charm and Bottom mass determination from relativistic QCD sum rules at four loops

Bahman Dehnadi

University of Vienna

23 - 05 - 2013

arXiv:1102.2264 [hep-ph]: A. H. Hoang

- V. Mateu
- B. Dehnadi
- S. M. Zebarjad

- MPI & U. Vienna
- MIT & IFIC
- Shiraz University & U. Vienna
- Shiraz University

Outline

• General remarks on heavy quark masses

- Concept of mass in QCD.
- Motivations for a precise determination.
- Recent results.
- Relativistic QCD sum rules.

• Experimental data

- Collecting experimental data.
- How to combine data from different experiments? new
- How to treat errors and correlations?
- Experimental moments and examination of method.

• Theoretical developments

- Analytic properties (Various expansions at four loops).
- OPE and non-perturbative contributions.
- Estimate of (theoretical) perturbative uncertainties. new
- Results for Charm Mass
- Bottom Mass

INTRODUCTION

Remarks on heavy quark masses

Parameter in QCD Lagrangian — formal definition (as strong coupling)

$$\mathcal{L} = \sum_{k=1}^{N_F} \overline{q}_k \left(i \not\!\!\!D - \not\!\!\!\!m_k \right) q_k - \frac{1}{4} G_{\mu\nu} G^{\mu\nu}$$

Confinement $\longrightarrow m_k$ is not physical observable

Running mass: Observable and scheme dependent

Impact of precision

from U. Haisch

Determinations of m_c

Spectral moments of inclusive B decays (nonrelativistic)

Charmominum sum rules (relativistic)

Lattice

[1.21, 1.34]

Taken from A. Hoang

Flavor institute CERN 2008

<i>т</i> с(<i>т</i> с) [GeV]	method
1.266 ± 0.014	lattice, unquenched, staggered
$\textbf{1.286} \pm \textbf{0.013}$	low-momentum sum rules, N ³ LO
$\textbf{1.295} \pm \textbf{0.015}$	low-momentum sum rules, N ³ LO
1.24 ± 0.07	fit to B-decay distribution, $\alpha_s^2\beta_0$
1.224 ± 0.017 ± 0.054	fit to B-decay data, $\alpha_s^2\beta_0$
1.29 ± 0.07	NNLO moments
1.319 ± 0.028	lattice, quenched
1.301 ± 0.034	lattice, quenched
1.26 ± 0.04 ± 0.12	lattice, quenched
1.25 ± 0.09	PDG 2006

Relativistic sum rules

Total hadronic cross section

Moments of the cross section

$$R_{e^+e^- \to c\bar{c} + X}(s) = \frac{\sigma_{e^+e^- \to c\bar{c} + X}(s)}{\sigma_{e^+e^- \to \mu^+\mu^-}(s)}$$

$M_n = \int_{4m^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_{e^+e^- \to c\bar{c} + X}(s)$

Vacuum polarization function

Vector current (electromagnetic)

$$g_{\mu\nu}q^2 - q_{\mu}q_{\nu} \big) \, \Pi(q^2) = -i \int \mathrm{d}x \, e^{iqx} \, \langle \, 0 \, |T \, j_{\mu}(x) j_{\nu}(0)| \, 0 \, \rangle$$

$$j^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\psi(x)$$

• Otherwise the OPE converges badly.

n=1 is the cleanest moment, and we will focuss on it for the analyses presented in this seminar.

(n = 2 is also fine)

Determination of m_q from sum rules

Only for n = 1 **[3,4]**, 2 **[5]** 3-loops in pert. theory. Updated experimental data Tiny errors! (underestimated ?)

Need for more general analysis

The aims of this work:

- > An account of all available hadronic cross section data.
- A thorough analysis of perturbative uncertainities.

Experimental data

Experimental data: charm

Resonances

- Sub-Threshold and Threshold (3.73 4.8)
- Gap region and high energy region (4.8 10.538)
- Only where there is no data
- Assign a conservative 10% error to reduce model dependence

Experimental data: charm

Data used in Kühn et al (2004, 2005, ...)

Fit procedure

Method inspired by a similar one in Hagiwara, Martin & Teubner.

Recluster data. Clusters not necessarily equally sized.
 Number of clusters and size of cluster according to the structure of the data

3. Fit the value of R for each cluster. Data is allowed to "move" within its systematic error. The method renders errors and correlations among various clusters. One can then calculate errors and correlations for the moments.

Fit procedure

Prediction for moments $M_n = m_n 10^{n+1} \text{ GeV}^{n+1}$

 $M_{1} = 21.38 \pm 0.20_{stat} \pm 0.46_{sys}$ $M_{2} = 14.91 \pm 0.18_{stat} \pm 0.29_{sys}$ $M_{3} = 13.11 \pm 0.19_{stat} \pm 0.25_{sys}$ $M_{4} = 12.49 \pm 0.19_{stat} \pm 0.23_{sys}$

We also predict correlations among the various moments, useful for simultaneous fits.

 $C^{\exp} = \begin{pmatrix} 0.250 \ 0.167 \ 0.147 \ 0.142 \\ 0.167 \ 0.120 \ 0.107 \ 0.103 \\ 0.147 \ 0.107 \ 0.095 \ 0.092 \\ 0.142 \ 0.103 \ 0.092 \ 0.090 \end{pmatrix} C^{\exp}_{\mathrm{uc}} = \begin{pmatrix} 0.041 \ 0.035 \ 0.034 \ 0.034 \\ 0.035 \ 0.034 \ 0.034 \ 0.035 \\ 0.034 \ 0.035 \ 0.036 \\ 0.034 \ 0.035 \ 0.036 \ 0.037 \end{pmatrix}$

Fit results

Our default fit assumptions:

I.One quadratic half of resonances partial width uncertainties uncorrelated / other half correlated.
II.Treating the entire systematic uncertainties of R-ratio as correlated when it is not specified.
III. Defining the cluster energies through the weighed average.
IV.Using cluster distribution (2,20,20,10).

V. Default data set collection.

Comparison selections

Minimal selection: All data necessary to cover the whole energy region with the most accurate ones.

Standard selection: All data sets except three ones with the largest uncertainties.

Maximal selection: Contains all 19 data sets.

Stability of choices

Default: widths 50% correlated among themselves and with the continuous data sets.

For those sets with no information on correlations, assume a 100% correlation.

	Different correlation between narrow resonances and data			Different c for some c	orrelation latasets
	Default	Minimal Overlap	No Correlation	50% Correlation	Uncorrelated
n = 1	21.38(20 46)	21.38(20 37)	21.38(20 30)	21.24(22 47)	21.09(28 25)
n=2	14.91(18 29)	14.91(18 25)	14.91(18 22)	14.87(19 30)	14.84(20 21)
n = 3	13.10(19 25)	13.10(19 21)	13.10(19 22)	13.10(19 25)	13.10(19 21)
n = 4	12.49(19 23)	12.48(19 21)	12.49(19 21)	12.49(19 23)	12.49(19 21)

Different cluster
energy definition

Different clustering

	Default	Regular average	Middle point	(2, 20, 40, 10)	(2, 10, 20, 10)	(2, 20, 20, 20)
n = 1	21.38(20 46)	21.37(20 46)	21.40(20 45)	21.38(20 46)	21.39(20 46)	21.34(20 46)
n = 2	14.91(18 29)	14.90(18 29)	14.91(18 29)	14.91(18 30)	14.91(18 29)	14.88(18 29)
n = 3	13.10(19 25)	13.10(19 25)	13.11(19 25)	13.11(19 25)	13.11(19 25)	13.08(19 25)
n = 4	12.49(19 23)	12.48(19 23)	12.49(19 23)	12.49(19 23)	12.49(19 23)	12.47(19 23)

Comparison with other analyses

- Blue lines use outdated experimental data for narrow resonances.
- Different analyses tend to agree better for large n \rightarrow Narrow resonances dominate

Theoretical developments

Methods in perturbation theory

Methods in perturbation theory

Fixed order
$$M_n^{exp} = M_n^{pert} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

 μ_α and μ_m independent residual μ_α and μ_m dependence due to truncation of α series
Expanded $\left(M_n^{exp}\right)^{1/2n} = \left(M_n^{th,pert}\right)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$
 $\cdot residual \mu_\alpha$ dependence $\cdot renders correct \mu_m$ dependence $\cdot renders correct \mu_m$ dependence to the order of truncation
Iterative $\overline{m}_c(\mu_m) = \overline{m}_c^{(0)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \hat{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^{(0)}}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^{(0)}}{\mu_\alpha^2}\right)$

Contour improved analysis

Contour Improved First applied to hadronic tau decays Liberder & Pich ('92)

Now μ depends on s \rightarrow rearrangement of higher order contributions

$$M_n^{c,pert} = \frac{6\pi Q_c^2}{i} \int_c \frac{\mathrm{d}s}{s^{n+1}} \Pi(q^2, \alpha_s(\mu_\alpha^c(s, \overline{m}_c^2)), \overline{m}_c(\mu_m), \mu_\alpha^c(s, \overline{m}_c^2), \mu_m)$$

$$(\mu_{\alpha}^{c})^{2}(s,\overline{m}_{c}^{2}) = \mu_{\alpha}^{2} \left(1 - \frac{s}{4\overline{m}_{c}^{2}(\mu_{m})}\right)$$

Reweights threshold versus continuum effects

$$\Pi^{\overline{\mathrm{MS}}}\Big(q^2, \alpha_s(\mu_{\alpha}^c(q^2, \overline{m}_c^2)), \overline{m}_c(\mu_m), \mu_{\alpha}^c(q^2, \overline{m}_c^2), \mu_m\Big) = \sum_{n=0}^{\infty} q^{2n} M_n^{\mathrm{c, pert}}$$

Contour improved methods are (perturbatively) sensitive to the value of $\Pi(0)$

Nonperturbative contribution

200% e	error
--------	-------

Compatible with 0

Nth Moment	n=1	n=2	n=3	n=4
Contribution to the moments	0.2%	0.6%	2%	3 %
Correction in the mass (MeV)	1.11	1.17	1.21	1.24

State of the art of calculations

Kühn et al, Maier et al,For n=1,2,3 the $C_n^{0,0}$ coefficients are known at $O(\alpha_s^3)$ Boughezal et alFor n \geq 4, $C_n^{0,0}$ are known in a semianalytic aproach (Padé approximants)this method renders a central value and an errorHoang, Mateu & ZebarjadThe rest of $C_n^{a,b}$ can be deduced by RGE evolutionMaier et alGreynat et alGreynat et al

Contours in the $\mu_{\alpha} - \mu_m$ plane

Various error estimates

Convergence of errors

 $m_c(m_c)$, double μ variation, $\alpha_s(m_Z)=0.118$

Comparison to similar analyses

Bottom Mass

Determination of m_b

Spectral moments of inclusive B decays (nonrelativistic)

Bottomonium sum rules (relativistic)

Taken from Kühn et al

Lattice

			Kuehn, Steinh	auser, Sturm	07
			Pineda, Signer	: 06	
	⊢−−−∎ −−		Della Morte et	t al. 06	
	4		Buchmueller,	Flaecher 05	
	•		Mc Neile, Mic	hael, Thomp	son 04
- ⊢			deDivitiis et al	l. 03	
			Penin, Steinha	user 02	
			Pineda 01		
	4		Kuehn, Steinh	auser 01	
			Hoang 00		
			PDG 2006		
4.1 4.2	4.3	4.4	4.5	4.6	4.7
	1	$m_b(m_b)$			

$m_b(m_b) \; ({\rm GeV})$	Method
4.164 ± 0.025	low-moment sum rules, NNNLO
4.19 ± 0.06	Υ sum rules, NNLL (not complete)
4.347 ± 0.048	lattice (ALPHA), quenched
4.20 ± 0.04	fit to B decay distribution, $\alpha_s^2 \beta_0$
$4.25 \pm 0.02 \pm 0.11$	lattice (UKQCD)
4.33 ± 0.10	lattice, quenched
4.346 ± 0.070	$\Upsilon(1S)$, NNNLO
$4.210 \pm 0.090 \pm 0.025$	$\Upsilon(1S)$, NNLO
4.191 ± 0.051	low-moment sum rules, NNLO
4.17 ± 0.05	Υ sum rules, NNLO
4.20 ± 0.07	PDG

Also low-moment sum rules N³LO Boughezal et al [4]

 $m_b(m_b) = 4.205 \pm 0.058$

Experimental data: bottom

Babar data

Experimental data: bottom

Perturbation theory

Comparison with other analyses

Contribution of the perturbative approximation reduces in the higher moments. Non-relativistic QCD sum rules (n > 4):

(A. H. Hoang, P. R. Femena & M. Stahlhofen.(JHEP, 2012)) $\overline{m}_b(\overline{m}_b) = 4.235 \pm 0.055_{\text{pert}} \pm 0.003_{\text{exp}} \text{GeV}$

•Preliminary analyses:

- Convergent even at the higher moments.
- The third moment of relativistic sum rules:

 $\alpha_{s}(m_{z}) = 0.1184 \pm 0.0021$

 $\bar{m}_b(\bar{m}_b) = 4.178 \pm 0.011_{th} \pm 0.005_{\alpha} \pm 0.020_{sys} \pm 0.004_{stat}$

Conclusions and outlook

- It is essential to have a reliable error estimate for charm and bottom masses.
- Concerning relativistic sum rules, a revision of perturbative errors was mandatory.
- Experimental input must be treated with care (combining various sets of data, correlations, systematic errors ...)
- Perturbative QCD should be used only where there is no data, and assigning a conservative error.
 - For charm PQCD is only a small fraction of the moment \rightarrow small impact.
 - For bottom PQCD is a sizeable fraction of the moment \rightarrow big errors!
- The analysis can be easily extended to other correlators connection to lattice

Stay tuned for updated numbers on charm, and for results on bottom mass and pseudoscalar correlators.

Result for $\alpha_s(m_z) = 0.1184 \pm 0.0021$

 $\overline{m}_{c}(\overline{m}_{c}) = 1.277 \pm 0.006_{\text{stat}} \pm 0.013_{\text{sys}} \pm 0.019_{\text{th}} \pm 0.009_{\alpha} \pm 0.002_{\langle GG \rangle}$

 $= 1.277 \pm 0.025$

Size of neglected terms

	Mass corrections	Secondary Radiation	Singlet	Z-boson
i = 1	0.2	0.04	3×10^{-4}	0.007
i = 2	0.01	0.002	2×10^{-5}	0.004
i = 3	8×10^{-4}	3×10^{-4}	2×10^{-6}	0.003
i = 4	5×10^{-5}	7×10^{-5}	1×10^{-7}	0.003

