```
JET BROADENING IN EFFECTIVE FIELD THEORY:
WHEN DIMENSIONAL REGULARISATION FAILS
[GUIDO BELL ]
based on: T. Becher, GB, M. Neubert, Phys. Lett. B 704 (2011) }27
    T. Becher, GB, Phys. Lett. B }713\mathrm{ (2012) }4
    T. Becher, GB, JHEP 1211 (2012) 126
```


OUTLINE

EVENT-SHAPE VARIABLES

FACTORISATION
REVIEW OF THRUST ANALYSIS
FACTORISATION BREAKDOWN FOR BROADENING ANALYTIC REGULARISATION IN SCET

RESUMMATION
COLLINEAR ANOMALY
NNLL RESUMMATION

OUTLINE

EVENT-SHAPE VARIABLES

FACTORISATION

REVIEW OF THRUST ANALYSIS
FACTORISATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARISATION IN SCET

RESUMMATION
COLIINEAR ANOMALY
NNLL RESUMMATION

Canonical event shape

Thrust:

$$
T=\frac{1}{Q} \max _{\vec{n}}\left(\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|\right)
$$

two-jet like: $T \simeq 1$

spherical: $T \simeq 1 / 2$

Thrust distribution precisely measured at LEP $\quad(\tau=1-T)$

$$
\begin{aligned}
& \text { in the two-jet region } \tau \simeq 0 \\
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau} \simeq \frac{\alpha_{S} C_{F}}{2 \pi}\left[-\frac{4 \ln \tau+3}{\tau}+\ldots\right] \\
& \Rightarrow \text { Sudakov logs require resummation }
\end{aligned}
$$

Motivation

Why $e^{+} e^{-}$event shapes in 2013?

- clean environment to test understanding of QCD
perturbation theory + resummation + non-perturbative effects
same methods are applied at the LHC: soft gluon resummation (\Rightarrow thrust)

$$
p_{T} \text { resummation (} \Rightarrow \text { broadening) }
$$

Motivation

Why $e^{+} e^{-}$event shapes in 2013?

- clean environment to test understanding of QCD
perturbation theory + resummation + non-perturbative effects
same methods are applied at the LHC: soft gluon resummation (\Rightarrow thrust)

$$
p_{T} \text { resummation (} \Rightarrow \text { broadening) }
$$

- precision determination of α_{s}
traditionally based on a fit to six event shapes ($T, \rho_{H}, B_{T}, B_{W}, C, y_{3}$)
$\mathrm{NLO}+\mathrm{NLL}: \quad \alpha_{s}\left(M_{Z}\right)=0.1202 \pm 0.0003($ stat) $\pm 0.0009(\exp) \pm 0.0013(\mathrm{had}) \pm 0.0047$ (theo)
[LEP QCD working group 04]
NNLO + NLL: $\quad \alpha_{s}\left(M_{z}\right)=0.1224 \pm 0.0009($ stat) $\pm 0.0009(\exp) \pm 0.0012($ had $) \pm 0.0035$ (theo)
[Dissertori et al 09]
\Rightarrow further improvements require to go beyond NLL resummation!

Beyond NLL?

Traditional resummations are based on the coherent branching algorithm

- sums probabilities for independent gluon emissions
- apparently hard to extend beyond NLL

In SCET resummations are formulated in an operator language on the amplitude level

- extension to higher orders requires standard EFT techniques
- thrust analysis extended by two orders to $\mathrm{N}^{3} \mathrm{LL}$ accuracy
[Becher, Schwartz 08]
- field theoretical treatment of power corrections
[Abbate, Fickinger, Hoang, Mateu, Stewart 10]
two-dimensional fit to world thrust data
$\mathrm{NNLO}+\mathrm{N}^{3} \mathrm{LL}: \quad \alpha_{s}\left(M_{Z}\right)=0.1135 \pm 0.0002(\exp) \pm 0.0005$ (had) ± 0.0009 (pert)

Beyond NLL?

- field theoretical treatment of power corrections
[Abbate, Fickinger, Hoang, Mateu, Stewart 10]
two-dimensional fit to world thrust data
$\mathrm{NNLO}+\mathrm{N}^{3} \mathrm{LL}: \quad \alpha_{S}\left(M_{Z}\right)=0.1135 \pm 0.0002(\exp) \pm 0.0005$ (had) ± 0.0009 (pert)
world average: $\quad \alpha_{s}\left(M_{Z}\right)=0.1184 \pm 0.0007$
almost 4σ below world average?

Precision thrust analysis

distribution: $\quad \alpha_{S}\left(M_{Z}\right)=0.1135 \pm 0.0002(\exp) \pm 0.0005($ had $) \pm 0.0009$ (pert)
[Abbate et al 10]
moment: $\quad \alpha_{s}\left(M_{Z}\right)=0.1140 \pm 0.0004(\exp) \pm 0.0013($ had $) \pm 0.0007$ (pert)
[Abbate et al 12]
NNLO + NNLL: $\alpha_{S}\left(M_{Z}\right)=0.1131{ }_{-0.0022}^{+0.0028}$

Event shape studies in SCET

Heavy jet mass:

$$
\rho_{H}=\frac{1}{Q^{2}} \max \left(M_{L}^{2}, M_{R}^{2}\right) \quad \text { hemisphere jet masses } M_{L / R}^{2}=\left(\sum_{i \in L / R} p_{i}\right)^{2}
$$

- similar to thrust \Rightarrow again N^{3} LL resummation
- non-perturbative effects more involved (hadron masses, ...)

Event shape studies in SCET

Heavy jet mass:

$$
\rho_{H}=\frac{1}{Q^{2}} \max \left(M_{L}^{2}, M_{R}^{2}\right) \quad \text { hemisphere jet masses } M_{L / R}^{2}=\left(\sum_{i \in L / R} p_{i}\right)^{2}
$$

- similar to thrust \Rightarrow again N^{3} LL resummation
- non-perturbative effects more involved (hadron masses, ...)

Total and wide jet broadening:
[Chiu, Jain, Neill, Rothstein 11; Becher, GB, Neubert 11]

$$
\begin{aligned}
& b_{T}=b_{L}+b_{R} \\
& b_{W}=\max \left(b_{L}, b_{R}\right)
\end{aligned} \quad \text { hemisphere jet broadenings } \quad b_{L / R}=\frac{1}{2} \sum_{i \in L / R}\left|\vec{p}_{i} \times \vec{n}_{T}\right|
$$

- orthogonal to thrust (measure transverse momentum distribution)
- different type of factorisation formula \Rightarrow aim at NNLL resummation

OUTLINE

EVENT-SHAPE VARIABLES

FACTORISATION

REVIEW OF THRUST ANALYSIS
FACTORISATION BREAKDOWN FOR BROADENING ANALYTIC REGULARISATION IN SCET

RESUMMATION
COLIINEAR ANOMALY
NNLL RESUMMATION

Thrust in SCET

In the two-jet limit $\tau \rightarrow 0$ the thrust distribution factorises as
[Fleming, Hoang, Mantry,
Stewart 07; Schwartz 07]

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=H\left(Q^{2}, \mu\right) \int d p_{L}^{2} \int d p_{R}^{2} J\left(p_{L}^{2}, \mu\right) J\left(p_{R}^{2}, \mu\right) S\left(\tau Q-\frac{p_{L}^{2}+p_{R}^{2}}{Q}, \mu\right)
$$

multi-scale problem: $\quad Q^{2}>p_{L}^{2} \sim p_{R}^{2} \sim \tau Q^{2}>\tau^{2} Q^{2}$ hard collinear soft

Thrust in SCET

In the two-jet limit $\tau \rightarrow 0$ the thrust distribution factorises as

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=H\left(Q^{2}, \mu\right) \int d p_{L}^{2} \int d p_{R}^{2} J\left(p_{L}^{2}, \mu\right) J\left(p_{R}^{2}, \mu\right) S\left(\tau Q-\frac{p_{L}^{2}+p_{R}^{2}}{Q}, \mu\right)
$$

multi-scale problem:

Q^{2}	$\gg p_{L}^{2} \sim p_{R}^{2} \sim \tau Q^{2}$	\gg	$\tau^{2} Q^{2}$
hard	collinear		soft

Hard function:

- on-shell vector form factor of a massless quark

$$
H\left(Q^{2}\right)=
$$

- known to three-loop accuracy
- also enters Drell-Yan and DIS in the endpoint region

Thrust in SCET

In the two-jet limit $\tau \rightarrow 0$ the thrust distribution factorises as

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=H\left(Q^{2}, \mu\right) \int d p_{L}^{2} \int d p_{R}^{2} J\left(p_{L}^{2}, \mu\right) J\left(p_{R}^{2}, \mu\right) S\left(\tau Q-\frac{p_{L}^{2}+p_{R}^{2}}{Q}, \mu\right)
$$

multi-scale problem: $\quad Q^{2}>p_{L}^{2} \sim p_{R}^{2} \sim \tau Q^{2}>\tau^{2} Q^{2}$ hard collinear soft

Jet function:

- imaginary part of quark propagator in light-cone gauge

$$
J\left(p^{2}\right) \sim \operatorname{lm}\left[\text { F.T. }\langle 0| \frac{\hbar \bar{n}}{4} W^{\dagger}(0) \psi(0) \bar{\psi}(x) W(x) \frac{\not \boxed{ } \nmid}{4}|0\rangle\right] \quad W(x)=\mathbf{P} \exp \left(i g_{s} \int_{-\infty}^{0} d s \bar{n} \cdot A(x+s \bar{n})\right)
$$

- known to two-loop accuracy (anomalous dimension to three-loop)
- also enters inclusive B decays and DIS in the endpoint region

Thrust in SCET

In the two-jet limit $\tau \rightarrow 0$ the thrust distribution factorises as

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=H\left(Q^{2}, \mu\right) \int d p_{L}^{2} \int d p_{R}^{2} J\left(p_{L}^{2}, \mu\right) J\left(p_{R}^{2}, \mu\right) S\left(\tau Q-\frac{p_{L}^{2}+p_{R}^{2}}{Q}, \mu\right)
$$

multi-scale problem: $\quad Q^{2}>p_{L}^{2} \sim p_{R}^{2} \sim \tau Q^{2}>\tau^{2} Q^{2}$ hard collinear soft

Soft function:

- matrix element of Wilson lines along the directions of energetic quarks

$$
\left.S(\omega)=\sum_{X}\left|\langle x| s_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2} \delta\left(\omega-n \cdot p_{X_{n}}-\bar{n} \cdot p_{X_{\bar{n}}}\right) \quad S_{n}(x)=\mathbf{P} \exp \left(i g_{s} \int_{-\infty}^{0} d s n \cdot A_{s}(x+s n)\right)
$$

- known to two-loop accuracy (anomalous dimension to three-loop)
[Kelley, Schwartz, Schabinger, Zhu 11; Monni, Gehrmann, Luisoni 11; Hornig, Lee, Stewart, Walsh Zuberi 11]

How does resummation work (roughly)?

Let us have a closer look at the one-loop expressions

$$
\begin{aligned}
& H\left(Q^{2}, \mu\right)=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[-2 \ln ^{2} \frac{Q^{2}}{\mu^{2}}+6 \ln \frac{Q^{2}}{\mu^{2}}-16+\frac{7 \pi^{2}}{3}\right] \\
& J\left(p^{2}, \mu\right)=\delta\left(p^{2}\right)+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\left(\frac{4 \ln \left(p^{2} / \mu^{2}\right)-3}{p^{2}}\right)_{*}^{\left[\mu^{2}\right]}+\left(7-\pi^{2}\right) \delta\left(p^{2}\right)\right] \\
& S(\omega, \mu)=\delta(\omega)+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\left(\frac{-16 \ln (\omega / \mu)}{\omega}\right)_{*}^{[\mu]}+\frac{\pi^{2}}{3} \delta(\omega)\right]
\end{aligned}
$$

How does resummation work (roughly)?

Let us have a closer look at the one-loop expressions

$$
\begin{aligned}
& H\left(Q^{2}, \mu\right)=1+\frac{\alpha_{S} C_{F}}{4 \pi}\left[-2 \ln ^{2} \frac{Q^{2}}{\mu^{2}}+6 \ln \frac{Q^{2}}{\mu^{2}}-16+\frac{7 \pi^{2}}{3}\right] \\
& J\left(p^{2}, \mu\right)=\delta\left(p^{2}\right)+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\left(\frac{4 \ln \left(p^{2} / \mu^{2}\right)-3}{p^{2}}\right)_{*}^{\left[\mu^{2}\right]}+\left(7-\pi^{2}\right) \delta\left(p^{2}\right)\right] \\
& S(\omega, \mu)=\delta(\omega)+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\left(\frac{-16 \ln (\omega / \mu)}{\omega}\right)_{*}^{[\mu]}+\frac{\pi^{2}}{3} \delta(\omega)\right]
\end{aligned}
$$

General structure:

- logarithms \Leftrightarrow divergences
anomalous dimensions of EFT operators \Rightarrow resum logs via $R G$ techniques

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

How does resummation work (roughly)?

Let us have a closer look at the one-loop expressions

$$
\begin{aligned}
& H\left(Q^{2}, \mu\right)=1+\frac{\alpha_{S} C_{F}}{4 \pi}\left[-2 \ln ^{2} \frac{Q^{2}}{\mu^{2}}+6 \ln \frac{Q^{2}}{\mu^{2}}-16+\frac{7 \pi^{2}}{3}\right] \\
& J\left(p^{2}, \mu\right)=\delta\left(p^{2}\right)+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\left(\frac{4 \ln \left(p^{2} / \mu^{2}\right)-3}{p^{2}}\right)_{*}^{\left[\mu^{2}\right]}+\left(7-\pi^{2}\right) \delta\left(p^{2}\right)\right] \\
& S(\omega, \mu)=\delta(\omega)+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\left(\frac{-16 \ln (\omega / \mu)}{\omega}\right)_{*}^{[\mu]}+\frac{\pi^{2}}{3} \delta(\omega)\right]
\end{aligned}
$$

General structure:

- logarithms \Leftrightarrow divergences
anomalous dimensions of EFT operators \Rightarrow resum logs via RG techniques

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- finite terms \Rightarrow accounted for in matching calculations

How does resummation work (roughly)?

Let us have a closer look at the one-loop expressions

$$
\begin{aligned}
& H\left(Q^{2}, \mu\right)=1+\frac{\alpha_{S} C_{F}}{4 \pi}\left[-2 \ln ^{2} \frac{Q^{2}}{\mu^{2}}+6 \ln \frac{Q^{2}}{\mu^{2}}-16+\frac{7 \pi^{2}}{3}\right] \\
& J\left(p^{2}, \mu\right)=\delta\left(p^{2}\right)+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\left(\frac{4 \ln \left(p^{2} / \mu^{2}\right)-3}{p^{2}}\right)_{*}^{\left[\mu^{2}\right]}+\left(7-\pi^{2}\right) \delta\left(p^{2}\right)\right] \\
& S(\omega, \mu)=\delta(\omega)+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\left(\frac{-16 \ln (\omega / \mu)}{\omega}\right)_{*}^{[\mu]}+\frac{\pi^{2}}{3} \delta(\omega)\right]
\end{aligned}
$$

General structure:

- logarithms \Leftrightarrow divergences
anomalous dimensions of EFT operators \Rightarrow resum logs via RG techniques

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- finite terms \Rightarrow accounted for in matching calculations

Notice: there is no large log when each function is evaluated at its natural scale!

Angularities

Interesting class of event shape variables

$$
\tau_{a}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}
$$

- interpolates between thrust $(a=0)$ and broadening ($a=1$)
- infrared safe for $a<2$, but standard factorisation only for $a<1$

SCET analysis

- relevant scales: $\quad \mu_{H}^{2} \sim Q^{2} \gg \mu_{J}^{2} \sim Q^{2} \tau_{a}^{\frac{2}{2-a}} \gg \mu_{S}^{2} \sim Q^{2} \tau_{a}^{2}$
thrust: $\quad \mu_{H}^{2} \sim Q^{2} \quad>\quad \mu_{J}^{2} \sim Q^{2} \tau \quad \gg \mu_{S}^{2} \sim Q^{2} \tau^{2}$
broadening: $\quad \mu_{H}^{2} \sim Q^{2} \gg \mu_{J}^{2} \sim Q^{2} B^{2} \sim \mu_{S}^{2} \sim Q^{2} B^{2}$
\Rightarrow factorisation formula for broadening will be different (and more complicated)

Jet broadening

In the two-jet limit $b_{L} \sim b_{R} \rightarrow 0$ expect that the broadening distribution factorises as

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \mathcal{J}_{L}\left(b_{L}-b_{L}^{s}, p_{L}^{\perp}, \mu\right) \mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)
\end{aligned}
$$

two-scale problem: $\quad Q^{2} \gg b_{L}^{2} \sim b_{R}^{2}$

- relevant modes have $p_{\text {coll }}^{\perp} \sim p_{\text {soft }}^{\perp} \sim b_{L, R}$
- jet recoils against soft radiation

Jet broadening

In the two-jet limit $b_{L} \sim b_{R} \rightarrow 0$ expect that the broadening distribution factorises as

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \mathcal{J}_{L}\left(b_{L}-b_{L}^{s}, p_{L}^{\perp}, \mu\right) \mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)
\end{aligned}
$$

Hard function:

- precisely the same object as for thrust
- recall the RG equation

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma^{q}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

\Rightarrow there is a hidden Q-dependence in the second line!

$$
\text { thrust } \frac{\mu_{J}^{2}}{\mu_{S}}=\frac{\tau Q^{2}}{\tau Q}=Q \quad \Leftrightarrow \quad \text { broadening } \quad \frac{\mu_{J}^{2}}{\mu_{S}}=\frac{b^{2}}{b}=b
$$

Jet broadening

In the two-jet limit $b_{L} \sim b_{R} \rightarrow 0$ expect that the broadening distribution factorises as

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \mathcal{J}_{L}\left(b_{L}-b_{L}^{s}, p_{L}^{\perp}, \mu\right) \mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)
\end{aligned}
$$

Some manipulations:

- Laplace transform $\quad b_{L, R} \rightarrow \tau_{L, R}$
- Fourier transform $p_{L, R}^{\perp} \rightarrow x_{L, R}^{\perp}$
- define dimensionless variable $z_{L, R}=\frac{2\left|x_{L, R}^{\perp}\right|}{\tau_{L, R}}$
\Rightarrow the naive factorisation theorem takes the form

$$
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}=H\left(Q^{2}, \mu\right) \int_{0}^{\infty} d z_{L} \int_{0}^{\infty} d z_{R} \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}, \mu\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}, \mu\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

Jet function

The quark jet function for broadening reads

$$
\left.\mathcal{J}\left(b, p^{\perp}\right) \sim \sum_{X} \delta\left(\bar{n} \cdot p_{X}-Q\right) \delta^{d-2}\left(p_{X}^{\perp}-p^{\perp}\right) \delta\left(b-\frac{1}{2} \sum_{i \in X}\left|p_{i}^{\perp}\right|\right)\left|\langle x| \bar{\psi}(0) W(0) \frac{\bar{\hbar}}{4}\right| 0\right\rangle\left.\right|^{2}
$$

- delta-functions ensure that jet has given energy, p^{\perp} and b
- tree level: $\mathcal{J}\left(b, p^{\perp}\right)=\delta\left(b-\frac{1}{2}\left|p^{\perp}\right|\right) \Rightarrow \overline{\mathcal{J}}(\tau, z)=\frac{z}{\left(1+z^{2}\right)^{3 / 2}}+\mathcal{O}(\epsilon)$

Jet function

The quark jet function for broadening reads

$$
\left.\mathcal{J}\left(b, p^{\perp}\right) \sim \sum_{X} \delta\left(\bar{n} \cdot p_{X}-Q\right) \delta^{d-2}\left(p_{X}^{\perp}-p^{\perp}\right) \delta\left(b-\frac{1}{2} \sum_{i \in X}\left|p_{i}^{\perp}\right|\right)\left|\langle x| \bar{\psi}(0) W(0) \frac{\bar{\hbar}}{4}\right| 0\right\rangle\left.\right|^{2}
$$

- delta-functions ensure that jet has given energy, p^{\perp} and b
- tree level: $\mathcal{J}\left(b, p^{\perp}\right)=\delta\left(b-\frac{1}{2}\left|p^{\perp}\right|\right) \Rightarrow \overline{\mathcal{J}}(\tau, z)=\frac{z}{\left(1+z^{2}\right)^{3 / 2}}+\mathcal{O}(\epsilon)$

At one-loop the calculation involves

- Wilson-line diagrams are not well-defined in dimensional regularisation! $\int_{0}^{Q} \frac{d k_{-}}{k_{-}}$diverges in the soft limit (DR regularises $d^{d-2} k_{\perp}$)
- this does not happen for thrust or any SCET, problem

Momentum modes

Thrust (SCET ${ }_{1}$)

Broadening (SCET ${ }_{\text {II }}$)

- thrust: $\quad p_{s}^{2} \ll p_{c}^{2}$
- broadening: $p_{s}^{2} \sim p_{c}^{2}$
\Rightarrow cannot distinguish soft mode from collinear mode when radiated into jet direction
\Rightarrow need additional regulator that distinguishes modes by their rapidities

Regularisation in SCET

The regularisation of individual diagrams is largely arbitrary, one could use e.g.

$$
\frac{1}{p^{2}+i \varepsilon} \quad \rightarrow \quad \frac{1}{p^{2}-\Delta+i \varepsilon}, \quad \frac{\left(\nu^{2}\right)^{\alpha}}{\left(p^{2}+i \varepsilon\right)^{1+\alpha}}
$$

- trivial for QCD, but regularises ill-defined EFT diagrams
- spoils gauge-invariance and eikonal structure of Wilson line emissions

Regularisation in SCET

The regularisation of individual diagrams is largely arbitrary, one could use e.g.

$$
\frac{1}{p^{2}+i \varepsilon} \quad \rightarrow \quad \frac{1}{p^{2}-\Delta+i \varepsilon}, \quad \frac{\left(\nu^{2}\right)^{\alpha}}{\left(p^{2}+i \varepsilon\right)^{1+\alpha}}, \quad \cdots
$$

- trivial for QCD, but regularises ill-defined EFT diagrams
- spoils gauge-invariance and eikonal structure of Wilson line emissions

In a massless theory it is sufficient to regularise phase space integrals

$$
\int d^{d} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- does not modify SCET at all \Rightarrow keeps gauge-invariance and eikonal structure
- analytic, minimal and adopted to the problem (LC propagators)

Why does it work?

Our new prescription amounts to

$$
\int d^{d} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- virtual corrections do not need regularisation
matrix elements of Wilson lines in QCD \Rightarrow the same for thrust and broadening technical reason: $\int d^{d-2} k_{\perp} f\left(k_{\perp}, k_{+}\right) \sim k_{+}^{-\epsilon}$

Why does it work?

Our new prescription amounts to

$$
\int d^{d} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- virtual corrections do not need regularisation matrix elements of Wilson lines in QCD \Rightarrow the same for thrust and broadening technical reason: $\int d^{d-2} k_{\perp} f\left(k_{\perp}, k_{+}\right) \sim k_{+}^{-\epsilon}$
- required for observables sensitive to transverse momenta
$f\left(k_{\perp}, k_{+}\right) \sim \delta^{d-2}\left(k_{\perp}-p_{\perp}\right) \quad \Rightarrow$ factor $k_{+}^{-\epsilon}$ absent \Rightarrow reinstalled as $k_{+}^{-\alpha}$
can show that the prescription regularises all LC singularities in SCET
- not sufficient for cases where virtual corrections are ill-defined examples: electroweak Sudakov corrections, Regge limits

Jet function revisited

With the additional regulator in place, the jet functions can be evaluated

$$
\begin{aligned}
& \mathcal{J}_{L}\left(b, p^{\perp}=0\right)=\delta(b)+\frac{C_{F} \alpha_{S}}{2 \pi} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \frac{1}{b}\left(\frac{\mu}{b}\right)^{2 \epsilon}\left[1-\epsilon+\frac{4 \Gamma(2+\alpha) \Gamma(\alpha)}{\Gamma(2+2 \alpha)}\left(\frac{Q \nu_{+}}{b^{2}}\right)^{\alpha}\right] \\
& \mathcal{J}_{R}\left(b, p^{\perp}=0\right)=\delta(b)+\frac{C_{F} \alpha_{S}}{2 \pi} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \frac{1}{b}\left(\frac{\mu}{b}\right)^{2 \epsilon}\left[1-\epsilon+\frac{4 \Gamma(-\alpha)}{\Gamma(2-\alpha)}\left(\frac{\nu_{+}}{Q}\right)^{\alpha}\right]
\end{aligned}
$$

- ordered limit $\alpha \rightarrow 0, \varepsilon \rightarrow 0$ generates a pole in the analytic regulator
- note the characteristic scaling $\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha}$ in each region

For $p^{\perp} \neq 0$ the computation is considerably more involved (\rightarrow later)

$$
\overline{\mathcal{J}}_{L}(\tau, z)=\overline{\mathcal{J}}_{L}^{(0)}(\tau, z)\left[1-\frac{C_{F} \alpha_{S}}{\pi} \frac{1}{\alpha}\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}^{2}\right)+2 \ln \frac{\sqrt{1+z^{2}}+1}{4}\right)\left(Q \nu+\bar{\tau}^{2}\right)^{\alpha}+\ldots\right]
$$

- divergent term has non-trivial z-dependence

Soft function

The soft function for broadening reads

$$
\begin{aligned}
\mathcal{S}\left(b_{L}, b_{R}, p_{L}^{\perp}, p_{R}^{\perp}\right) \sim & \sum_{x_{L}, x_{R}} \\
& \delta^{d-2}\left(p_{\bar{x}_{L}}^{\perp}-p_{L}^{\perp}\right) \delta^{d-2}\left(p_{\bar{X}_{R}}^{\perp}-p_{R}^{\perp}\right) \\
& \left.\delta\left(b_{L}-\frac{1}{2} \sum_{i \in X_{L}}\left|p_{L, i}^{\perp}\right|\right) \delta\left(b_{R}-\frac{1}{2} \sum_{j \in X_{R}}\left|p_{R, j}^{\perp}\right|\right)\left|\left\langle x_{L} x_{R}\right| s_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2}
\end{aligned}
$$

- split final state into left and right-moving particles
- tree level: $\mathcal{S}\left(b_{L}, b_{R}, p_{L}^{\perp}, p_{R}^{\perp}\right)=\delta\left(b_{L}\right) \delta\left(b_{R}\right) \delta^{d-2}\left(p_{L}^{\perp}\right) \delta^{d-2}\left(p_{\AA}^{\perp}\right) \Rightarrow \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=1$

At one-loop the calculation involves

$$
\begin{aligned}
& \Rightarrow \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=1+\frac{C_{F} \alpha_{S}}{\pi}\left\{\frac{1}{\alpha}\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{L}^{2}\right)+2 \ln \frac{\sqrt{1+z_{L}^{2}}+1}{4}\right)\left(\nu_{+} \bar{\tau}_{L}\right)^{\alpha}-(L \leftrightarrow R)+\ldots\right\}
\end{aligned}
$$

Anomalous Q dependence

Let us now put the jet and soft functions together

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{(0)}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{(0)}\left(\tau_{R}, z_{R}\right) \\
& \left\{1+\frac{C_{F} \alpha_{S}}{\pi}\left[\left(-\frac{1}{\alpha}-\ln \left(Q \nu_{+} \bar{\tau}_{L}^{2}\right)+\frac{1}{\alpha}+\ln \left(\nu_{+} \bar{\tau}_{L}\right)\right)\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{L}^{2}\right)+2 \ln \frac{\sqrt{1+z_{L}^{2}}+1}{4}\right)\right.\right. \\
& \left.\left.+\left(+\frac{1}{\alpha}+\ln \left(\frac{\nu_{+}}{Q}\right)-\frac{1}{\alpha}-\ln \left(\nu_{+} \bar{\tau}_{R}\right)\right)\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{R}^{2}\right)+2 \ln \frac{\sqrt{1+z_{R}^{2}}+1}{4}\right)+\ldots\right]\right\}
\end{aligned}
$$

- well-defined without additional regulators

Anomalous Q dependence

Let us now put the jet and soft functions together

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{(0)}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{(0)}\left(\tau_{R}, z_{R}\right) \\
& \left\{1+\frac{C_{F} \alpha_{S}}{\pi}\left[\left(-\ln \left(Q \nu_{+} \bar{\tau}_{L}^{2}\right) \quad+\ln \left(\nu_{+} \bar{\tau}_{L}\right)\right)\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{L}^{2}\right)+2 \ln \frac{\sqrt{1+z_{L}^{2}}+1}{4}\right)\right.\right. \\
& \left.\left.+\left(+\ln \left(\frac{\nu_{+}}{Q}\right) \quad-\ln \left(\nu_{+} \bar{\tau}_{R}\right)\right)\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{R}^{2}\right)+2 \ln \frac{\sqrt{1+z_{R}^{2}}+1}{4}\right)+\ldots\right]\right\}
\end{aligned}
$$

- well-defined without additional regulators
- similarly the artificial scale ν_{+}drops out

Anomalous Q dependence

Let us now put the jet and soft functions together

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{(0)}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{(0)}\left(\tau_{R}, z_{R}\right) \\
& \left.\begin{array}{rl}
\left\{1+\frac{C_{F} \alpha_{S}}{\pi}\right. & {\left[\left(-\ln \left(Q \bar{\tau}_{L}\right)\right.\right.}
\end{array}\right)\left(\frac{1}{\epsilon}+\ln \left(\mu^{2} \bar{\tau}_{L}^{2}\right)+2 \ln \frac{\sqrt{1+z_{L}^{2}}+1}{4}\right) .
\end{aligned}
$$

- well-defined without additional regulators
- similarly the artificial scale ν_{+}drops out
- the hidden Q dependence shows up!
\Rightarrow the naive factorisation formula does not achieve a proper scale separation

How can we resum a logarithm that appears in a matching calculation?

OUTLINE

EVENT-SHAPE VARIABLES

FACTORISATION

REVIEW OF THRUST ANALYSIS
FACTORISATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARISATION IN SCET

RESUMMATION

COLLINEAR ANOMALY
NNLL RESUMMATION

Collinear anomaly

Can show that the Q dependence exponentiates using and extending arguments from

- electroweak Sudakov resummation
- p_{T} resummation in Drell-Yan production

Start from the logarithm of the product of jet and soft functions

Collinear anomaly

Can show that the Q dependence exponentiates using and extending arguments from

- electroweak Sudakov resummation
[Chiu, Golf, Kelley, Manohar 07]
- p_{T} resummation in Drell-Yan production

Start from the logarithm of the product of jet and soft functions

$$
\begin{gathered}
\ln P=\ln \overline{\mathcal{J}}_{L}\left(\ln \left(Q \nu_{+} \bar{\tau}_{L}^{2}\right) ; \tau_{L}, z_{L}\right)+\ln \overline{\mathcal{J}}_{R}\left(\ln \left(\frac{\nu_{+}}{Q}\right) ; \tau_{R}, z_{R}\right)+\ln \overline{\mathcal{S}}\left(\ln \left(\nu_{+} \bar{\tau}_{L}\right) ; \tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
/ \\
\text { collinear: } k_{+} \sim \frac{b^{2}}{Q}
\end{gathered}
$$

- use that product does not depend on ν_{+}and that it is LR symmetric

$$
\Rightarrow \ln P=\frac{k_{2}(\mu)}{4} \ln ^{2}\left(Q^{2} \bar{\tau}_{L} \bar{\tau}_{R}\right)-F_{B}\left(\tau_{L}, z_{L}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{L}^{2}\right)-F_{B}\left(\tau_{R}, z_{R}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{R}^{2}\right)+\ln W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

- RG invariance implies $k_{2}(\mu)=0$ to all orders

$$
\Rightarrow \quad P\left(Q^{2}, \tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)=\left(Q^{2} \bar{\tau}_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}, \mu\right)}\left(Q^{2} \bar{\tau}_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}, \mu\right)} W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

Final factorisation formula

The corrected all-order generalisation of the naive factorisation formula becomes
[Becher, GB, Neubert 11]

$$
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}=H\left(Q^{2}, \mu\right) \int_{0}^{\infty} d z_{L} \int_{0}^{\infty} d z_{R}\left(Q^{2} \bar{\tau}_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}, \mu\right)}\left(Q^{2} \bar{\tau}_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}, \mu\right)} W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

Final factorisation formula

The corrected all-order generalisation of the naive factorisation formula becomes
[Becher, GB, Neubert 11]

$$
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}=H\left(Q^{2}, \mu\right) \int_{0}^{\infty} d z_{L} \int_{0}^{\infty} d z_{R}\left(Q^{2} \bar{\tau}_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}, \mu\right)}\left(Q^{2} \bar{\tau}_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}, \mu\right)} W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

To NLL the Mellin inversion can be performed analytically

$$
\begin{aligned}
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d b_{T}}=H\left(Q^{2}, \mu\right) \frac{e^{-2 \gamma_{E} \eta}}{\Gamma(2 \eta)} \frac{1}{b_{T}}\left(\frac{b_{T}}{\mu}\right)^{2 \eta} I^{2}(\eta) \\
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d b_{W}}=H\left(Q^{2}, \mu\right) \frac{2 \eta e^{-2 \gamma_{E} \eta}}{\Gamma^{2}(1+\eta)} \frac{1}{b_{W}}\left(\frac{b_{W}}{\mu}\right)^{2 \eta} I^{2}(\eta)
\end{aligned}
$$

$$
\eta=\frac{C_{F} \alpha_{s}(\mu)}{\pi} \ln \frac{Q^{2}}{\mu^{2}}=\mathcal{O}(1)
$$

The non-trivial z-dependence of the anomaly coefficient is encoded in

$$
I(\eta)=\int_{0}^{\infty} d z \frac{z}{\left(1+z^{2}\right)^{3 / 2}}\left(\frac{\sqrt{1+z^{2}}+1}{4}\right)^{-\eta}=\frac{4^{\eta}}{1+\eta}{ }_{2} F_{1}(\eta, 1+\eta, 2+\eta,-1)
$$

Comparison with literature

Traditional resummation

- pioneering work missed quark recoil effects \Rightarrow valid to LL
- first NLL resummation by Dokshitzer et al
we find complete analytical agreement with this work

Resummation using SCET

- start from same naive factorisation formula
- modify Wilson-line propagators to regularise rapidity divergences
- treat additional divergences in a "rapidity renormalization group"
- 2011 paper missed quark recoil effects \Rightarrow valid only to LL 2012 paper in agreement with Dokshitzer et al

Beyond NLL

The extension to NNLL requires three ingredients

- one-loop soft function
- one-loop jet function
- two-loop anomaly coefficient

The calculation of the one-loop soft function is straight-forward

$$
\begin{aligned}
\Rightarrow \quad \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)= & 1+\frac{\alpha_{S} C_{F}}{4 \pi}\left\{(\mu ^ { 2 } \overline { \tau } _ { L } ^ { 2 }) ^ { \varepsilon } (\nu _ { + } \overline { \tau } _ { L }) ^ { \alpha } \left[\frac{4}{\alpha}\left(\frac{1}{\varepsilon}+2 \ln \left(\frac{1+\sqrt{1+z_{L}^{2}}}{4}\right)\right)-\frac{2}{\varepsilon^{2}}\right.\right. \\
& \left.\left.+8 \mathrm{Li}_{2}\left(-\frac{\sqrt{1+z_{L}^{2}}-1}{\sqrt{1+z_{L}^{2}}+1}\right)+4 \ln ^{2}\left(\frac{1+\sqrt{1+z_{L}^{2}}}{4}\right)+\frac{5 \pi^{2}}{6}\right]-(L \leftrightarrow R)\right\}
\end{aligned}
$$

One-loop jet function

The calculation of the one-loop jet function is surprisingly complicated

$$
\begin{aligned}
& \sim \int d^{d} q \delta\left(q^{2}\right) \theta\left(q^{0}\right) \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \frac{\bar{n} q(\bar{n} k+\bar{n} q)}{\bar{n} k(q+k)^{2}} \\
& \quad \times \delta(Q-\bar{n} q-\bar{n} k) \delta^{d-2}\left(p_{\perp}-q_{\perp}-k_{\perp}\right) \delta\left(b-\frac{1}{2}\left|q_{\perp}\right|-\frac{1}{2}\left|k_{\perp}\right|\right) \\
& \sim \int_{0}^{1} d \eta \eta(1-\eta)^{-1+\alpha} \int_{1-y}^{1+y} d \xi \frac{\xi(2-\xi)^{1-2 \alpha}\left(\xi(2-\xi)-1+y^{2}\right)^{-\frac{1}{2}-\varepsilon}}{(\xi-2 y \eta)^{2}+4 \eta(1-y)(1+y-\xi)}
\end{aligned}
$$

- non-trivial angle complicates calculation
- expansion in α and ϵ is subtle
\Rightarrow have to keep $(2 b-p)^{-1-\epsilon},(2 b-p)^{-1-2 \epsilon}, \ldots$ to all orders
- computed the integrals in closed form without expanding in ϵ

\Rightarrow hypergeometric functions of half-integer parameters
- performed Laplace + Fourier transformations analytically

Two-loop anomaly coefficient

Most easily extracted from the two-loop soft function

- again two particles in final state
- but requires to go one order higher in ϵ-expansion
- encounter Nielsen polylogs and elliptic integrals

$$
\begin{aligned}
d_{2}^{B}(z)=C_{A}\{ & -\frac{1+z^{2}}{9} h_{1}(z)+\frac{67+2 z^{2}}{9} h_{2}(z)-8 h_{3}(z)+32 \mathrm{~S}_{1,2}\left(-\frac{z_{-}}{z_{+}}\right)-8 \mathrm{Li}_{3}\left(-\frac{z_{-}}{z_{+}}\right) \\
& +8 \mathrm{~S}_{1,2}(-w)-24 \mathrm{Li}_{3}(-w)-24 \mathrm{~S}_{1,2}(1-w)+8 \mathrm{Li}_{3}(1-w)+24 \mathrm{~S}_{1,2}\left(\frac{1-w}{2}\right) \\
& + \text { a few more lines }\} \\
+T_{F} n_{f}\{ & \left\{\frac{2\left(1+z^{2}\right)}{9} h_{1}(z)-\frac{2\left(13+2 z^{2}\right)}{9} h_{2}(z)-\frac{4}{3} \ln ^{2} z_{+}-\frac{20}{9} \ln z_{+}+\frac{4}{9} z^{2}-\frac{82}{27}\right. \\
& \left.+\frac{4 w\left(5-z^{2}\right)}{9} \ln \left(\frac{1+w}{w}\right)+\frac{2 w\left(11+2 z^{2}\right)}{9}\right\}
\end{aligned}
$$

with $w=\sqrt{1+z^{2}}$ and $z_{ \pm}=(w \pm 1) / 4$

A glimpse at the data

- theory uncertainty significantly reduced in fit region for α_{s} extraction
- without matching to fixed-order calculation
- without estimate of non-perturbative corrections

Compare with fixed order

Confront with output of fixed-order MC generators (EVENT2, EERAD3)

\Rightarrow we obtain the right logarithmic terms for small values of $L=\ln B_{T}$

Conclusions

Resummation beyond standard RG techniques via collinear anomaly

- we proposed an analytic phase space regularisation for $\operatorname{SCET}_{\|}$problems

$$
\int d^{d} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- respects symmetries of EFT, well-suited for efficient calculations

We determined all ingredients to perform NNLL resummation for jet broadening

- allows for precision determinations of α_{S} from b_{T} and b_{W} distributions

The formalism is relevant for many interesting LHC observables

- Higgs production, $t \bar{t}$, jet vetoes, jet substructure, ...

Transverse momentum-dependent PDFs

Central ingredient for p_{T} resummation at hardon colliders

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \mu\right)=\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p} \sum_{X} \frac{\bar{n}_{\alpha \beta}}{2}\langle N(p)| \bar{\chi}_{\alpha}\left(t \bar{n}+x_{\perp}\right)|X\rangle\langle X| \chi_{\beta}(0)|N(p)\rangle
$$

\Rightarrow ill-defined in DimReg because of unregularized rapidity divergences

Transverse momentum-dependent PDFs

Central ingredient for p_{T} resummation at hardon colliders

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \mu\right)=\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p} \sum_{X} \frac{\bar{n}_{\alpha \beta}}{2}\langle N(p)| \bar{\chi}_{\alpha}\left(t \bar{n}+x_{\perp}\right)|X\rangle\langle X| \chi_{\beta}(0)|N(p)\rangle
$$

\Rightarrow ill-defined in DimReg because of unregularized rapidity divergences

Many attempts to find an optimal definition, e.g.

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \zeta_{A} ; \mu\right)=\lim _{y_{1,2} \rightarrow \pm \infty} \mathcal{B}_{q / N}^{\text {unsub }}\left(z, x_{T} ; y_{p}-y_{2}\right) \sqrt{\frac{\tilde{S}\left(x_{T}, y_{1}, y_{n}\right)}{\tilde{S}\left(x_{T}, y_{1}, y_{2}\right) \tilde{S}_{(0)}\left(x_{T}, y_{n}, y_{2}\right)}}
$$

"This definition seems unexpectedly complicated"

Transverse momentum-dependent PDFs

Central ingredient for p_{T} resummation at hardon colliders

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \mu\right)=\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p} \sum_{X} \frac{\bar{n}_{\alpha \beta}}{2}\langle N(p)| \bar{\chi}_{\alpha}\left(t \bar{n}+x_{\perp}\right)|X\rangle\langle X| \chi_{\beta}(0)|N(p)\rangle
$$

\Rightarrow ill-defined in DimReg because of unregularized rapidity divergences

Many attempts to find an optimal definition, e.g.

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \zeta_{A} ; \mu\right)=\lim _{y_{1,2} \rightarrow \pm \infty} \mathcal{B}_{q / N}^{\mathrm{unsub}}\left(z, x_{T} ; y_{p}-y_{2}\right) \sqrt{\frac{\tilde{S}\left(x_{T}, y_{1}, y_{n}\right)}{\tilde{S}\left(x_{T}, y_{1}, y_{2}\right) \tilde{S}_{(0)}\left(x_{T}, y_{n}, y_{2}\right)}}
$$

"This definition seems unexpectedly complicated"

We propose a minimal modification of the naive definition

$$
\mathcal{B}_{q / N}\left(z, x_{T} ; \mu\right)=\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p} \sum_{x, r e g} \frac{\bar{n}_{\alpha \beta}}{2}\langle N(p)| \bar{\chi}_{\alpha}\left(t \bar{n}+x_{\perp}\right)|X\rangle\langle X| \chi_{\beta}(0)|N(p)\rangle
$$

\Rightarrow the only definition that has shown to work at two-loop order

