Finite flavour groups of fermions

Walter Grimus

Faculty of Physics, University of Vienna

Seminar Particle Physics Group November 22, 2012

Review:

W. Grimus, P.O. Ludl Finite flavour groups of fermions J. Phys. A **45** (2012) 233001 [arXiv:1110.6376]

Definition: group (G, \circ)

$$\circ: egin{array}{ccc} G imes G &
ightarrow G \ (g_1,g_2) &\mapsto g_1\circ g_2 \end{array}$$

- Associative law: $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$
- ② Neutral element: ∃ $e \in G$ with $e \circ g = g \forall g \in G$
- Inverse element: $\forall g \in G \exists g^{-1} \in G \text{ with } g^{-1} \circ g = e$

"Any set of $n \times n$ matrices, closed under multiplication and formation the inverse matrix, is a group."

- Gauge group:
 - completely fixes gauge interactions
 - flavour-blind (Yukawa couplings free)
- Flavour group: determines flavour sector?
 - Lie group? Gauged?
 - Spontaneous symmetry breaking: Goldstone bosons?

Flavour group:

 $\mathsf{Discrete} \hookrightarrow \mathsf{avoid} \ \mathsf{Goldstone} \ \mathsf{bosons}$

There are no compelling argument in favour of discrete flavour groups!

Lepton mixing: until 2011 tri-bimaximal mixing and group A₄ TBM: Harrison, Perkins, Scott (2002)

$$U_{\rm PMNS} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 θ_{13} revolution: Daya Bay, RENO exps. (2012): $\theta_{13} \neq 0$ Gonzalez-Garcia et al.: $\sin^2 \theta_{13} = 0.023 \pm 0.0023$ or $\theta_{13} \simeq 9^\circ \pm 0.5^\circ$

Tri-bimaximal not a good approximation anymore! No clue anymore for discrete flavour group! **()** General properties of discrete groups and their representations

- Subgroups and normal subgroups
- Semidirect products
- Characters and character tables
- Symmetric and alternating groups
 - A_4 , S_4
- **③** The finite subgroups of SU(3)

Basic notions

Generators

Subset S of G such that every element of G can be written as a finite product of elements of S and their inverses

Presentation of a group

Set S of generators and a set R of relations among the generators

Examples:

- Cyclic group \mathbb{Z}_n with one generator a and $a^n = e$
- Two generators a, b with a³ = b² = (ab)² = e ⇒ group with 6 elements (S₃) due to ba = a²b

Subgroup

Subset *H* of *G* which is closed under under multiplication and inverse Proper subgroup: $H \neq \{e\}$ or *G*

Cosets

 $\begin{array}{ll} H \text{ subgroup} \\ \text{Left coset: } aH := \{ah | h \in H\}, & a \in G \\ \text{Right coset: } Hb := \{hb | h \in H\}, & b \in G \end{array}$

* Cosets aH, $bH \Rightarrow$ either aH = bH or $aH \cap bH = \emptyset$ *

Order of a finite group

ord G = number of elements of G

Order of an element of G

Order of $a \in G$ is the smallest power u such that $a^{
u} = e$

Theorem (Lagrange)

* The number of elements of a subgroup is a divisor of ord G
* The order of an element of G is divisor of ord G

Proof:

- a) Consider cosets $a_1H, \ldots, a_kH \Rightarrow k \times \text{ord } H = \text{ord } G$
- b) a generates \mathbb{Z}_{ν}

Q.E.D.

Normal or invariant subgroup

N is a proper normal subgroup of G ($N \lhd G$) if $gNg^{-1} = N$ for all $g \in G$

Factor group

The cosets gN = Ng of $N \lhd G$ with the multiplication rule (aN)(bN) = (ab)N form a group called factor group G/N

Conjugate elements

- * $a, b \in G$ are called conjugate $(a \sim b)$ if there exists an element $g \in G$ such that $gag^{-1} = b$
- * The equivalence relation $a \sim b$ allows to divide G into distinct "classes" C_k $(C_1 \cup \cdots \cup C_{n_c} = G$ with $C_k \cap C_l = \emptyset \forall k \neq l)$
- * The class of an element $a \in G$ is defined as $C_a = \{gag^{-1} \mid g \in G\}$

Remarks: $C_e \equiv C_1 = \{e\}$ *G* Abelian \Rightarrow every element is its own class

Theorem

- * $N \lhd G$ iff it consists of complete conjugacy classes of G
- * $N \lhd G$, $b \in G$ but $b \notin N$, C_k conjugacy class of $N \Rightarrow bC_k b^{-1} = C_k$ or $bC_k b^{-1} \cap C_k = \emptyset$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Direct product

The set $G \times H$ with the multiplication law $(g_1, h_1)(g_2, h_2) := (g_1g_2, h_1h_2) \quad g_1, g_2 \in G, h_1, h_2 \in H$ is a group which is called the *direct product* of G and H.

Theorem (structure of Abelian groups)

* A Abelian, ord
$$A = p_1^{a_1} \cdots p_n^{a_n}$$
 (p_i distinct primes) $\Rightarrow A \cong A_1 \times \cdots \times A_n$ with ord $A_i = p_i^{a_i}$

*
$$A'$$
 Abelian, ord $A' = p^b$ (p prime) \Rightarrow
 $\exists b_1 + \dots + b_m = b$ with $A' \cong \mathbb{Z}_{b_1} \times \dots \times \mathbb{Z}_{b_m}$

Example:

A Abelian with four elements \Rightarrow $A = \mathbb{Z}_4 \text{ or } \mathbb{Z}_2 \times \mathbb{Z}_2$ (Klein four-group) Note $\mathbb{Z}_4 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2$

Semidirect product

Automorphisms

- * $\operatorname{Aut}(G) = \operatorname{group} \operatorname{of} \operatorname{isomorphisms} f : G \to G$
- * Inner automorphisms: for every $g \in G$ $f_g(a) = gag^{-1}$

Semidirect product $G \rtimes_{\phi} H$

Homomorphism $\phi : H \to \operatorname{Aut}(G)$ ("*H* acts on *G*") $G \times H$ with the multiplication law $(g_1, h_1)(g_2, h_2) := (g_1\phi(h_1)g_2, h_1h_2)$ forms a group, the semidirect product

Note: generalization of direct product with $\phi(h) = id \ \forall h \in H$ * $G \times \{e'\}$ is a normal subgroup, $\{e\} \times H$ a subgroup of $G \rtimes_{\phi} H$ *

▲御▶ ▲ 臣▶ ▲ 臣▶

General properties

Decomposition of a group into a semidirect product

Group *S*, *G* normal subgroup of *S*, *H* subgroup of *S* with following properties:

- $G \cap H = \{e\},$
- **2** every element $s \in S$ can be written as s = gh with $g \in G$, $h \in H$.

Then the following holds:

- $S \cong G \rtimes_{\phi} H$ with $\phi(h)g = hgh^{-1}$,
- decomposition s = gh is unique,
- $S/G \cong H$.

Semidirect product structure of *S* simply given by * $(g_1h_1)(g_1h_1) = (g_1h_1g_2h_1^{-1})(h_1h_2)$ * Note: $G \triangleleft S$ alone does in general *not* result in a semidirect product on *S*. Semidirect products are ubiquitous! $S_3 \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2, A_4 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3, S_4 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes S_3$, etc.

Discussion of $\mathbb{Z}_n \rtimes \mathbb{Z}_m$

Relations: $a^n = b^m = e$, $\phi(b)a = bab^{-1} = a^r$ Determination of r: $b^2ab^{-2} = a^{r^2}$, $b^3ab^{-3} = a^{r^3}$,..., $b^mab^{-m} = a^{r^m} = a$ \Rightarrow consistency relation $* r^m = 1 \mod n *$ $r = 1 \Rightarrow$ direct product In general several solutions r with $2 \le r \le n - 1 \Rightarrow$ inequivalent semidirect products

Example:
$$\mathbb{Z}_3 \rtimes \mathbb{Z}_2 \Rightarrow r^2 = 1 \mod 3 \Rightarrow$$
 unique solution $r = 2$
 $a^3 = b^2 = e$, $bab^{-1} = a^2 \ (\Leftrightarrow (ab)^2 = e)$
 a : cyclic permutation of order 3, b : transposition $\Rightarrow S_3$

Are there groups without normal subgroups?

Simple group

A group is called simple if it has no non-trivial normal subgroups

Finite Abelian simple groups: \mathbb{Z}_p with p prime

Finite non-Abelian simple groups: All groups have been classified! Though infinitely many, they are "rare": Orders below 1000 are 60 (A_5), 168, 360, 504, 660.

- Alternating groups A_n with $n \ge 5$
- 2 16 series of Lie type
- 3 26 sporadic groups

Order of largest sporadic group $\simeq 8 \times 10^{53}$

General properties: number of finite groups

P.O. Ludl (2010) $g \equiv \text{ord } G$, $N(g) = \text{number of non-Abelian groups with ord } G \leq g$ Remarks: jumps in N(g) at $g = 2^8 = 256$ and $3 \times 2^7 = 384$ Jump at g = 512: $N(511) = 91774 \rightarrow N(512) = 10494193$ There are groups without normal subgroups, however, every group except \mathbb{Z}_p with p prime has subgroups!

First theorem of Sylow

ord $G = p_1^{a_1} \cdots p_n^{a_n}$ (prime factor decomposition) $\Rightarrow G$ possesses subgroups of all orders $p_i^{s_i}$ with $0 \le s_i \le a_i$ (i = 1, ..., n)

(*) *) *) *)

Representation of group G

 ${\mathcal V}$ vector space over ${\mathbb C}$ Homorphism $D: G o {\mathsf{Lin}}({\mathcal V})$ with $D(e) = \mathbb{1}$

All representations of finite groups are equivalent to unitary representations \Rightarrow If D is reducible, there exists a basis such that

$$D(g)=\left(egin{array}{cc} D_1(g) & 0\ 0 & D_2(g) \end{array}
ight)$$

Irreducible representations (irreps) are basic building blocks of representations.

Character of a representation

The character $\chi_D : G \to \mathbb{C}$ is defined by $\chi_D(a) := \operatorname{Tr} D(a), \quad a \in G.$

Properties:

• Equivalent representations have the same character

•
$$a \sim b \Rightarrow \chi_D(a) = \chi_D(b)$$

- $\chi_D(a^{-1}) = \chi_D^*(a)$
- $\chi_{D\oplus D'}(a) = \chi_D(a) + \chi_{D'}(a)$
- $\chi_{D\otimes D'}(a) = \chi_D(a) \chi_{D'}(a).$

Bilinear form on space of functions $G \to \mathbb{C}$:

$$(f|g) = \frac{1}{\operatorname{ord} G} \sum_{a \in G} f(a^{-1})g(a)$$

Real subspace of functions with property $f(a^{-1}) = f^*(a)$ $\Rightarrow (\cdot|\cdot)$ scalar product on this space.

Notation: $D^{(\alpha)}$ with dim $D^{(\alpha)} = d_{\alpha}$ denotes all inequivalent irreps Schur's Lemmata \Rightarrow

Orthogonality theorem

$$f((D^{(\alpha)})_{ij}|(D^{(\beta)})_{kl}) = rac{1}{d_{lpha}}\delta_{lphaeta}\delta_{il}\delta_{jkl}$$

Orthogonality of characters

$$(\chi^{(\alpha)}|\chi^{(\beta)}) = \delta_{\alpha\beta} \quad \Leftrightarrow \quad \sum_{k=1}^{n_c} c_k \left(\chi_k^{(\alpha)}\right)^* \chi_k^{(\beta)} = \text{ord } G \,\delta_{\alpha\beta}$$

C_k	class of G
n _c	number of classes
c _k	\ldots number of elements in C_k
$\chi_k^{(\epsilon)}$	(α)

< ∃ >

э

From orthogonality of characters it follows: * number of inequivalent irreps $\leq n_c =$ number of classes * However on can show that equality holds:

Theorem

number of inequivalent irreps = number of classes

 α

Two more very important theorems:

Theorems on the dimensions of irreps

$$\sum d_{\alpha}^2 = \text{ord } G$$

All
$$d_{\alpha}$$
 are divisors of ord G

General properties: character table

$$\begin{bmatrix} G & C_1 & C_2 & \cdots & C_{n_c} \\ (\# C) & (c_1) & (c_2) & \cdots & (c_{n_c}) \\ \text{ord}(C) & \nu_1 & \nu_2 & \cdots & \nu_{n_c} \\ \end{bmatrix}$$
$$\begin{bmatrix} D^{(1)} & \chi_1^{(1)} & \chi_2^{(1)} & \cdots & \chi_{n_c}^{(1)} \\ D^{(2)} & \chi_1^{(2)} & \chi_2^{(2)} & \cdots & \chi_{n_c}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ D^{(n_c)} & \chi_1^{(n_c)} & \chi_2^{(n_c)} & \cdots & \chi_{n_c}^{(n_c)} \end{bmatrix}$$
$$\text{Lines} \Rightarrow \text{ON system} \quad \left(\sqrt{\frac{c_1}{\text{ord} G}} \chi_1^{(\alpha)}, \dots, \sqrt{\frac{c_{n_c}}{\text{ord} G}} \chi_{n_c}^{(\alpha)} \right)$$
$$\text{Columns} \Rightarrow \text{ON system} \quad \sqrt{\frac{c_k}{\text{ord} G}} \begin{pmatrix} \chi_k^{(1)} \\ \vdots \\ \chi_k^{(n_c)} \end{pmatrix} \quad (k = 1, \dots, n_c)$$

General properties: reduction of representations

Characters and character tables: means of finding irreducible components of a representation D

$$D = \bigoplus_{\alpha} m_{\alpha} D^{(\alpha)} \quad \Rightarrow \quad \chi_D = \sum_{\alpha} m_{\alpha} \chi^{(\alpha)}$$

Theorem

Let D be a representation of the group $G \Rightarrow$ The multiplicity m_{α} with which an irrep $D^{(\alpha)}$ occurs in D is given by

$$m_{lpha} = (\chi^{(lpha)} | \chi_D)$$

* $(\chi_D|\chi_D) = \sum_{\alpha} m_{\alpha}^2 \Rightarrow D$ irreducible iff $(\chi_D|\chi_D) = 1$ * Application to tensor products of irreps:

$$\chi^{(lpha\otimeseta)}(a)=\chi^{(lpha)}(a) imes\chi^{(eta)}(a) \quad \Rightarrow \quad m_\gamma=(\chi^{(\gamma)}|\chi^{(lpha)} imes\chi^{(eta)})$$

Symmetric and alternating groups

Symmetric group *S_n*: Group of all permutations of *n* objects

$$p = \begin{pmatrix} 1 & 2 & \cdots & n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}, \quad \text{ord } S_n = n!$$

Cycle of length r: $(n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \cdots n_r \rightarrow n_1) \equiv (n_1 n_2 n_3 \cdots n_r)$ All numbers n_1, \ldots, n_r are different

Theorem

Every permutation is a unique product of cycles which have no common elements

Example:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix} = (145)(3)(26)$$

Remarks:

Cycles which have no common element commute A cycle which consists of only one element is identical with the unit element of S_n

Symmetric and alternating groups

Even and odd permutations:

Every permutation of S_n is associated with an $n \times n$ permutation matrix M(p)

Even and odd permutations

Sign of a permutation: sgn(p) = det M(p)A permutation p is called even (odd) if sgn(p) = +1 (-1)

Alternating group A_n : Group of all *even* permutations of *n* objects

Theorem

 A_n is a normal subgroup of S_n with n!/2 elements

 $S_n \cong A_n \rtimes \mathbb{Z}_2$

Proof: Every element $p \in S_n \setminus A_n$ can be written as p = st with $s \in A_n$ and a fixed transposition $t \in S_n$, for instance, t = (12).

Classes of S_n and A_n

The classes of S_n :

Consist of the permutations with the same cycle structure The classes of A_n :

Obtained from those of S_n in the following way:

- All classes of S_n with even permutations are also classes of A_n ,
- except those which consist exclusively of cycles of unequal odd length.
- Each of the latter classes of S_n refines in A_n into two classes of equal size.

Examples:

 $\begin{array}{l} S_{4:} \ (a)(b)(c)(d), (a)(b)(cd), (a)(bcd), (abcd), (ab)(cd) \Rightarrow n_{c} = 5\\ A_{4:} \ (a)(b)(c)(d), \ (a)(bcd) \rightarrow 2 \ \text{classes}, \ (ab)(cd) \Rightarrow n_{c} = 4 \end{array}$

One-dimensional irreps of S_n

 S_n has exactly two 1-dimensional irreps: $p \mapsto 1$ and $p \mapsto \operatorname{sgn}(p)$

Discussion of S_4 and A_4 Dimensions if irreps of S_4 : $1^2 + 1^2 + d_3^2 + d_4^2 + d_5^2 = 24 \Rightarrow d_3 = 2, d_4 = d_5 = 3$ Dimensions if irreps of A_4 : $1^2 + d_2^2 + d_3^2 + d_4^2 = 12 \Rightarrow d_2 = d_3 = 1, d_4 = 3$ Structure of A_4 and S_4 :

Klein's four-group: $k_1k_2 = k_2k_1 = k_3$ plus permutations of indices

$$K = \{e, (12)(34), (14)(23), (13)(24)\} \equiv \{e, k_1, k_2, k_3\}$$

* K is a normal subgroup of A_4 and S_4 *

K and $s \equiv (123)$ generate A_4 :

$$k_1^2 = k_2^2 = k_3^2 = e, \quad s^3 = e, \quad sk_1s^{-1} = k_2, \quad sk_2s^{-1} = k_3$$

K, s and $t \equiv (12)$ generate S_4 :

$$t^2 = e$$
, $tk_1t^{-1} = k_1$, $tk_2t^{-1} = k_3$, $tst^{-1} = s^2$

Theorem

Every element of $p \in S_4$ can be uniquely decomposed into p = kq with $k \in K$ and q being a permutation of the numbers 1,2,3.

 $A_4 \cong K \rtimes \mathbb{Z}_3$ and $S_4 \cong K \rtimes S_3$

Note: $\{e\} \lhd K \lhd A_4 \lhd S_4$ Every kernel of a non-faithful irrep is a normal subgroup \Rightarrow In non-faithful irrep of A_4 and S_4 always $K \mapsto \mathbb{1}$

Side remark: * Simple groups have only faithful non-trivial irreps *

Irreps of A_4 : One-dimensional irreps:

$$\mathbf{1}^{(p)}: \quad k_i\mapsto 1, \ s\mapsto \omega^p \ (p=0,1,2) \ {
m with} \ \omega=e^{2\pi i/3}$$

Three-dimensional irrep: K represented as diagonal matrices

$$\mathbf{3}: \quad k_1 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} =: A, \quad s \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} =: E$$
$$\Rightarrow$$
$$k_2 = sk_1s^{-1} \mapsto \operatorname{diag}(-1, -1, 1), \quad k_3 = sk_2s^{-1} \mapsto \operatorname{diag}(-1, 1, -1)$$

Irreps of *S*₄:

$$\begin{split} \mathbf{1} : & p \mapsto 1 \\ \mathbf{1}' : & p \mapsto \operatorname{sign}(p) \\ \mathbf{3} : & k_1 \mapsto A, \quad s \mapsto E, \quad t \mapsto \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} =: R_t \\ \mathbf{3}' : & k_1 \mapsto A, \quad s \mapsto E, \quad t \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \mathbf{2} : & k_i \mapsto 1, \quad s \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad t \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{aligned}$$

Remarks: **2** is irrep of $S_3 \cong S_4/K$, $\mathbf{3}' = \mathbf{1}' \otimes \mathbf{3}$

Character table of A₄:

$T\cong A_4$	$C_1(e)$	$C_2(s)$	$C_3(s^2)$	$C_4(k_1)$
(# C)	(1)	(4)	(4)	(3)
$\operatorname{ord}(C)$	1	3	3	2
$1^{(0)}$	1	1	1	1
${f 1}^{(1)}$	1	ω	ω^2	1
$1^{(2)}$	1	ω^2	ω	1
3	3	0	0	-1

< E

Character table of *S*₄**:** $r := s^{-1}k_1st = (1423)$

$O \cong S_4$	<i>C</i> ₁ (<i>e</i>)	$C_2(t)$	$C_3(k_1)$	$C_4(s)$	$C_5(r)$
(# C)	(1)	(6)	(3)	(8)	(6)
$\operatorname{ord}(C)$	1	2	2	3	4
1	1	1	1	1	1
1′	1	-1	1	1	-1
2	2	0	2	-1	0
3	3	-1	-1	0	1
3′	3	1	-1	0	-1

A B + A B +

Remark:

Of the non-trivial symmetric and alternating groups, only S_3 , A_4 , S_4 , A_5

can be considered as finite subgroups of SO(3),

- i.e. possess a faithful representation by 3×3 rotation matrices.
 - $S_3 \cong S_{\triangle} =$ symmetry group of unilateral triangle
 - $A_4 \cong T =$ symmetry group of tetrahedron
 - $S_4 \cong O =$ symmetry group of octahedron
 - $A_5 \cong I =$ symmetry group of icosahedron

Classes of rotation groups: $R_2 R(\alpha, \vec{n}) R_2^{-1} = R(\alpha, R_2 \vec{n}) \Rightarrow$ rotations through the same angle about equivalent axes are equivalent

Classes of the tetrahedral group:

- The class of the identity element $C_1 = \{e\},$
- \bullet the class of rotations through 120° about the four three-fold axes

 $C_2 = \{a_1, a_2, a_3, a_4\},\$

 \bullet the class of rotations through 240° about the four three-fold axes

$$C_3 = \{a_1^2, a_2^2, a_3^2, a_4^2\},\$$

• the class of rotations about the three two-fold axes $C_4 = \{b_1, b_2, b_3\}.$

Symmetric and alternating groups

Generators of 3-dimensional irrep of A_4 :

$$R(2\pi/3, \vec{n}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \equiv E \quad \text{with} \quad \vec{n} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

$$R(\pi, ec{e}_x) = egin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{pmatrix} \equiv A$$

Vertices of the tetrahedron:

Set of four points which is invariant under E and A

$$\frac{1}{\sqrt{3}} \begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$$

Symmetry axes of the symmetry group of the octahedron, *O*:

- Type 1: Three axes connecting two opposite vertices \Rightarrow six rotations through $\pm90^\circ,$ three rotations through 180°
- Type 2: Six axes passing through the centers of two opposite edges \Rightarrow six rotations through 180°
- Type 3: Four axes passing through the centers of two opposite faces ⇒ eight rotations through 120°

Classes of the octahedron:

axis type	0	2	1	3	1
(#C)	(1)	(6)	(3)	(8)	(6)
${\rm ord}\; {\it C}$	1	2	2	3	4
element of S_4	е	t	k_1	5	r

Symmetric and alternating groups

Generators of **3** of S_4 :

$$s = (123) \mapsto E, \quad k_1 = (12)(34) \mapsto A, \quad t = (12) \mapsto R_t$$
$$R_t = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Set of vertices of the octahedron, invariant under E, A, R_t : $\pm \vec{e}_x$, $\pm \vec{e}_y$, $\pm \vec{e}_z$

< 3 > < 3 >

H.F. Blichfeldt (1916)¹:

Classification of the finite subgroups of SU(3) into five types:

- (A) Abelian groups.
- (B) Finite subgroups of SU(3) with faithful 2-dimensional representations.
- (C) The groups C(n, a, b) generated by the matrices

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad F(n, a, b) = \operatorname{diag}(\eta^{a}, \eta^{b}, \eta^{-a-b}),$$

where $\eta = \exp(2\pi i/n)$.

 1 G.A. Miller, H.F. Blichfeldt and L.E. Dickson: Theory and applications of finite groups, New York (1916) $< \square > < \bigcirc > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >$

Walter Grimus, University of Vienna Finite flav

(D) The groups D(n, a, b; d, r, s) generated by E, F(n, a, b) and

$$\widetilde{G}(d,r,s) = \begin{pmatrix} \delta^r & 0 & 0 \\ 0 & 0 & \delta^s \\ 0 & -\delta^{-r-s} & 0 \end{pmatrix},$$

where $\delta = \exp(2\pi i/d)$.

(E) Six exceptional finite subgroups of SU(3):

- $\Sigma(60) \cong A_5$, $\Sigma(168) \cong PSL(2,7)$
- $\Sigma(36 \times 3)$, $\Sigma(72 \times 3)$, $\Sigma(216 \times 3)$ and $\Sigma(360 \times 3)$,

as well as the direct products $\Sigma(60) \times \mathbb{Z}_3$ and $\Sigma(168) \times \mathbb{Z}_3$.

The finite subgroups of SU(3): (A) Abelian groups

Simple (but powerful) theorem: P.O. Ludl (2011)

Abelian finite subgroups of SU(3)

Every finite Abelian subgroup \mathcal{A} of SU(3) is isomorphic to

 $\mathbb{Z}_m \times \mathbb{Z}_n$,

where

$$m = \max_{a \in \mathcal{A}} \operatorname{ord}(a)$$

and n is a divisor of m.

 \Rightarrow Possible structures of Abelian finite subgroups of SU(3) are strongly restricted!

Examples:

- Rotations about one axis (cyclic groups \mathbb{Z}_m)
- Klein's four group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

- **1** The uniaxial groups: \mathbb{Z}_n
- **2** The dihedral groups D_n (ord $D_n = 2n$)
- The rotation groups of the Platonic solids: *T*, *O*, *I* symmetry group of cube ≅ *O* symmetry group of dedecahedron ≅ *I*

The finite subgroups of SU(3): (B) Groups with two-dimensional faithful representations

Every finite subgroup of SU(2) can be conceived as a finite subgroup of SU(3):

$$A \in SU(2) \Rightarrow \left(\begin{array}{cc} 1 & 0 \\ 0 & A \end{array}
ight) \in SU(3)$$

Even true for the finite subgroups of U(2):

$$A \in U(2) \Rightarrow \left(egin{array}{cc} \det A^* & 0 \ 0 & A \end{array}
ight) \in SU(3)$$

Examples:

- Dihedral groups D_n (finite subgroups of SO(3)).
- Double covers of the finite 3-dimensional rotation groups (*T*, *O*, *I*, *D*_n).

The finite subgroups of SU(3): groups of type (C)

Generated by

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad F(n, a, b) = \operatorname{diag}(\eta^{a}, \eta^{b}, \eta^{-a-b}),$$

where $\eta = \exp(2\pi i/n)$.

Structure: F(n, a, b) diagonal $\Rightarrow EF(n, a, b)E^{-1}$ also diagonal.

 \Rightarrow Subgroup N(n, a, b) of diagonal matrices is a normal subgroup.

$$\Rightarrow C(n, a, b) \cong N(n, a, b) \rtimes \mathbb{Z}_3.$$

We also know that N(n, a, b) is an Abelian finite subgroup of SU(3), thus

$$C(n, a, b) \cong (\mathbb{Z}_m \times \mathbb{Z}_p) \rtimes \mathbb{Z}_3.$$

The finite subgroups of SU(3): groups of type (C)

 $C(n, a, b) \cong (\mathbb{Z}_m \times \mathbb{Z}_p) \rtimes \mathbb{Z}_3.$

Note: $n, a, b \Rightarrow m, p$ in a complicated way, p divisor of m Special cases:

- $p = 1 \Rightarrow$ Groups of the type $T_m \cong \mathbb{Z}_m \rtimes \mathbb{Z}_3$ where *m* is a product of powers of primes of the form 6k + 1.
- $p = m \Rightarrow$ Groups of the type $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes \mathbb{Z}_3 \cong \Delta(3m^2)$.

Examples:

- Well-known groups such as $A_4 \cong T \cong \Delta(12), \, \Delta(27), \, T_7, \, T_{13}$.
- Smallest group of type (C) which is neither of the form T_n nor of the form Δ(3n²):

$$C(9,1,1)\cong (\mathbb{Z}_9 imes \mathbb{Z}_3) imes \mathbb{Z}_3.$$

Note: dimensions of irreps can only be 1 and 3 (Grimus, Ludl (2011)).

The finite subgroups of SU(3): groups of type (D)

The group D(n, a, b; d, r, s) is generated by the generators of C(n, a, b) and

$$\widetilde{G}(d,r,s)=\left(egin{array}{ccc} \delta^r & 0 & 0 \ 0 & 0 & \delta^s \ 0 & -\delta^{-r-s} & 0 \end{array}
ight),$$

where $\delta = \exp(2\pi i/d)$.

By means of a unitary transformation one obtains a different set of generators (Grimus, Ludl (2011), review):

- Three diagonal matrices,
- and the two S_3 -generators

$$E = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \quad \text{and} \quad B = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array}\right)$$

The finite subgroups of SU(3): groups of type (D)

$$\Rightarrow D(n, a, b; d, r, s) \cong N(n, a, b; d, r, s) \rtimes S_3 \Rightarrow D(n, a, b; d, r, s) \cong (\mathbb{Z}_m \times \mathbb{Z}_{m'}) \rtimes S_3.$$

Special cases:

• $m = m' \Rightarrow$ Groups of the type $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes S_3 \cong \Delta(6m^2)$.

Examples:

- Well-known groups such as $S_4 \cong \Delta(24), \, \Delta(54).$
- Smallest group of type (D) which is neither a direct product nor of the form Δ(6n²):

$$D(9,1,1;2,1,1) \cong (\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes S_3.$$

Note: dimensions of irreps can only be 1, 2, 3 and 6 (Grimus, Ludl (2011)).

Divisors of ord G:

- order of a subgroup
- order of an element
- number of elements in a class
- dimension of an irrep

number if inequivalent irreps = number of classes

Irreps
$$D^{(\alpha)}$$
 with dim $D^{(\alpha)} = d_{\alpha} \quad \Rightarrow \quad \sum_{\alpha} d_{\alpha}^2 = \text{ord } G$

Summary: The finite subgroups of SU(3)

Thank you for your attention!

