Finite flavour groups of fermions

Walter Grimus

Faculty of Physics, University of Vienna

Seminar Particle Physics Group
November 22, 2012

Review:

W. Grimus, P.O. Ludl
Finite flavour groups of fermions
J. Phys. A 45 (2012) 233001 [arXiv:1110.6376]

Groups

Definition: group (G, \circ)

$$
\circ: \begin{array}{ccc}
G \times G & \rightarrow & G \\
\left(g_{1}, g_{2}\right) & \mapsto & g_{1} \circ g_{2}
\end{array}
$$

(1) Associative law:

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

(2) Neutral element:
$\exists e \in G$ with $e \circ g=g \forall g \in G$
(3) Inverse element:
$\forall g \in G \exists g^{-1} \in G$ with $g^{-1} \circ g=e$
"Any set of $n \times n$ matrices, closed under multiplication and formation the inverse matrix, is a group."

Motivation and application

- Gauge group:
- completely fixes gauge interactions
- flavour-blind (Yukawa couplings free)
- Flavour group: determines flavour sector?
- Lie group? Gauged?
- Spontaneous symmetry breaking: Goldstone bosons?

Flavour group:
Discrete \hookrightarrow avoid Goldstone bosons
There are no compelling argument in favour of discrete flavour groups!

Motivation and application

Lepton mixing: until 2011 tri-bimaximal mixing and group A_{4}
TBM: Harrison, Perkins, Scott (2002)

$$
U_{\mathrm{PMNS}}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

θ_{13} revolution:
Daya Bay, RENO exps. (2012): $\theta_{13} \neq 0$
Gonzalez-Garcia et al.: $\sin ^{2} \theta_{13}=0.023 \pm 0.0023$ or $\theta_{13} \simeq 9^{\circ} \pm 0.5^{\circ}$
Tri-bimaximal not a good approximation anymore! No clue anymore for discrete flavour group!

Plan of the talk

(1) General properties of discrete groups and their representations

- Subgroups and normal subgroups
- Semidirect products
- Characters and character tables
(2) Symmetric and alternating groups
- A_{4}, S_{4}
(3) The finite subgroups of $S U(3)$

General properties

Basic notions

Generators

Subset S of G such that every element of G can be written as a finite product of elements of S and their inverses

Presentation of a group

Set S of generators and a set R of relations among the generators

Examples:

- Cyclic group \mathbb{Z}_{n} with one generator a and $a^{n}=e$
- Two generators a, b with $a^{3}=b^{2}=(a b)^{2}=e \Rightarrow$ group with 6 elements $\left(S_{3}\right)$ due to $b a=a^{2} b$

General properties

Subgroup

Subset H of G which is closed under under multiplication and inverse
Proper subgroup: $H \neq\{e\}$ or G

Cosets

H subgroup
Left coset: $a H:=\{a h \mid h \in H\}, \quad a \in G$
Right coset: $H b:=\{h b \mid h \in H\}, \quad b \in G$

* Cosets $a H, b H \Rightarrow$ either $a H=b H$ or $a H \cap b H=\emptyset *$

General properties

Order of a finite group ord $G=$ number of elements of G

Order of an element of G

Order of $a \in G$ is the smallest power ν such that $a^{\nu}=e$

Theorem (Lagrange)

* The number of elements of a subgroup is a divisor of ord G
* The order of an element of G is divisor of ord G

Proof:

a) Consider cosets $a_{1} H, \ldots, a_{k} H \Rightarrow k \times \operatorname{ord} H=\operatorname{ord} G$
b) a generates \mathbb{Z}_{ν}
Q.E.D.

General properties

Normal or invariant subgroup

N is a proper normal subgroup of $G(N \triangleleft G)$ if $g N g^{-1}=N$ for all $g \in G$

Factor group

The cosets $g N=N g$ of $N \triangleleft G$ with the multiplication rule $(a N)(b N)=(a b) N$ form a group called factor group G / N

General properties

Conjugate elements

* $a, b \in G$ are called conjugate $(a \sim b)$ if there exists an element $g \in G$ such that $\mathrm{gag}^{-1}=b$
* The equivalence relation $a \sim b$ allows to divide G into distinct "classes" $C_{k}\left(C_{1} \cup \cdots \cup C_{n_{c}}=G\right.$ with $\left.C_{k} \cap C_{I}=\emptyset \forall k \neq I\right)$
* The class of an element $a \in G$ is defined as

$$
C_{a}=\left\{g a g^{-1} \mid g \in G\right\}
$$

Remarks: $C_{e} \equiv C_{1}=\{e\}$
G Abelian \Rightarrow every element is its own class

Theorem

* $N \triangleleft G$ iff it consists of complete conjugacy classes of G
* $N \triangleleft G, b \in G$ but $b \notin N, C_{k}$ conjugacy class of $N \Rightarrow$ $b C_{k} b^{-1}=C_{k}$ or $b C_{k} b^{-1} \cap C_{k}=\emptyset$

General properties

Direct product

The set $G \times H$ with the multiplication law
$\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right):=\left(g_{1} g_{2}, h_{1} h_{2}\right) \quad g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$ is a group which is called the direct product of G and H.

Theorem (structure of Abelian groups)

* A Abelian, ord $A=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}$ (p_{i} distinct primes) \Rightarrow $A \cong A_{1} \times \cdots \times A_{n}$ with ord $A_{i}=p_{i}^{a_{i}}$
* $\quad A^{\prime}$ Abelian, ord $A^{\prime}=p^{b}$ (p prime) \Rightarrow

$$
\exists b_{1}+\cdots+b_{m}=b \text { with } A^{\prime} \cong \mathbb{Z}_{b_{1}} \times \cdots \times \mathbb{Z}_{b_{m}}
$$

Example:
A Abelian with four elements \Rightarrow
$A=\mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (Klein four-group)
Note $\mathbb{Z}_{4} \not \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

General properties

Semidirect product

Automorphisms

* $\operatorname{Aut}(G)=$ group of isomorphisms $f: G \rightarrow G$
* Inner automorphisms: for every $g \in G \quad f_{g}(a)=g a g^{-1}$

Semidirect product $G \rtimes_{\phi} H$

Homomorphism $\phi: H \rightarrow \operatorname{Aut}(G)(" H$ acts on G ")
$G \times H$ with the multiplication law
$\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right):=\left(g_{1} \phi\left(h_{1}\right) g_{2}, h_{1} h_{2}\right)$
forms a group, the semidirect product
Note: generalization of direct product with $\phi(h)=$ id $\forall h \in H$ * $G \times\left\{e^{\prime}\right\}$ is a normal subgroup, $\{e\} \times H$ a subgroup of $G \rtimes_{\phi} H *$

General properties

Decomposition of a group into a semidirect product

Group S, G normal subgroup of S, H subgroup of S with following properties:
(1) $G \cap H=\{e\}$,
(2) every element $s \in S$ can be written as $s=g h$ with $g \in G$, $h \in H$.

Then the following holds:

- $S \cong G \rtimes_{\phi} H$ with $\phi(h) g=h g h^{-1}$,
- decomposition $s=g h$ is unique,
- $S / G \cong H$.

Semidirect product structure of S simply given by * $\left(g_{1} h_{1}\right)\left(g_{1} h_{1}\right)=\left(g_{1} h_{1} g_{2} h_{1}^{-1}\right)\left(h_{1} h_{2}\right) *$ Note: $G \triangleleft S$ alone does in general not result in a semidirect product on S.

General properties

Semidirect products are ubiquitous!

$$
S_{3} \cong \mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}, A_{4} \cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}, S_{4} \cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes S_{3}, \text { etc. }
$$

Discussion of $\mathbb{Z}_{n} \rtimes \mathbb{Z}_{m}$

Relations: $a^{n}=b^{m}=e, \phi(b) a=b a b^{-1}=a^{r}$
Determination of r :
$b^{2} a b^{-2}=a^{r^{2}}, \quad b^{3} a b^{-3}=a^{r^{3}}, \ldots, \quad b^{m} a b^{-m}=a^{r^{m}}=a$
\Rightarrow consistency relation $* r^{m}=1 \bmod n *$
$r=1 \Rightarrow$ direct product
In general several solutions r with $2 \leq r \leq n-1 \Rightarrow$ inequivalent semidirect products

Example: $\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2} \Rightarrow r^{2}=1 \bmod 3 \Rightarrow$ unique solution $r=2$
$a^{3}=b^{2}=e, b a b^{-1}=a^{2}\left(\Leftrightarrow(a b)^{2}=e\right)$
a : cyclic permutation of order $3, b$: transposition $\Rightarrow S_{3}$

General properties

Are there groups without normal subgroups?

Simple group

A group is called simple if it has no non-trivial normal subgroups
Finite Abelian simple groups: \mathbb{Z}_{p} with p prime
Finite non-Abelian simple groups: All groups have been classified!
Though infinitely many, they are "rare":
Orders below 1000 are $60\left(A_{5}\right), 168,360,504,660$.
(1) Alternating groups A_{n} with $n \geq 5$
(2) 16 series of Lie type
(3) 26 sporadic groups

Order of largest sporadic group $\simeq 8 \times 10^{53}$

General properties: number of finite groups

P.O. Ludl (2010)
$g \equiv$ ord $G, N(g)=$ number of non-Abelian groups with ord $G \leq g$
Remarks: jumps in $N(g)$ at $g=2^{8}=256$ and $3 \times 2^{7}=384$ Jump at $g=512: N(511)=91774 \rightarrow N(512)=10494193$

General properties

There are groups without normal subgroups, however, every group except \mathbb{Z}_{p} with p prime has subgroups!

First theorem of Sylow

ord $G=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}$ (prime factor decomposition) $\Rightarrow G$ possesses subgroups of all orders $p_{i}^{s_{i}}$ with $0 \leq s_{i} \leq a_{i}(i=1, \ldots, n)$

General properties

Representation of group G

\mathcal{V} vector space over \mathbb{C}
Homorphism $D: G \rightarrow \operatorname{Lin}(\mathcal{V})$ with $D(e)=\mathbb{1}$
All representations of finite groups are equivalent to unitary representations \Rightarrow If D is reducible, there exists a basis such that

$$
D(g)=\left(\begin{array}{cc}
D_{1}(g) & 0 \\
0 & D_{2}(g)
\end{array}\right)
$$

Irreducible representations (irreps) are basic building blocks of representations.

General properties

Character of a representation

The character $\chi_{D}: G \rightarrow \mathbb{C}$ is defined by
$\chi_{D}(a):=\operatorname{Tr} D(a), \quad a \in G$.
Properties:

- Equivalent representations have the same character
- $a \sim b \Rightarrow \chi_{D}(a)=\chi_{D}(b)$
- $\chi_{D}\left(a^{-1}\right)=\chi_{D}^{*}(a)$
- $\chi_{D \oplus D^{\prime}}(a)=\chi_{D}(a)+\chi_{D^{\prime}}(a)$
- $\chi_{D \otimes D^{\prime}}(a)=\chi_{D}(a) \chi_{D^{\prime}}(a)$.

General properties: orthogonality theorem

Bilinear form on space of functions $G \rightarrow \mathbb{C}$:

$$
(f \mid g)=\frac{1}{\operatorname{ord} G} \sum_{a \in G} f\left(a^{-1}\right) g(a)
$$

Real subspace of functions with property $f\left(a^{-1}\right)=f^{*}(a)$
$\Rightarrow(\cdot \mid \cdot)$ scalar product on this space.
Notation: $D^{(\alpha)}$ with $\operatorname{dim} D^{(\alpha)}=d_{\alpha}$ denotes all inequivalent irreps
Schur's Lemmata \Rightarrow
Orthogonality theorem

$$
\left(\left(D^{(\alpha)}\right)_{i j} \mid\left(D^{(\beta)}\right)_{k l}\right)=\frac{1}{d_{\alpha}} \delta_{\alpha \beta} \delta_{i l} \delta_{j k}
$$

General properties: characters

Orthogonality of characters

$$
\left(\chi^{(\alpha)} \mid \chi^{(\beta)}\right)=\delta_{\alpha \beta} \Leftrightarrow \sum_{k=1}^{n_{c}} c_{k}\left(\chi_{k}^{(\alpha)}\right)^{*} \chi_{k}^{(\beta)}=\operatorname{ord} G \delta_{\alpha \beta}
$$

C_{k}	

$c_{k} \ldots \ldots \ldots \ldots \ldots \ldots$ number of elements in C_{k}
$\chi_{k}^{(\alpha)} \ldots \ldots \ldots \ldots \ldots$ value of $\chi^{(\alpha)}$ on C_{k}

General properties

From orthogonality of characters it follows:

* number of inequivalent irreps $\leq n_{c}=$ number of classes $*$

However on can show that equality holds:

Theorem

number of inequivalent irreps $=$ number of classes
Two more very important theorems:
Theorems on the dimensions of irreps

$$
\sum_{\alpha} d_{\alpha}^{2}=\operatorname{ord} G
$$

All d_{α} are divisors of ord G

General properties: character table

G	C_{1}	C_{2}	\cdots	$C_{n_{c}}$
$(\# C)$	$\left(c_{1}\right)$	$\left(c_{2}\right)$	\cdots	$\left(c_{n_{c}}\right)$
ord (C)	ν_{1}	ν_{2}	\cdots	$\nu_{n_{c}}$
$D^{(1)}$	$\chi_{1}^{(1)}$	$\chi_{2}^{(1)}$	\cdots	$\chi_{n_{c}}^{(1)}$
$D^{(2)}$	$\chi_{1}^{(2)}$	$\chi_{2}^{(2)}$	\cdots	$\chi_{n_{c}}^{(2)}$
\vdots	\vdots	\vdots	\vdots	\vdots
$D^{\left(n_{c}\right)}$	$\chi_{1}^{\left(n_{c}\right)}$	$\chi_{2}^{\left(n_{c}\right)}$	\cdots	$\chi_{n_{c}}^{\left(n_{c}\right)}$

Lines \Rightarrow ON system $\quad\left(\sqrt{\frac{c_{1}}{\operatorname{ord} G}} \chi_{1}^{(\alpha)}, \ldots, \sqrt{\frac{c_{n_{c}}}{\operatorname{ord} G}} \chi_{n_{c}}^{(\alpha)}\right)$

Columns $\Rightarrow \mathrm{ON}$ system

$$
\sqrt{\frac{c_{k}}{\operatorname{ord} G}}\left(\begin{array}{c}
\chi_{k}^{(1)} \\
\vdots \\
\chi_{k}^{\left(n_{c}\right)}
\end{array}\right) \quad\left(k=1, \ldots, n_{c}\right)
$$

General properties: reduction of representations

Characters and character tables: means of finding irreducible components of a representation D

$$
D=\bigoplus_{\alpha} m_{\alpha} D^{(\alpha)} \Rightarrow \chi_{D}=\sum_{\alpha} m_{\alpha} \chi^{(\alpha)}
$$

Theorem

Let D be a representation of the group $G \Rightarrow$
The multiplicity m_{α} with which an irrep $D^{(\alpha)}$ occurs in D is given by

$$
m_{\alpha}=\left(\chi^{(\alpha)} \mid \chi_{D}\right)
$$

* $\left(\chi_{D} \mid \chi_{D}\right)=\sum_{\alpha} m_{\alpha}^{2} \Rightarrow D$ irreducible iff $\left(\chi_{D} \mid \chi_{D}\right)=1 *$

Application to tensor products of irreps:

$$
\chi^{(\alpha \otimes \beta)}(a)=\chi^{(\alpha)}(a) \times \chi^{(\beta)}(a) \Rightarrow m_{\gamma}=\left(\chi^{(\gamma)} \mid \chi^{(\alpha)} \times \chi^{(\beta)}\right)
$$

Symmetric and alternating groups

Symmetric group S_{n} : Group of all permutations of n objects

$$
p=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right), \quad \text { ord } S_{n}=n!
$$

Cycle of length $r:\left(n_{1} \rightarrow n_{2} \rightarrow n_{3} \rightarrow \cdots n_{r} \rightarrow n_{1}\right) \equiv\left(n_{1} n_{2} n_{3} \cdots n_{r}\right)$ All numbers n_{1}, \ldots, n_{r} are different

Theorem

Every permutation is a unique product of cycles which have no common elements
Example: $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2\end{array}\right)=(145)(3)(26)$
Remarks:
Cycles which have no common element commute
A cycle which consists of only one element is identical with the unit element of S_{n}

Symmetric and alternating groups

Even and odd permutations:
Every permutation of S_{n} is associated with an
$n \times n$ permutation matrix $M(p)$

Even and odd permutations

Sign of a permutation: $\operatorname{sgn}(p)=\operatorname{det} M(p)$
A permutation p is called even (odd) if $\operatorname{sgn}(p)=+1(-1)$
Alternating group A_{n} : Group of all even permutations of n objects

Theorem

A_{n} is a normal subgroup of S_{n} with $n!/ 2$ elements

$$
S_{n} \cong A_{n} \rtimes \mathbb{Z}_{2}
$$

Proof: Every element $p \in S_{n} \backslash A_{n}$ can be written as $p=s t$ with $s \in A_{n}$ and a fixed transposition $t \in S_{n}$, for instance, $t \equiv$ (12).

Classes of S_{n} and A_{n}

The classes of S_{n} :
Consist of the permutations with the same cycle structure The classes of A_{n} :
Obtained from those of S_{n} in the following way:

- All classes of S_{n} with even permutations are also classes of A_{n},
- except those which consist exclusively of cycles of unequal odd length.
- Each of the latter classes of S_{n} refines in A_{n} into two classes of equal size.

Examples:
$S_{4}:(a)(b)(c)(d),(a)(b)(c d),(a)(b c d),(a b c d),(a b)(c d) \Rightarrow n_{c}=5$
$A_{4}:(a)(b)(c)(d),(a)(b c d) \rightarrow 2$ classes, $(a b)(c d) \Rightarrow n_{c}=4$

Symmetric and alternating groups

One-dimensional irreps of S_{n}

S_{n} has exactly two 1-dimensional irreps:
$p \mapsto 1$ and $p \mapsto \operatorname{sgn}(p)$
Discussion of S_{4} and A_{4}
Dimensions if irreps of $S_{4}: 1^{2}+1^{2}+d_{3}^{2}+d_{4}^{2}+d_{5}^{2}=24 \Rightarrow$ $d_{3}=2, d_{4}=d_{5}=3$
Dimensions if irreps of $A_{4}: 1^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}=12 \Rightarrow$ $d_{2}=d_{3}=1, d_{4}=3$

Symmetric and alternating groups

Structure of A_{4} and S_{4} :

Klein's four-group: $k_{1} k_{2}=k_{2} k_{1}=k_{3}$ plus permutations of indices

$$
\begin{aligned}
K=\{e, & (12)(34),(14)(23),(13)(24)\} \equiv\left\{e, k_{1}, k_{2}, k_{3}\right\} \\
& * K \text { is a normal subgroup of } A_{4} \text { and } S_{4} *
\end{aligned}
$$

K and $s \equiv(123)$ generate $A_{4}:$

$$
k_{1}^{2}=k_{2}^{2}=k_{3}^{2}=e, \quad s^{3}=e, \quad s k_{1} s^{-1}=k_{2}, \quad s k_{2} s^{-1}=k_{3}
$$

K, s and $t \equiv(12)$ generate S_{4} :

$$
t^{2}=e, \quad t k_{1} t^{-1}=k_{1}, \quad t k_{2} t^{-1}=k_{3}, \quad t s t^{-1}=s^{2}
$$

Symmetric and alternating groups

Theorem

Every element of $p \in S_{4}$ can be uniquely decomposed into $p=k q$ with $k \in K$ and q being a permutation of the numbers $1,2,3$.

$$
A_{4} \cong K \rtimes \mathbb{Z}_{3} \quad \text { and } \quad S_{4} \cong K \rtimes S_{3}
$$

Note: $\{e\} \triangleleft K \triangleleft A_{4} \triangleleft S_{4}$
Every kernel of a non-faithful irrep is a normal subgroup \Rightarrow In non-faithful irrep of A_{4} and S_{4} always $K \mapsto \mathbb{1}$

Side remark: * Simple groups have only faithful non-trivial irreps $*$

Symmetric and alternating groups

Irreps of A_{4} :
One-dimensional irreps:
$\mathbf{1}^{(p)}: \quad k_{i} \mapsto 1, s \mapsto \omega^{p}(p=0,1,2)$ with $\omega=e^{2 \pi i / 3}$
Three-dimensional irrep: K represented as diagonal matrices

3: $\quad k_{1} \mapsto\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)=: A, \quad s \mapsto\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)=: E$
\Rightarrow
$\left.k_{2}=s k_{1} s^{-1} \mapsto \operatorname{diag}(-1,-1,1), k_{3}=s k_{2} s^{-1} \mapsto \operatorname{diag}(-1,1,-1)\right)$

Symmetric and alternating groups

Irreps of S_{4} :
1: $\quad p \mapsto 1$
$\mathbf{1}^{\prime}: \quad p \mapsto \operatorname{sign}(p)$
$3: \quad k_{1} \mapsto A, \quad s \mapsto E, \quad t \mapsto\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)=: R_{t}$
$3^{\prime}: \quad k_{1} \mapsto A, \quad s \mapsto E, \quad t \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
2: $\quad k_{i} \mapsto 1, \quad s \mapsto\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{2}\end{array}\right), \quad t \mapsto\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$
Remarks: $\mathbf{2}$ is irrep of $S_{3} \cong S_{4} / K, \mathbf{3}^{\prime}=\mathbf{1}^{\prime} \otimes \mathbf{3}$

Symmetric and alternating groups

Character table of A_{4} :

$T \cong A_{4}$	$C_{1}(e)$	$C_{2}(s)$	$C_{3}\left(s^{2}\right)$	$C_{4}\left(k_{1}\right)$
$(\# C)$	(1)	(4)	(4)	(3)
ord (C)	1	3	3	2
$\mathbf{1}^{(0)}$	1	1	1	1
$\mathbf{1}^{(1)}$	1	ω	ω^{2}	1
$\mathbf{1}^{(2)}$	1	ω^{2}	ω	1
$\mathbf{3}$	3	0	0	-1

Symmetric and alternating groups

Character table of $S_{4}: r:=s^{-1} k_{1} s t=(1423)$

$O \cong S_{4}$	$C_{1}(e)$	$C_{2}(t)$	$C_{3}\left(k_{1}\right)$	$C_{4}(s)$	$C_{5}(r)$
$(\# C)$	(1)	(6)	(3)	(8)	(6)
ord (C)	1	2	2	3	4
$\mathbf{1}$	1	1	1	1	1
$\mathbf{1}^{\prime}$	1	-1	1	1	-1
$\mathbf{2}$	2	0	2	-1	0
$\mathbf{3}$	3	-1	-1	0	1
$\mathbf{3}^{\prime}$	3	1	-1	0	-1

Symmetric and alternating groups

Remark:

Of the non-trivial symmetric and alternating groups, only
$S_{3}, A_{4}, S_{4}, A_{5}$
can be considered as finite subgroups of $S O(3)$,
i.e. possess a faithful representation by 3×3 rotation matrices.

- $S_{3} \cong S_{\triangle}=$ symmetry group of unilateral triangle
- $A_{4} \cong T=$ symmetry group of tetrahedron
- $S_{4} \cong O=$ symmetry group of octahedron
- $A_{5} \cong I=$ symmetry group of icosahedron

Classes of rotation groups: $R_{2} R(\alpha, \vec{n}) R_{2}^{-1}=R\left(\alpha, R_{2} \vec{n}\right) \Rightarrow$ rotations through the same angle about equivalent axes are equivalent
Classes of the tetrahedral group:

- The class of the identity element

$$
C_{1}=\{e\},
$$

- the class of rotations through 120° about the four three-fold axes

$$
C_{2}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}
$$

- the class of rotations through 240° about the four three-fold axes

$$
C_{3}=\left\{a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{4}^{2}\right\}
$$

- the class of rotations about the three two-fold axes $C_{4}=\left\{b_{1}, b_{2}, b_{3}\right\}$.

Symmetric and alternating groups

Symmetric and alternating groups

Generators of 3-dimensional irrep of A_{4} :

$$
\begin{gathered}
R(2 \pi / 3, \vec{n})=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \equiv E \quad \text { with } \quad \vec{n}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right) \\
R\left(\pi, \vec{e}_{x}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \equiv A
\end{gathered}
$$

Vertices of the tetrahedron:
Set of four points which is invariant under E and A

$$
\frac{1}{\sqrt{3}}\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right), \quad \frac{1}{\sqrt{3}}\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right), \quad \frac{1}{\sqrt{3}}\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right), \quad \frac{1}{\sqrt{3}}\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right)
$$

Symmetry axes of the symmetry group of the octahedron, O :

- Type 1: Three axes connecting two opposite vertices \Rightarrow six rotations through $\pm 90^{\circ}$, three rotations through 180°
- Type 2: Six axes passing through the centers of two opposite edges \Rightarrow six rotations through 180°
- Type 3: Four axes passing through the centers of two opposite faces \Rightarrow eight rotations through 120°
Classes of the octahedron:

axis type	0	2	1	3	1
$(\# C)$	(1)	(6)	(3)	(8)	(6)
ord C	1	2	2	3	4
element of S_{4}	e	t	k_{1}	s	r

Symmetric and alternating groups

Symmetric and alternating groups

Generators of 3 of S_{4} :

$$
\begin{gathered}
s=(123) \mapsto E, \quad k_{1}=(12)(34) \mapsto A, \quad t=(12) \mapsto R_{t} \\
R_{t}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad E=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Set of vertices of the octahedron, invariant under E, A, R_{t} : $\pm \vec{e}_{x}, \pm \vec{e}_{y}, \pm \vec{e}_{z}$

The finite subgroups of $\operatorname{SU}(3)$

H.F. Blichfeldt (1916) ${ }^{1}$:

Classification of the finite subgroups of $\operatorname{SU}(3)$ into five types:
(A) Abelian groups.
(B) Finite subgroups of $S U(3)$ with faithful 2-dimensional representations.
(C) The groups $C(n, a, b)$ generated by the matrices

$$
E=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad F(n, a, b)=\operatorname{diag}\left(\eta^{a}, \eta^{b}, \eta^{-a-b}\right)
$$

where $\eta=\exp (2 \pi i / n)$.

[^0] groups, New York (1916)
(D) The groups $D(n, a, b ; d, r, s)$ generated by $E, F(n, a, b)$ and
\[

\widetilde{G}(d, r, s)=\left($$
\begin{array}{ccc}
\delta^{r} & 0 & 0 \\
0 & 0 & \delta^{s} \\
0 & -\delta^{-r-s} & 0
\end{array}
$$\right)
\]

where $\delta=\exp (2 \pi i / d)$.
(E) Six exceptional finite subgroups of $S U(3)$:

- $\Sigma(60) \cong A_{5}, \Sigma(168) \cong \operatorname{PSL}(2,7)$
- $\Sigma(36 \times 3), \Sigma(72 \times 3), \Sigma(216 \times 3)$ and $\Sigma(360 \times 3)$,
as well as the direct products $\Sigma(60) \times \mathbb{Z}_{3}$ and $\Sigma(168) \times \mathbb{Z}_{3}$.

The finite subgroups of $S U(3)$: (A) Abelian groups

Simple (but powerful) theorem: P.O. Ludl (2011)

Abelian finite subgroups of $\mathrm{SU}(3)$

Every finite Abelian subgroup \mathcal{A} of $\operatorname{SU}(3)$ is isomorphic to

$$
\mathbb{Z}_{m} \times \mathbb{Z}_{n}
$$

where

$$
m=\max _{a \in \mathcal{A}} \operatorname{ord}(a)
$$

and n is a divisor of m.
\Rightarrow Possible structures of Abelian finite subgroups of $\operatorname{SU}(3)$ are strongly restricted!

Examples:

- Rotations about one axis (cyclic groups \mathbb{Z}_{m})
- Klein's four group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Finite subgroups of $S O(3)$

(1) The uniaxial groups: \mathbb{Z}_{n}
(2) The dihedral groups $D_{n}\left(\right.$ ord $\left.D_{n}=2 n\right)$
(3) The rotation groups of the Platonic solids: T, O, I symmetry group of cube $\cong O$ symmetry group of dedecahedron $\cong I$

The finite subgroups of $S U(3)$:
 (B) Groups with two-dimensional faithful representations

Every finite subgroup of $S U(2)$ can be conceived as a finite subgroup of $S U(3)$:

$$
A \in S U(2) \Rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right) \in S U(3)
$$

Even true for the finite subgroups of $U(2)$:

$$
A \in U(2) \Rightarrow\left(\begin{array}{cc}
\operatorname{det} A^{*} & 0 \\
0 & A
\end{array}\right) \in S U(3)
$$

Examples:

- Dihedral groups D_{n} (finite subgroups of $S O(3)$).
- Double covers of the finite 3-dimensional rotation groups $\left(\widetilde{T}, \widetilde{O}, \widetilde{I}, \widetilde{D_{n}}\right)$.

The finite subgroups of SU(3): groups of type (C)

Generated by

$$
E=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad F(n, a, b)=\operatorname{diag}\left(\eta^{a}, \eta^{b}, \eta^{-a-b}\right)
$$

where $\eta=\exp (2 \pi i / n)$.
Structure: $F(n, a, b)$ diagonal $\Rightarrow E F(n, a, b) E^{-1}$ also diagonal.
\Rightarrow Subgroup $N(n, a, b)$ of diagonal matrices is a normal subgroup.

$$
\Rightarrow C(n, a, b) \cong N(n, a, b) \rtimes \mathbb{Z}_{3}
$$

We also know that $N(n, a, b)$ is an Abelian finite subgroup of SU(3), thus

$$
C(n, a, b) \cong\left(\mathbb{Z}_{m} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{3}
$$

The finite subgroups of SU(3): groups of type (C)

$$
C(n, a, b) \cong\left(\mathbb{Z}_{m} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{3}
$$

Note: $n, a, b \Rightarrow m, p$ in a complicated way, p divisor of m Special cases:

- $p=1 \Rightarrow$ Groups of the type $T_{m} \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{3}$ where m is a product of powers of primes of the form $6 k+1$.
- $p=m \Rightarrow$ Groups of the type $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes \mathbb{Z}_{3} \cong \Delta\left(3 m^{2}\right)$.

Examples:

- Well-known groups such as $A_{4} \cong T \cong \Delta(12), \Delta(27), T_{7}, T_{13}$.
- Smallest group of type (C) which is neither of the form T_{n} nor of the form $\Delta\left(3 n^{2}\right)$:

$$
C(9,1,1) \cong\left(\mathbb{Z}_{9} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{3} .
$$

Note: dimensions of irreps can only be 1 and 3 (Grimus, Ludl (2011)).

The finite subgroups of SU(3): groups of type (D)

The group $D(n, a, b ; d, r, s)$ is generated by the generators of $C(n, a, b)$ and

$$
\widetilde{G}(d, r, s)=\left(\begin{array}{ccc}
\delta^{r} & 0 & 0 \\
0 & 0 & \delta^{s} \\
0 & -\delta^{-r-s} & 0
\end{array}\right)
$$

where $\delta=\exp (2 \pi i / d)$.
By means of a unitary transformation one obtains a different set of generators (Grimus, Ludl (2011), review):

- Three diagonal matrices,
- and the two S_{3}-generators

$$
E=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \Rightarrow D(n, a, b ; d, r, s) \cong N(n, a, b ; d, r, s) \rtimes S_{3} \\
& \Rightarrow D(n, a, b ; d, r, s) \cong\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m^{\prime}}\right) \rtimes S_{3} .
\end{aligned}
$$

Special cases:

- $m=m^{\prime} \Rightarrow$ Groups of the type $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes S_{3} \cong \Delta\left(6 m^{2}\right)$.

Examples:

- Well-known groups such as $S_{4} \cong \Delta(24), \Delta(54)$.
- Smallest group of type (D) which is neither a direct product nor of the form $\Delta\left(6 n^{2}\right)$:

$$
D(9,1,1 ; 2,1,1) \cong\left(\mathbb{Z}_{9} \times \mathbb{Z}_{3}\right) \rtimes S_{3}
$$

Note: dimensions of irreps can only be 1, 2, 3 and 6 (Grimus, Ludl (2011)).

Summary: "number theorems" of finite groups

Divisors of ord G:

- order of a subgroup
- order of an element
- number of elements in a class
- dimension of an irrep
number if inequivalent irreps $=$ number of classes
Irreps $D^{(\alpha)}$ with $\operatorname{dim} D^{(\alpha)}=d_{\alpha} \Rightarrow \sum_{\alpha} d_{\alpha}^{2}=\operatorname{ord} G$

Summary: The finite subgroups of SU(3)

Dihedral groups D_{n}

double covers of rotation groups

Thank you for your attention!

[^0]: ${ }^{1}$ G.A. Miller, H.F. Blichfeldt and L.E. Dickson: Theory and applications of finite

