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Motivation

The Standard Model has passed all precision tests
1 CERN: Z discovery, test of the gauge structure
2 Flavour factories: Test of the flavour sector
3 Tevatron: Discoveries, top, Bs − B̄s oscillation, . . .
4 LHC: Up to now no significant new discoveries

Only a few tensions ∼ 2− 3σ

Most hints for New Physics in flavour physics sector

Promising Channels: Flavour changing neutral currents (FCNC)

Forbidden at tree level ⇒ NP can enter at the same order

∆F = 1 processes: Rare decays

∆F = 2 processes: Meson oscillation / mixing

Focus here on M − M̄ oscillation (especially Bd/s − B̄d/s)
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Mixing and CP Violation: Origin and Consequences

CKM Matrix

Diagonalize up- and down-type quark mass matrices simultaneously

⇒ Missmatch in charged current described by CKM matrix

Vckm = V (u)W (d)†

3 generations ⇒ Vckm has 3 angles and 1 complex phase

Consequences

CP violation if all masses are non-degenerate

Transitions between different generations

⇒ Flavor changing neutral currents at the loop-level
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The CKM Matrix

γ

γ

α
α

dm∆
Kε

Kε

sm∆ & dm∆

SLubV

ν τubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Winter 12

CKM
f i t t e r

[CKMfitter: http://ckmfitter.in2p3.fr/]

Sascha Turczyk Constraining CP violation in neutral meson mixing with theory input 5 / 30



Introduction
Theoretical Constraints on the Mixing Parameters

Summary

Motivation
Description of Meson Oscillation
Theoretical Predictions of Oscillation Parameters

CP Violating in Mixing

General Comments [Bigi,Sanda: CP violation]

Occurs in P0 ↔ P̄0 oscillations

⇒ Flavor specific final states

P0 → f /← P̄0

Neccessary condition:
∣∣∣qp ∣∣∣ 6= 1

⇒ Rates for B and B̄ differ

Example of Process

Semi-leptonic asymmetry: P0 → X `+ν̄` and P̄0 → X `−ν`

Asl ≡
Γ (P0 → X `−)− Γ (P̄0 → X `+)

Γ (P0 → X `−) + Γ (P̄0 → X `+)
=

1− |q/p|4

1 + |q/p|4
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Description of Neutral Meson Mixing

Two state system with interplay of

oscillation and decay

Mass matrix M and decay width matrix Γ

are hermitian

i
∂

∂t

(
|P0〉
|P̄0〉

)
=

[(
M11 M12

M∗12 M11

)
− i
2

(
Γ11 Γ12

Γ ∗12 Γ11

)](
|P0〉
|P̄0〉

)
�

b

b̄s̄

s

�
b

b̄s̄

s

Diagonalization

Solution for mass eigenstates

|PH,L〉 =
p |P0〉 ∓ q |P̄0〉√
|p|2 + |q|2

,
q2

p2
=
2M∗12 − iΓ ∗12

2M12 − iΓ12

Mass eigenstates do not need to coincide with CP eigenstates

δ ≡ 〈PH |PL〉 =
|p|2 − |q|2

|p|2 + |q|2 =
1− |q/p|2

1+ |q/p|2 =
1−

√
1− A2

sl

Asl
≈ 1
2
Asl
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Test of the Standard Model

Need to predict three parameters to compare with SM

�
b

b̄s̄

s
�

b

b̄s̄

s

∆M = 2Re
√

(M12 − i/2Γ12)(M∗12 − i/2Γ ∗12) ≈ 2|M12|

∆Γ = −4Im
√

(M12 − i/2Γ12)(M∗12 − i/2Γ ∗12) ≈ 2|Γ12| cos[Arg(−Γ12/M12)]

δ = (1− |q/p|2)/(1+ |q/p|2) ≈ 1/2 Im Γ12/M12

Mixing Parameter Input [1008.1593,1203.0238]

M12: Dominated by dispersive part of ∆B = 2 operator

Γ12: Dominated by absorpative part of ∆B = 1 op. double insertion

Main theoretical uncertainties
1 Operator product expansion in physical region
2 Expansion in small energy release mb − 2mc < 2 GeV
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Effective Theory at the scale of the B

Heff =
4GF√

2
λCKM

∑
i

Ci (µ)Oi (µ)

Current-current operators

Electroweak/QCD Penguins

Magnetic Penguins

Semi-leptonic operators

∆F = 2 operators

Allows for Systematic Calculation: Heavy Quark Expansion (HQE)

Perturbative αs corrections

Non-perturbative 1/mb,c corrections
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The Hamilton Matrix: Computing Mixing Parameters

Matrix to be understood in M1 ≡ M — M̄ ≡ M2 space

Weak interaction sets scale: “Wigner-Weisskopf” approximation

⇒ Expansion in powers of GF =̂ Number of Hweak Insertions

Use rest-frame of the meson[
M−

i

2
Γ

]
ij

= MMδ
(0)
ij +

1

2MM

∑
n

〈Mi |Hweak|n〉〈n|Hweak|Mj〉
M

(0)
M − En + iε

+ . . .

Sum includes phase-space of final state

Decompose into dispersive and absorpative part “optical theorem”

1

ω + iε
= P

(
1

ω

)
− iπδ(ω)
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Calculation of Γ12

Absorpative Part

Γij =
1

2MM

∑
n

〈Mi |Hweak|n〉〈n|Hweak|Mj 〉(2π)δ(M
(0)
M − En)

On-shell production of intermediate particles

i = j recovers total width

dominated by ∆B = 1 operator

Only u and c intermediate state quarks

�b b̄

s̄

u, c

s
u, c

Calculation [arXiv:1102.4274]

Perturbative corrections
1 Up to NLO in αs(mb)
2 All-order summation of αns (m

2
c/m

2
b)
n log(m2

c/m
2
b)

Non-perturbative corrections up to ΛQCD/mb (5 more operators)
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Calculation of M12 [hep-ph/0612167]

Dispersive Part

Mij =
1

2MM
〈Mi |H∆F=2|Mj〉+

1

2MM

∑
n

P
〈Mi |H∆F=1|n〉〈n|H∆F=1|Mj〉

M
(0)
M − En

dominated by ∆B = 2 operator

top quark dominate intermediate state �
b

b̄s̄

s

Result within SM [hep-ph/0612167]

M12 =
G 2
FMB

12π2
M2
W (VtbV

∗
ts)

2η̂BS0

( m2
t

M2
W

)
f 2
BsB

Lattice determination of Bag parameter B and decay constant fBs

Mass difference measured precisly

⇒ Fixes |M12| for |M12| � Γ12
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Calculation of Asl [hep-ph/0612167]

In the Standard Model

Naming scheme for Bs,d : Ad ,sSL

Sum of both including production asymmetry: AbSL

SM phase orginates from CKM mechanism (convention dependent)

Ad ,sSL ≈ Im Γ d ,s12 /M
d ,s
12 ≈

∆Γd ,s
∆Md ,s

tanφd ,s

Highly suppressed: |Γ12/M12| = O(m2
b/M

2
W ,m

2
c/m

2
b)

Beyond the Standard Model

Additional phases can be introduced in M12 due to New Physics

⇒ Introduces sensitivity to Re (Γ12/M12)SM

⇒ Enhanced sensitivity for BSM physics in this observable
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Standard Model Predictions [A.Lenz,U.Nierste: 1102.4274,hep-ph/0612167]

Predictions for Bs System

2|Γ s12| = (0.087± 0.021) ps−1

∆Ms = (17.3± 2.6) ps−1

φs = (0.22± 0.06)◦

asSL = (1.9± 0.3)10−5

Predictions for Bd System

2|Γ d12| = (2.74± 0.51)× 10−3 ps−1

φd = (−4.3± 1.4)◦

adSL = −(4.1± 0.6)10−4
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Current Experimental Situation

DØ Like-sign Di-muon measurement [1106.6308]

AbSL = −[7.87± 1.72 (stat)± 0.93 (syst)]× 10−3

= (0.594± 0.022)AdSL + (0.406± 0.022)AsSL

∆Ms = (17.719± 0.043) ps−1
[hep-ex/0609040,LHCb-CONF-2011-050(005)]

∆Md = (0.507± 0.004) ps−1 Heavy Flavor Averaging Group (HFAG)

∆Γs = (0.116± 0.019) ps−1 LHCb

∆Γs = (0.068± 0.027) ps−1 CDF

∆Γs = (0.163+0.065
−0.064) ps−1 DØ

LHCb measurement of time dependent CP asymmetry [LHCb-CONF-2012-002]

φs = −0.001± 0.101(stat)± 0.027(syst) rad

New measurement tend to agree well with SM
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Theoretical Predictions of Oscillation Parameters

How Can New Physics Enter?

Can induce new operator structures

Can modify Wilson coefficients

Parametrization and Effects

For B mesons: |Γ12/M12| � 1

∆m = |2M12|, ∆Γ = 2|Γ12| cosφ12, Asl = 2δ = Im (Γ12/M12)

In general: Changing phase and absolute value possible

M12 = MSM
12 |∆s |e iφ

∆
s

1 Only relative phase relevant
2 M12: Heavy intermediate particles, but |M12| constrained by exp.
3 Γ12 dominated by on-shell charm intermediate states

⇒ Believed not to change dramatically by New Physics contribtions
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Generic Conditions on Mixing Parameter

Physical Constraints

Mass and width of physical states have to be positive

Unitarity has to be conserved

Time evolution of any linear combination of |B0〉 and |B̄0〉
determined entirely by the Γ matrix

⇒ Γ itself has positive eigenvalues

Defining Γ = (ΓH + ΓL)/2, x = (mH −mL)/Γ and y = (ΓL − ΓH)/(2Γ )

δ2 <
ΓHΓL

(mH −mL)2 + (ΓH + ΓL)2/4
=

1− y2

1 + x2

Known as unitarity bound or Bell-Steinberger inequality

[J.S. Bell, J. Steinberger, “Weak interactions of kaons”, in R. G. Moorhouse et al.,

Eds., Proceedings of the Oxford Int. Conf. on Elementary Particles, Rutherford

Laboratory, Chilton, England, 1965, p. 195.]
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Reminder: Sketching Derivation of Unitarity Bound

Definitions

ai =
√

2πρi 〈fi |H|B〉 , āi =
√

2πρi 〈fi |H|B̄〉
⇒ a∗i ai = Γ11 , ā∗i āi = Γ22 , ā∗i ai = Γ12

In the physical basis we have

ai = 1
2p (aHi + aLi ) , āi = 1

2q (aLi − aHi )
⇒ a∗Hi aHi = ΓH , a∗Li aLi = ΓL , a∗Hi aLi = −i(mH −mL + iΓ ) δ

Sketch of Derivation

Apply optical theorem and Cauchy Schwartz inequality

⇒ Forces Γ to have positive semi-definit eigenvalues

Γ11 ≥ |Γ12|

Apply the same to the physical basis with unitarity condition

Leads to the unitarity bound δ2 < ΓHΓL
(mH−mL)2+(ΓH+ΓL)2/4 = 1−y2

1+x2
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In the physical basis we have

ai = 1
2p (aHi + aLi ) , āi = 1
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√

2πρi 〈fi |H|B̄〉
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Implication for the Three Neutral Mesons

Neutral K Mesons

Very limited amount of

final states

Unitarity bound

developed for this case

Neutral D Mesons

Difficult in theory as well as in
experiment

1 Non-perturbative methods?
2 Huge GIM suppression

Interesting because of only up-type

Neutral Bd ,s Mesons

Lots of possible final states

Experimental precision is increasing

Systematic expansion for theoretical calculations possible

⇒ Good opportunity to search for New Physics

Improve bound on parameters
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Improvement: Using Theoretical Input

Assumptions

Assume knowledge of |Γ12|
⇒ Can be computed in a reliable, systematical expansion in the B

system

Define y12 ≥ 0 with

0 ≤ y12 = |Γ12|
/
Γ ≤ 1

Goals

Use precise measurement of mass difference

Use a reliable theory prediction

⇒ Obtain a relation between two measurable quantities
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Deriving the Relation

Sketch of the Steps

Start with the same equations as for the unitarity bound

Use y12 instead of unitarity constraint

Proceed with same steps

The Result

δ2 =
y2

12 − y2

y2
12 + x2

=
|Γ12|2 − (∆Γ )2/4

|Γ12|2 + (∆m)2

Entirely determined by solving the eigenstate problem

Relation is exact

Monotonic function in y12

In view of uncertainties, should be seen as an upper bound
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Scaling Argument and CPT

Obtain a Physical Understanding

Relation can also be obtained from a scaling argument

δ depends only on mixing parameters and independent of Γ

Scale Γ by y12

1 Does not affect δ
2 Changes x → x/y12 and y → y/y12

⇒ Combining argument with unitarity bound recovers exact relation

Derivation not Assuming CPT invariance

Assuming no CPT invariance implies M11 6= M22 and Γ11 6= Γ22

Mixing parameters depend on difference of diagonal components

⇒ Relation applies for |δ|2

Usual derivation do not go through if CPT is violated
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Combined Bound on AbSL

Experimental Situation

Hadron colliders produce admixture of Bs and Bd

⇒ Production asymmetry is known at DØ

AbSL = (0.594± 0.022)AdSL + (0.406± 0.022)AsSL

B factories can access Bd ⇒ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input

Relation (bound) on |δ|
⇒ Relation for individual |Ad ,sSL |
⇒ With know production asymmetry we can give a bound on

|AbSL| ≤ (1.188± 0.044) δdmax + (0.812± 0.044) δsmax

Bound is the same, if difference is measured
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Plot of the Bound
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È Assuming ∆Γd = 0

Horizontal lines: 1σ range of |AbSL|
DØ measurement

Vertical lines correspond to ∆Γs
LHCb measurement

Shaded regions are allowed by theory prediction
1 Darker uses 1σ upper range
2 Lighter uses 2σ upper range

Dashed [dotted] curves: Mixed sigma interval of theory predictions

The vertical boundaries of the shaded regions arise because

|∆Γs | > 2 |Γ s12| is unphysical.
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Plot on Individual Bound on Bs
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Interpretation

Horizontal lines correspond to LHCb measurement

Dark [light] shaded allowed by 1σ [2σ] theory variation

No discrepancy claimed in experiment
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Plot on Individual Bound on Bd
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Dark [light] shaded allowed by 1σ [2σ] theory variation

No discrepancy claimed in experiment

Non-zero measurement of ∆Γd would strengthen upper bound
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Discussuion
Summary

Numerical Interpretation

Remarks

Problematic: |∆Γs |meas. > 2 |Γ s12| is unphysical

Numerator of Relation can vanish ⇒ Upper bound

Assume 2σ theory prediction for a conservative estimate

Results

For Bs system, we obtain by propagating the uncertainties, taking
into account the unphysical region

|AsSL| < 4.2× 10−3

2-3 times better than best current experimental bound

For the Bd system we obtain a comparable bound

|AdSL| < 7.4× 10−3

Significant improvement possible by observing |∆Γd | > 0
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Discussion of the Results

Strength of the Bound

Upper bound on y12 implies an upper bound on |δ|
Relation is much stronger for small y12, as e.g. in the Bd system

Comparing to Known Results

DØ ASL measurement: 3.9σ discrepancy with SM

⇒ Correlated with the discrepancy found in our analysis
1 SM prediction of ASL uses calculation of Γ12

2 The relation uses |Γ12| as an input
3 Calculation of |Γ12| and Im(Γ12) rely on the same OPE

Large cancellations in Im(Γ12) ⇒ Uncertainties could be larger than

expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]

The sensitivity of Γ12 to NP is generally weak

Interesting to determine δ additionally from this relation
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No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

Unitarity bound is satured if

〈f |T|BH〉 ∝ 〈f |T|BL〉
Start with an arbitrary, generic decaying two-state system

Wigner-Weisskopf approximation: Any choice of parameters OK

⇒ Orthogonal, non CP violating system as starting point

Arbitrary new UV physics can change M12 independently of Γ12

Varying M12 keeping mass and width of states physical

⇒ Unitarity bound can be satured (relax constraint Arg M12 = Arg Γ12)

Explicit mathematical check
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Summary

Provided a physical derivation of the exact relation allowing for
theoretical input on |Γ12|

1 Input is typically insensitive to New Physics
2 Avoids largest uncertainties of theory calculation
3 Valid even if CPT is violated

Independent of the discrepancy found from a global fit
1 Application to Bd ,s systems leads to the individual bounds

|AsSL| < 4.2× 10−3 |AdSL| < 7.4× 10−3

2 Providing a bound on the individual asymmetries at comparable or

better levels than the current experimental bounds
3 Bounds are in tension with the DØ measurement of AbSL

Once an unambiguous determination of ASL or ∆Γ is made, we

can use it to constrain the other observable.
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Direct CP Violation

General Comment [Bigi,Sanda: CP violation]

Need CP even and odd phases

Γ ∝ |A1(f ) + A2(f )|2

⇒ Interference of CP conserving (strong) and

violating (weak) phases

Occurs in neutral and charged meson decays

Neccessary condition: |A(f )| 6= |Ā(f̄ )|

Example of Process

Only source of CP violation in charged meson decays

Af ± ≡
Γ (P− → f −)− Γ (P+ → f +)

Γ (P− → f −) + Γ (P+ → f +)
=

∣∣Ā(f −)/A(f +)
∣∣2 − 1∣∣Ā(f −)/A(f +)
∣∣2 + 1
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CP Violation in Interference of Mixing and Decay

General Comments [Bigi,Sanda: CP violation]

Interference between decay and

mixing to common final state

Neccessary condition:

Im

[
q

p

Ā(f )

A(f )
6= 0

]
Example of Process

CP Asymmetry (easy form only in limits, e.g. B mesons)

AfCP (t) ≡
Γ (P̄0 → fCP)− Γ (P0 → fCP)

Γ (P̄0 → fCP) + Γ (P0 → fCP)

=
−Adir

CP cos(∆Mt)−Amix
CP sin(∆Mt)

cosh(∆Γ t/2) +A∆Γ sinh(∆Γ t/2)

Bs → J/Ψφ and Bs → J/Ψf0
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