Constraining CP violation in neutral meson mixing with theory input

Sascha Turczyk

Work in collaboration with M. Freytsis and Z. Ligeti [1203.3545 hep-ph] Lawrence Berkeley National Laboratory

> Vienna Theory Seminar Thursday, June 28th, 2012

Outline

Introduction

- Motivation
- Description of Meson Oscillation
- Theoretical Predictions of Oscillation Parameters

Theoretical Constraints on the Mixing Parameters

- Unitarity Constraint
- Deriving a Relation using Theoretical Input
- Application to Recent Data

3 Summary

- Discussuion
- Summary

 Introduction
 Motivation

 Theoretical Constraints on the Mixing Parameters
 Description of Meson Oscillation

 Summary
 Theoretical Predictions of Oscillation Parameters

Motivation

- The Standard Model has passed all precision tests
 - CERN: Z discovery, test of the gauge structure
 - Plavour factories: Test of the flavour sector
 - Solution: Discoveries, top, $B_s \overline{B}_s$ oscillation, ...
 - UHC: Up to now no significant new discoveries
- Only a few tensions $\sim 2-3\sigma$
- Most hints for New Physics in flavour physics sector

Promising Channels: Flavour changing neutral currents (FCNC)

- Forbidden at tree level \Rightarrow NP can enter at the same order
- $\Delta F = 1$ processes: Rare decays
- $\Delta F = 2$ processes: Meson oscillation / mixing
- Focus here on $M \overline{M}$ oscillation (especially $B_{d/s} \overline{B}_{d/s}$)

 Introduction
 Motivation

 Theoretical Constraints on the Mixing Parameters
 Description of Meson Oscillation

 Summary
 Theoretical Predictions of Oscillation Parameters

Motivation

- The Standard Model has passed all precision tests
 - CERN: Z discovery, test of the gauge structure
 - Plavour factories: Test of the flavour sector
 - Solution: Discoveries, top, $B_s \overline{B}_s$ oscillation, ...
 - UHC: Up to now no significant new discoveries
- Only a few tensions $\sim 2 3\sigma$
- Most hints for New Physics in flavour physics sector

Promising Channels: Flavour changing neutral currents (FCNC)

- Forbidden at tree level \Rightarrow NP can enter at the same order
- $\Delta F = 1$ processes: Rare decays
- $\Delta F = 2$ processes: Meson oscillation / mixing
- Focus here on $M \overline{M}$ oscillation (especially $B_{d/s} \overline{B}_{d/s}$)

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Mixing and CP Violation: Origin and Consequences

CKM Matrix

- Diagonalize up- and down-type quark mass matrices simultaneously
- \Rightarrow Missmatch in charged current described by CKM matrix

 $V_{\rm ckm} = V^{(u)} W^{(d)\dagger}$

• 3 generations \Rightarrow V_{ckm} has 3 angles and 1 complex phase

Consequences

- CP violation if all masses are non-degenerate
- Transitions between different generations
- \Rightarrow Flavor changing neutral currents at the loop-level

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Mixing and CP Violation: Origin and Consequences

CKM Matrix

- Diagonalize up- and down-type quark mass matrices simultaneously
- \Rightarrow Missmatch in charged current described by CKM matrix

$$V_{\rm ckm} = V^{(u)} W^{(d)\dagger}$$

• 3 generations \Rightarrow V_{ckm} has 3 angles and 1 complex phase

Consequences

- CP violation if all masses are non-degenerate
- Transitions between different generations
- \Rightarrow Flavor changing neutral currents at the loop-level

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Mixing and CP Violation: Origin and Consequences

CKM Matrix

- Diagonalize up- and down-type quark mass matrices simultaneously
- \Rightarrow Missmatch in charged current described by CKM matrix

$$V_{\rm ckm} = V^{(u)} W^{(d)\dagger}$$

• 3 generations \Rightarrow V_{ckm} has 3 angles and 1 complex phase

Consequences

- CP violation if all masses are non-degenerate
- Transitions between different generations
- $\Rightarrow\,$ Flavor changing neutral currents at the loop-level

$$V_{CKM}^{\dagger}V_{CKM} = \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ \hline V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Introduction
 Motivation

 Theoretical Constraints on the Mixing Parameters
 Description of Meson Oscillation

 Summary
 Theoretical Predictions of Oscillation Parameters

The CKM Matrix

Sascha Turczyk

Constraining CP violation in neutral meson mixing with theory input

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

CP Violating in Mixing

General Comments [Bigi,Sanda: CP violation]

- Occurs in $P_0 \leftrightarrow \overline{P}_0$ oscillations
- \Rightarrow Flavor specific final states

$$P_0 \to f \not\leftarrow \bar{P}_0$$

• Neccessary condition:
$$\left|\frac{q}{p}\right| \neq 1$$

 \Rightarrow Rates for *B* and \overline{B} differ

Example of Process

Semi-leptonic asymmetry: $P_0 \to X\ell^+ \bar{\nu}_\ell$ and $\bar{P}_0 \to X\ell^- \nu_\ell$ $A_{cl} \equiv \frac{\Gamma(P_0 \to X\ell^-) - \Gamma(\bar{P}_0 \to X\ell^+)}{\bar{\mu}_{cl}} = \frac{1 - |q/p|^4}{\bar{\mu}_{cl}}$

$$\Gamma(P_0 \to X\ell^-) + \Gamma(\bar{P}_0 \to X\ell^+) = \frac{1}{1 + |q/p|^4}$$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Description of Neutral Meson Mixing

- Two state system with interplay of oscillation and decay
- Mass matrix *M* and decay width matrix *Γ* are hermitian

$$\frac{\partial}{\partial t} \begin{pmatrix} |P_0\rangle \\ |\bar{P}_0\rangle \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix} \end{bmatrix} \begin{pmatrix} |P_0\rangle \\ |\bar{P}_0\rangle \end{pmatrix}$$

Diagonalization

• Solution for mass eigenstates

$$P_{H,L}\rangle = \frac{p |P^0\rangle \mp q |\bar{P}_0\rangle}{\sqrt{|p|^2 + |q|^2}}, \qquad \frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$$

• Mass eigenstates do not need to coincide with CP eigenstates

$$\delta \equiv \langle P_H | P_L \rangle = \frac{|p|^2 - |q|^2}{|p|^2 + |q|^2} = \frac{1 - |q/p|^2}{1 + |q/p|^2} = \frac{1 - \sqrt{1 - A_{\rm sl}^2}}{A_{\rm sl}} \approx \frac{1}{2} A_{\rm sl}$$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Description of Neutral Meson Mixing

- Two state system with interplay of oscillation and decay
- Mass matrix *M* and decay width matrix *Γ* are hermitian

$$\frac{\partial}{\partial t} \begin{pmatrix} |P_0\rangle \\ |\bar{P}_0\rangle \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix} \end{bmatrix} \begin{pmatrix} |P_0\rangle \\ |\bar{P}_0\rangle \end{pmatrix}$$

Diagonalization

• Solution for mass eigenstates

$$|P_{H,L}\rangle = \frac{p \, |P^0\rangle \mp q \, |\bar{P}_0\rangle}{\sqrt{|p|^2 + |q|^2}} , \qquad \frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$$

• Mass eigenstates do not need to coincide with CP eigenstates

$$\delta \equiv \langle P_H | P_L \rangle = \frac{|p|^2 - |q|^2}{|p|^2 + |q|^2} = \frac{1 - |q/p|^2}{1 + |q/p|^2} = \frac{1 - \sqrt{1 - A_{\mathsf{sl}}^2}}{A_{\mathsf{sl}}} \approx \frac{1}{2} A_{\mathsf{sl}}$$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Test of the Standard Model

Need to predict three parameters to compare with SM

 $\Delta M = 2 \operatorname{Re} \sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|M_{12}|$

$$\Delta \Gamma = -4 \operatorname{Im} \sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|\Gamma_{12}| \cos[\operatorname{Arg}(-\Gamma_{12}/M_{12})]$$

$$\delta = (1 - |q/p|^2)/(1 + |q/p|^2) \approx 1/2 \operatorname{Im} \Gamma_{12}/M_{12}$$

Mixing Parameter Input

[1008.1593,1203.0238]

- M_{12} : Dominated by dispersive part of $\Delta B = 2$ operator
- Γ_{12} : Dominated by absorpative part of $\Delta B = 1$ op. double insertion
- Main theoretical uncertainties
 - Operator product expansion in physical region
 - 3 Expansion in small energy release $m_b 2m_c < 2$ GeV

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Test of the Standard Model

Need to predict three parameters to compare with SM

 $\Delta M = 2 \text{Re} \sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|M_{12}|$

 $\Delta \Gamma = -4 \operatorname{Im} \sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|\Gamma_{12}| \cos[\operatorname{Arg}(-\Gamma_{12}/M_{12})]$ $\delta = (1 - |q/p|^2)/(1 + |q/p|^2) \approx 1/2 \operatorname{Im} \Gamma_{12}/M_{12}$

Mixing Parameter Input

[1008.1593,1203.0238]

- M_{12} : Dominated by dispersive part of $\Delta B = 2$ operator
- Γ_{12} : Dominated by absorpative part of $\Delta B = 1$ op. double insertion
- Main theoretical uncertainties
 - Operator product expansion in physical region
 - 2 Expansion in small energy release $m_b 2m_c < 2$ GeV

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Effective Theory at the scale of the B

$$\mathcal{H}_{\mathrm{eff}} = rac{4G_F}{\sqrt{2}}\lambda_{\mathrm{CKM}}\sum_i C_i(\mu)\mathcal{O}_i(\mu)$$

- Current-current operators
- Electroweak/QCD Penguins
- Magnetic Penguins
- Semi-leptonic operators
- $\Delta F = 2$ operators

Allows for Systematic Calculation: Heavy Quark Expansion (HQE)

- Perturbative α_s corrections
- Non-perturbative $1/m_{b,c}$ corrections

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Effective Theory at the scale of the B

$$\mathcal{H}_{\mathrm{eff}} = rac{4G_F}{\sqrt{2}}\lambda_{\mathrm{CKM}}\sum_i C_i(\mu)\mathcal{O}_i(\mu)$$

- Current-current operators
- Electroweak/QCD Penguins
- Magnetic Penguins
- Semi-leptonic operators
- $\Delta F = 2$ operators

Allows for Systematic Calculation: Heavy Quark Expansion (HQE)

- Perturbative α_s corrections
- Non-perturbative $1/m_{b,c}$ corrections

The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in $M_1 \equiv M \bar{M} \equiv M_2$ space
- Weak interaction sets scale: "Wigner-Weisskopf" approximation
- ⇒ Expansion in powers of G_F $\hat{=}$ Number of \mathcal{H}_{weak} Insertions
 - Use rest-frame of the meson

$$\left[\mathcal{M} - \frac{i}{2}\Gamma\right]_{ij} = M_M \delta_{ij}^{(0)} + \frac{1}{2M_M} \sum_n \frac{\langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle}{M_M^{(0)} - E_n + i\epsilon} + \dots$$

- Sum includes phase-space of final state
- Decompose into dispersive and absorpative part "optical theorem"

$$\frac{1}{\omega + i\epsilon} = \mathcal{P}\left(\frac{1}{\omega}\right) - i\pi\delta(\omega)$$

The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in $M_1 \equiv M \bar{M} \equiv M_2$ space
- Weak interaction sets scale: "Wigner-Weisskopf" approximation
- \Rightarrow Expansion in powers of $G_F \doteq$ Number of \mathcal{H}_{weak} Insertions
- Use rest-frame of the meson

$$\left[\mathcal{M} - \frac{i}{2}\Gamma\right]_{ij} = M_M \delta_{ij}^{(0)} + \frac{1}{2M_M} \sum_n \frac{\langle M_i | \mathcal{H}_{\mathsf{weak}} | n \rangle \langle n | \mathcal{H}_{\mathsf{weak}} | M_j \rangle}{M_M^{(0)} - E_n + i\epsilon} + \dots$$

- Sum includes phase-space of final state
- Decompose into dispersive and absorpative part "optical theorem"

$$\frac{1}{\omega + i\epsilon} = \mathcal{P}\left(\frac{1}{\omega}\right) - i\pi\delta(\omega)$$

The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in $M_1 \equiv M \bar{M} \equiv M_2$ space
- Weak interaction sets scale: "Wigner-Weisskopf" approximation
- \Rightarrow Expansion in powers of $G_F \doteq$ Number of \mathcal{H}_{weak} Insertions
- Use rest-frame of the meson

$$\left[\mathcal{M} - \frac{i}{2}\Gamma\right]_{ij} = M_M \delta_{ij}^{(0)} + \frac{1}{2M_M} \sum_n \frac{\langle M_i | \mathcal{H}_{\mathsf{weak}} | n \rangle \langle n | \mathcal{H}_{\mathsf{weak}} | M_j \rangle}{M_M^{(0)} - E_n + i\epsilon} + \dots$$

- Sum includes phase-space of final state
- Decompose into dispersive and absorpative part "optical theorem"

$$\frac{1}{\omega+i\epsilon}=\mathcal{P}\left(\frac{1}{\omega}\right)-i\pi\delta(\omega)$$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of Γ_{12}

Absorpative Part

$$\Gamma_{ij} = \frac{1}{2M_M} \sum_{n} \langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle (2\pi) \delta(M_M^{(0)} - E_n)$$

- On-shell production of intermediate particles
- i = j recovers total width
- dominated by $\Delta B = 1$ operator
- Only *u* and *c* intermediate state quarks

Calculation

- Perturbative corrections
 - D Up to NLO in $\alpha_s(m_b)$
 - 2 All-order summation of $\alpha_s^n (m_c^2/m_b^2)^n \log(m_c^2/m_b^2)$
- Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)

[arXiv:1102.4274]

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of Γ_{12}

Absorpative Part

$$\Gamma_{ij} = \frac{1}{2M_M} \sum_{n} \langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle (2\pi) \delta(M_M^{(0)} - E_n)$$

- On-shell production of intermediate particles
- *i* = *j* recovers total width
- dominated by $\Delta B = 1$ operator
- Only *u* and *c* intermediate state quarks

Calculation

- Perturbative corrections
 - **D** Up to NLO in $\alpha_s(m_b)$
 - 2 All-order summation of $\alpha_s^n (m_c^2/m_b^2)^n \log(m_c^2/m_b^2)$
- Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)

[arXiv:1102.4274]

Introduction Internet Internet

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of Γ_{12}

Absorpative Part

$$\Gamma_{ij} = \frac{1}{2M_M} \sum_{n} \langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle (2\pi) \delta(M_M^{(0)} - E_n)$$

- On-shell production of intermediate particles
- *i* = *j* recovers total width
- dominated by $\Delta B = 1$ operator
- Only *u* and *c* intermediate state quarks

Calculation

- Perturbative corrections
 - **1** Up to NLO in $\alpha_s(m_b)$
 - 2 All-order summation of $\alpha_s^n (m_c^2/m_b^2)^n \log(m_c^2/m_b^2)$
- Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)

[arXiv:1102.4274]

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of M_{12}

Dispersive Part

$$M_{ij} = \frac{1}{2M_M} \langle M_i | \mathcal{H}_{\Delta F=2} | M_j \rangle + \frac{1}{2M_M} \sum_n \mathcal{P} \frac{\langle M_i | \mathcal{H}_{\Delta F=1} | n \rangle \langle n | \mathcal{H}_{\Delta F=1} | M_j \rangle}{M_M^{(0)} - E_n}$$

- dominated by $\Delta B = 2$ operator
- top quark dominate intermediate state

Result within SM

$$M_{12} = \frac{G_F^2 M_B}{12\pi^2} M_W^2 (V_{tb} V_{ts}^*)^2 \hat{\eta}_B S_0 \left(\frac{m_t^2}{M_W^2}\right) f_{B_s}^2 B$$

- Lattice determination of Bag parameter B and decay constant f_{Bs}
- Mass difference measured precisly
- \Rightarrow Fixes $|M_{12}|$ for $|M_{12}| \gg \Gamma_{12}$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of M_{12}

Dispersive Part

$$M_{ij} = \frac{1}{2M_M} \langle M_i | \mathcal{H}_{\Delta F=2} | M_j \rangle + \frac{1}{2M_M} \sum_n \mathcal{P} \frac{\langle M_i | \mathcal{H}_{\Delta F=1} | n \rangle \langle n | \mathcal{H}_{\Delta F=1} | M_j \rangle}{M_M^{(0)} - E_n}$$

- dominated by $\Delta B = 2$ operator
- top quark dominate intermediate state

Result within SM

$$M_{12} = \frac{G_F^2 M_B}{12\pi^2} M_W^2 (V_{tb} V_{ts}^*)^2 \hat{\eta}_B S_0 \left(\frac{m_t^2}{M_W^2}\right) f_{B_s}^2 B$$

- Lattice determination of Bag parameter B and decay constant f_{B_s}
- Mass difference measured precisly
- \Rightarrow Fixes $|M_{12}|$ for $|M_{12}| \gg \Gamma_{12}$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of A_{sl}

In the Standard Model

- Naming scheme for $B_{s,d}$: $A_{SL}^{d,s}$
- Sum of both including production asymmetry: A^b_{SL}
- SM phase orginates from CKM mechanism (convention dependent)

$$A_{
m SL}^{d,s} pprox \, {
m Im} \, \Gamma_{12}^{d,s} / M_{12}^{d,s} pprox rac{\Delta \Gamma_{d,s}}{\Delta M_{d,s}} an \phi_{d,s}$$

• Highly suppressed: $|\Gamma_{12}/M_{12}| = O(m_b^2/M_W^2, m_c^2/m_b^2)$

Beyond the Standard Model

- Additional phases can be introduced in M_{12} due to New Physics
- \Rightarrow Introduces sensitivity to Re $(\Gamma_{12}/M_{12})_{SM}$
- \Rightarrow Enhanced sensitivity for BSM physics in this observable

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Calculation of A_{sl}

In the Standard Model

- Naming scheme for $B_{s,d}$: $A_{SL}^{d,s}$
- Sum of both including production asymmetry: A^b_{SL}
- SM phase orginates from CKM mechanism (convention dependent)

$$A_{
m SL}^{d,s} pprox \, {
m Im} \, \Gamma_{12}^{d,s} / M_{12}^{d,s} pprox rac{\Delta \Gamma_{d,s}}{\Delta M_{d,s}} an \phi_{d,s}$$

• Highly suppressed: $|\Gamma_{12}/M_{12}| = O(m_b^2/M_W^2, m_c^2/m_b^2)$

Beyond the Standard Model

- Additional phases can be introduced in M_{12} due to New Physics
- ⇒ Introduces sensitivity to $\text{Re}(\Gamma_{12}/M_{12})_{\text{SM}}$
- \Rightarrow Enhanced sensitivity for BSM physics in this observable

Introduction Motivation Theoretical Constraints on the Mixing Parameters Summary Theoretical Predictions of Oscillation Parameters

Standard Model Predictions [A.Lenz, U.Nierste: 1102.4274, hep-ph/0612167]

Predictions for B_s System

- $2|\Gamma_{12}^s| = (0.087 \pm 0.021) \, \mathrm{ps}^{-1}$
- $\Delta M_s = (17.3 \pm 2.6) \, \mathrm{ps}^{-1}$

•
$$\phi_s = (0.22 \pm 0.06)^\circ$$

•
$$a_{\rm SL}^s = (1.9 \pm 0.3) 10^{-5}$$

Predictions for B_d System

Introduction Motivation Theoretical Constraints on the Mixing Parameters Summary Theoretical Predictions of Oscillation Parameters

Standard Model Predictions [A.Lenz, U.Nierste: 1102.4274, hep-ph/0612167]

Predictions for B_s System

- $2|\Gamma_{12}^s| = (0.087 \pm 0.021) \, \mathrm{ps}^{-1}$
- $\Delta M_s = (17.3 \pm 2.6) \, \mathrm{ps}^{-1}$

•
$$\phi_s = (0.22 \pm 0.06)^\circ$$

•
$$a_{SL}^s = (1.9 \pm 0.3)10^{-5}$$

Predictions for B_d System

•
$$2|\Gamma_{12}^d| = (2.74 \pm 0.51) \times 10^{-3} \text{ ps}^{-1}$$

• $\phi_d = (-4.3 \pm 1.4)^\circ$
• $a_{51}^d = -(4.1 \pm 0.6)10^{-4}$

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Current Experimental Situation

DØ Like-sign Di-muon measurement

[1106.6308]

$$\begin{aligned} A^b_{\rm SL} &= -[7.87 \pm 1.72\,(\text{stat}) \pm 0.93\,(\text{syst})] \times 10^{-3} \\ &= (0.594 \pm 0.022)\,A^d_{\rm SL} + (0.406 \pm 0.022)\,A^s_{\rm SL} \end{aligned}$$

 $\Delta M_s = (17.719 \pm 0.043) \,\mathrm{ps^{-1}} \,[\text{hep-ex/0609040,LHCb-CONF-2011-050(005)}]$ $\Delta M_d = (0.507 \pm 0.004) \,\mathrm{ps^{-1}} \,\text{Heavy Flavor Averaging Group (HFAG)}$

$$\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1} \text{ LHCb}$$

$$\Delta \Gamma_s = (0.068 \pm 0.027) \text{ ps}^{-1} \text{ CDF}$$

$$\Delta \Gamma_s = (0.163^{+0.065}_{-0.064}) \text{ ps}^{-1} \text{ DØ}$$

LHCb measurement of time dependent CP asymmetry [LHCb-CONF-2012-002]

 $\phi_s = -0.001 \pm 0.101 (\text{stat}) \pm 0.027 (\text{syst}) \, \text{rad}$

• New measurement tend to agree well with SM

Sascha Turczyk

Constraining CP violation in neutral meson mixing with theory input

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Current Experimental Situation

DØ Like-sign Di-muon measurement

$$\begin{split} \mathsf{A}^b_{\rm SL} &= -[7.87 \pm 1.72\,({\rm stat}) \pm 0.93\,({\rm syst})] \times 10^{-3} \\ &= (0.594 \pm 0.022)\,\mathsf{A}^d_{\rm SL} + (0.406 \pm 0.022)\,\mathsf{A}^s_{\rm SL} \end{split}$$

 $\Delta M_s = (17.719 \pm 0.043) \text{ ps}^{-1} \text{ [hep-ex/0609040,LHCb-CONF-2011-050(005)]}$ $\Delta M_d = (0.507 \pm 0.004) \text{ ps}^{-1} \text{ Heavy Flavor Averaging Group (HFAG)}$

$$\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1} \text{ LHCb}$$
$$\Delta \Gamma_s = (0.068 \pm 0.027) \text{ ps}^{-1} \text{ CDF}$$
$$\Delta \Gamma_s = (0.163^{+0.065}_{-0.064}) \text{ ps}^{-1} \text{ DØ}$$

LHCb measurement of time dependent CP asymmetry [LHCb-CONF-2012-002] $\phi_s = -0.001 \pm 0.101 (\text{stat}) \pm 0.027 (\text{syst}) \text{ rad}$

• New measurement tend to agree well with SM

Sascha Turczyk

Constraining CP violation in neutral meson mixing with theory input

[1106.6308]

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

Current Experimental Situation

DØ Like-sign Di-muon measurement

$$\begin{aligned} \mathsf{A}^b_{\rm SL} &= -[7.87 \pm 1.72\,({\rm stat}) \pm 0.93\,({\rm syst})] \times 10^{-3} \\ &= (0.594 \pm 0.022)\,\mathsf{A}^d_{\rm SL} + (0.406 \pm 0.022)\,\mathsf{A}^s_{\rm SL} \end{aligned}$$

 $\Delta M_{s} = (17.719 \pm 0.043) \, \text{ps}^{-1} \, \text{[hep-ex/0609040,LHCb-CONF-2011-050(005)]}$

 $\Delta M_d = (0.507 \pm 0.004) \, \mathrm{ps}^{-1}$ Heavy Flavor Averaging Group (HFAG)

$$\begin{aligned} \Delta \Gamma_s &= (0.116 \pm 0.019) \, \mathrm{ps^{-1}} & \mathrm{LHCl} \\ \Delta \Gamma_s &= (0.068 \pm 0.027) \, \mathrm{ps^{-1}} & \mathrm{CDF} \\ \Delta \Gamma_s &= (0.163^{+0.065}_{-0.064}) \, \mathrm{ps^{-1}} & \mathrm{D} \mathcal{O} \end{aligned}$$

LHCb measurement of time dependent CP asymmetry [LHCb-CONF-2012-002]

 $\phi_s = -0.001 \pm 0.101 (\text{stat}) \pm 0.027 (\text{syst}) \, \text{rad}$

• New measurement tend to agree well with SM

Sascha Turczyk

[1106.6308]

Introduction Motival Theoretical Constraints on the Mixing Parameters Summary Theoret

Motivation Description of Meson Oscillation Theoretical Predictions of Oscillation Parameters

How Can New Physics Enter?

- Can induce new operator structures
- Can modify Wilson coefficients

Parametrization and Effects

• For *B* mesons: $|\Gamma_{12}/M_{12}| \ll 1$

$$\Delta m = |2M_{12}|, \ \Delta \Gamma = 2|\Gamma_{12}|\cos\phi_{12}, \ A_{sl} = 2\delta = Im(\Gamma_{12}/M_{12})$$

• In general: Changing phase and absolute value possible

$$M_{12} = M_{12}^{\rm SM} |\Delta_s| e^{i\phi_s^{\Delta}}$$

- Only relative phase relevant
- **2** M_{12} : Heavy intermediate particles, but $|M_{12}|$ constrained by exp.
- 3 Γ_{12} dominated by on-shell charm intermediate states
- $\Rightarrow\,$ Believed not to change dramatically by New Physics contribtions

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Generic Conditions on Mixing Parameter

Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the \varGamma matrix
- \Rightarrow Γ itself has positive eigenvalues

• Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$

$$\delta^{2} < \frac{\Gamma_{H}\Gamma_{L}}{(m_{H}-m_{L})^{2}+(\Gamma_{H}+\Gamma_{L})^{2}/4} = \frac{1-y^{2}}{1+x^{2}}$$

Known as unitarity bound or Bell-Steinberger inequality
 [J.S. Bell, J. Steinberger, "Weak interactions of kaons", in R. G. Moorhouse et al.,
 Eds., Proceedings of the Oxford Int. Conf. on Elementary Particles, Rutherford
 Laboratory, Chilton, England, 1965, p. 195.]

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Generic Conditions on Mixing Parameter

Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the \varGamma matrix
- \Rightarrow Γ itself has positive eigenvalues

• Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$ $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2}$

 Known as unitarity bound or Bell-Steinberger inequality
 [J.S. Bell, J. Steinberger, "Weak interactions of kaons", in R. G. Moorhouse et al., Eds., Proceedings of the Oxford Int. Conf. on Elementary Particles, Rutherford Laboratory, Chilton, England, 1965, p. 195.]

Sascha Turczyk

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Generic Conditions on Mixing Parameter

Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the \varGamma matrix
- \Rightarrow Γ itself has positive eigenvalues

• Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$

$$\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2}$$

• Known as unitarity bound or Bell-Steinberger inequality [J.S. Bell, J. Steinberger, "Weak interactions of kaons", in R. G. Moorhouse et al., Eds., Proceedings of the Oxford Int. Conf. on Elementary Particles, Rutherford Laboratory, Chilton, England, 1965, p. 195.]

Sascha Turczyk

Introduction Unitarity Constraint Theoretical Constraints on the Mixing Parameters Summary Application to Recent Data

Reminder: Sketching Derivation of Unitarity Bound

Definitions

•
$$a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle$$
, $\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle$

 $\Rightarrow a_i^* a_i = \Gamma_{11} , \qquad \overline{a}_i^* \overline{a}_i = \Gamma_{22} , \qquad \overline{a}_i^* a_i = \Gamma_{12}$

• In the physical basis we have

 $a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \qquad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi})$

 $\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H$, $a_{Li}^* a_{Li} = \Gamma_L$, $a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma) \delta$

Sketch of Derivation

• Apply optical theorem and Cauchy Schwartz inequality

 \Rightarrow Forces Γ to have positive semi-definit eigenvalues

 $\Gamma_{11} \ge |\Gamma_{12}|$

- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 y^2}{1 + x^2}$

Introduction Unitarity Constraint Theoretical Constraints on the Mixing Parameters Summary Application to Recent Data

Reminder: Sketching Derivation of Unitarity Bound

Definitions

•
$$a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle$$
, $\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle$

 $\Rightarrow a_i^* a_i = \Gamma_{11}, \qquad \overline{a}_i^* \overline{a}_i = \Gamma_{22}, \qquad \overline{a}_i^* a_i = \Gamma_{12}$

• In the physical basis we have

 $a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \qquad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi})$

 $\Rightarrow a^*_{Hi} a_{Hi} = \Gamma_H$, $a^*_{Li} a_{Li} = \Gamma_L$, $a^*_{Hi} a_{Li} = -i(m_H - m_L + i\Gamma) \delta$

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
- $\Rightarrow\,$ Forces \varGamma to have positive semi-definit eigenvalues

$\Gamma_{11} \ge |\Gamma_{12}|$

• Apply the same to the physical basis with unitarity condition

• Leads to the unitarity bound $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2}$
Reminder: Sketching Derivation of Unitarity Bound

Definitions

- $a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle$, $\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle$
- $\Rightarrow a_i^* a_i = \Gamma_{11}$, $ar{a}_i^* ar{a}_i = \Gamma_{22}$, $ar{a}_i^* a_i = \Gamma_{12}$
- In the physical basis we have $a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi})$

 $\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* a_{Li} = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma)\delta$

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
- \Rightarrow Forces \varGamma to have positive semi-definit eigenvalues

 $\Gamma_{11} \ge |\Gamma_{12}|$

- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 y^2}{1 + x^2}$

Reminder: Sketching Derivation of Unitarity Bound

Definitions

- $a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle$, $\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle$
- $\Rightarrow a_i^* a_i = \Gamma_{11}$, $ar{a}_i^* ar{a}_i = \Gamma_{22}$, $ar{a}_i^* a_i = \Gamma_{12}$
- In the physical basis we have $a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi})$ $\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma)\delta$

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
- \Rightarrow Forces \varGamma to have positive semi-definit eigenvalues

 $\Gamma_{11} \ge |\Gamma_{12}|$

- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H m_I)^2 + (\Gamma_H + \Gamma_I)^2/4} = \frac{1 y^2}{1 + x^2}$

Reminder: Sketching Derivation of Unitarity Bound

Definitions

•
$$a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle$$
, $\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle$

- $\Rightarrow a_i^* a_i = \Gamma_{11}$, $ar{a}_i^* ar{a}_i = \Gamma_{22}$, $ar{a}_i^* a_i = \Gamma_{12}$
- In the physical basis we have $a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi})$ $\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma)\delta$

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
- \Rightarrow Forces \varGamma to have positive semi-definit eigenvalues

 $\Gamma_{11} \ge |\Gamma_{12}|$

- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound $\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 y^2}{1 + x^2}$

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Implication for the Three Neutral Mesons

Neutral K Mesons

- Very limited amount of final states
- Unitarity bound developed for this case

Neutral D Mesons

- Difficult in theory as well as in experiment
 - In Non-perturbative methods?
 - 2 Huge GIM suppression
- Interesting because of only up-type

Neutral $B_{d,s}$ Mesons

- Lots of possible final states
- Experimental precision is increasing
- Systematic expansion for theoretical calculations possible
- \Rightarrow Good opportunity to search for New Physics
- Improve bound on parameters

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Implication for the Three Neutral Mesons

Neutral K Mesons

- Very limited amount of final states
- Unitarity bound developed for this case

Neutral D Mesons

- Difficult in theory as well as in experiment
 - In Non-perturbative methods?
 - 2 Huge GIM suppression
- Interesting because of only up-type

Neutral $B_{d,s}$ Mesons

- Lots of possible final states
- Experimental precision is increasing
- Systematic expansion for theoretical calculations possible
- \Rightarrow Good opportunity to search for New Physics
 - Improve bound on parameters

Improvement: Using Theoretical Input

Assumptions

- Assume knowledge of $|\Gamma_{12}|$
- \Rightarrow Can be computed in a reliable, systematical expansion in the *B* system

• Define $y_{12} \ge 0$ with

$0 \le y_{12} = |\Gamma_{12}| / \Gamma \le 1$

Goals

- Use precise measurement of mass difference
- Use a reliable theory prediction
- \Rightarrow Obtain a relation between two measurable quantities

Improvement: Using Theoretical Input

Assumptions

- Assume knowledge of $|\Gamma_{12}|$
- \Rightarrow Can be computed in a reliable, systematical expansion in the *B* system
 - Define $y_{12} \ge 0$ with

 $0 \le y_{12} = |\Gamma_{12}| / \Gamma \le 1$

Goals

- Use precise measurement of mass difference
- Use a reliable theory prediction
- \Rightarrow Obtain a relation between two measurable quantities

Improvement: Using Theoretical Input

Assumptions

- Assume knowledge of $|\Gamma_{12}|$
- \Rightarrow Can be computed in a reliable, systematical expansion in the *B* system
 - Define $y_{12} \ge 0$ with

 $0 \le y_{12} = |\Gamma_{12}| / \Gamma \le 1$

Goals

- Use precise measurement of mass difference
- Use a reliable theory prediction
- \Rightarrow Obtain a relation between two measurable quantities

Theoretical Constraints on the Mixing Parameters

Deriving a Relation using Theoretical Input

Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y_{12} instead of unitarity constraint
- Proceed with same steps

$$\delta^{2} = \frac{y_{12}^{2} - y^{2}}{y_{12}^{2} + x^{2}} = \frac{|\Gamma_{12}|^{2} - (\Delta\Gamma)^{2}/4}{|\Gamma_{12}|^{2} + (\Delta m)^{2}}$$

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y₁₂ instead of unitarity constraint
- Proceed with same steps

The Result

$$\delta^{2} = \frac{y_{12}^{2} - y^{2}}{y_{12}^{2} + x^{2}} = \frac{|\Gamma_{12}|^{2} - (\Delta\Gamma)^{2}/4}{|\Gamma_{12}|^{2} + (\Delta m)^{2}}$$

- Entirely determined by solving the eigenstate problem
- Relation is exact
- Monotonic function in y_{12}
- In view of uncertainties, should be seen as an upper bound

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y₁₂ instead of unitarity constraint
- Proceed with same steps

The Result

$$\delta^{2} = \frac{y_{12}^{2} - y^{2}}{y_{12}^{2} + x^{2}} = \frac{|\Gamma_{12}|^{2} - (\Delta\Gamma)^{2}/4}{|\Gamma_{12}|^{2} + (\Delta m)^{2}}$$

- Entirely determined by solving the eigenstate problem
- Relation is exact
- Monotonic function in y_{12}
- In view of uncertainties, should be seen as an upper bound

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- δ depends only on mixing parameters and independent of Γ
- Scale Γ by y_{12}
 - 1 Does not affect δ
 - ② Changes $x \to x/y_{12}$ and $y \to y/y_{12}$
- \Rightarrow Combining argument with unitarity bound recovers exact relation

- Assuming no CPT invariance implies $M_{11} \neq M_{22}$ and $\Gamma_{11} \neq \Gamma_{22}$
- Mixing parameters depend on difference of diagonal components
- \Rightarrow Relation applies for $|\delta|^2$
 - Usual derivation do not go through if CPT is violated

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- δ depends only on mixing parameters and independent of Γ
- Scale Γ by y_{12}
 - \bigcirc Does not affect δ
 - 2 Changes $x \to x/y_{12}$ and $y \to y/y_{12}$
- \Rightarrow Combining argument with unitarity bound recovers exact relation

- Assuming no CPT invariance implies $M_{11} \neq M_{22}$ and $\Gamma_{11} \neq \Gamma_{22}$
- Mixing parameters depend on difference of diagonal components
- \Rightarrow Relation applies for $|\delta|^2$
 - Usual derivation do not go through if CPT is violated

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- δ depends only on mixing parameters and independent of Γ
- Scale Γ by y_{12}
 - Obes not affect δ
 - 2 Changes $x \to x/y_{12}$ and $y \to y/y_{12}$
- $\Rightarrow\,$ Combining argument with unitarity bound recovers exact relation

- Assuming no CPT invariance implies $M_{11} \neq M_{22}$ and $\Gamma_{11} \neq \Gamma_{22}$
- Mixing parameters depend on difference of diagonal components
- \Rightarrow Relation applies for $|\delta|^2$
 - Usual derivation do not go through if CPT is violated

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- δ depends only on mixing parameters and independent of Γ
- Scale Γ by y_{12}
 - Obes not affect δ
 - 2 Changes $x \to x/y_{12}$ and $y \to y/y_{12}$
- $\Rightarrow\,$ Combining argument with unitarity bound recovers exact relation

- Assuming no CPT invariance implies $M_{11} \neq M_{22}$ and $\Gamma_{11} \neq \Gamma_{22}$
- Mixing parameters depend on difference of diagonal components
- \Rightarrow Relation applies for $|\delta|^2$
 - Usual derivation do not go through if CPT is violated

Combined Bound on A_{SL}^b

Experimental Situation

• Hadron colliders produce admixture of B_s and B_d

 \Rightarrow Production asymmetry is known at DØ

 $A^{b}_{\mathrm{SL}} = (0.594 \pm 0.022) A^{d}_{\mathrm{SL}} + (0.406 \pm 0.022) A^{s}_{\mathrm{SL}}$

• *B* factories can access $B_d \Rightarrow$ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input

- Relation (bound) on $|\delta|$
- \Rightarrow Relation for individual $|A_{\rm SL}^{d,s}|$
- ⇒ With know production asymmetry we can give a bound on $|A_{SL}^b| \le (1.188 \pm 0.044) \delta_{max}^d + (0.812 \pm 0.044) \delta_{max}^s$

Bound is the same, if difference is measured

Combined Bound on A_{SL}^b

Experimental Situation

• Hadron colliders produce admixture of B_s and B_d

 \Rightarrow Production asymmetry is known at DØ

 $A^{b}_{\mathrm{SL}} = (0.594 \pm 0.022) A^{d}_{\mathrm{SL}} + (0.406 \pm 0.022) A^{s}_{\mathrm{SL}}$

• *B* factories can access $B_d \Rightarrow$ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input

- Relation (bound) on $|\delta|$
- \Rightarrow Relation for individual $|A_{\rm SL}^{d,s}|$
- \Rightarrow With know production asymmetry we can give a bound on

 $|A^b_{
m SL}| \le (1.188 \pm 0.044) \, \delta^d_{
m max} + (0.812 \pm 0.044) \, \delta^s_{
m max}$

• Bound is the same, if difference is measured

Combined Bound on A_{SL}^b

Experimental Situation

• Hadron colliders produce admixture of B_s and B_d

 \Rightarrow Production asymmetry is known at DØ

 $A^{b}_{\mathrm{SL}} = (0.594 \pm 0.022) A^{d}_{\mathrm{SL}} + (0.406 \pm 0.022) A^{s}_{\mathrm{SL}}$

• *B* factories can access $B_d \Rightarrow$ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input

- Relation (bound) on $|\delta|$
- \Rightarrow Relation for individual $|A_{\rm SL}^{d,s}|$
- \Rightarrow With know production asymmetry we can give a bound on

 $|A^b_{
m SL}| \le (1.188 \pm 0.044) \, \delta^d_{
m max} + (0.812 \pm 0.044) \, \delta^s_{
m max}$

• Bound is the same, if difference is measured

Plot of the Bound

- Assuming $\Delta \Gamma_d = 0$
- Horizontal lines: 1σ range of $|A_{\rm SL}^b|$ DØ measurement
- Vertical lines correspond to $\Delta \Gamma_s$ LHCb measurement
- Shaded regions are allowed by theory prediction
 - 1) Darker uses 1σ upper range
 - 2 Lighter uses 2 σ upper range
- Dashed [dotted] curves: Mixed sigma interval of theory predictions
- The vertical boundaries of the shaded regions arise because $|\Delta \Gamma_s| > 2 |\Gamma_{12}^s|$ is unphysical.

Plot of the Bound

- Assuming $\Delta \Gamma_d = 0$
- Horizontal lines: 1σ range of $|A_{\rm SL}^b|$ DØ measurement
- Vertical lines correspond to $\Delta \Gamma_s$ LHCb measurement
- Shaded regions are allowed by theory prediction
 - **1** Darker uses 1σ upper range
 - 2 Lighter uses 2σ upper range
- Dashed [dotted] curves: Mixed sigma interval of theory predictions
- The vertical boundaries of the shaded regions arise because $|\Delta \Gamma_s| > 2 |\Gamma_{12}^s|$ is unphysical.

Plot of the Bound

- Assuming $\Delta \Gamma_d = 0$
- Horizontal lines: 1σ range of $|A_{SL}^b|$ DØ measurement
- Vertical lines correspond to $\Delta \Gamma_s$ LHCb measurement
- Shaded regions are allowed by theory prediction
 - **1** Darker uses 1σ upper range
 - 2 Lighter uses 2σ upper range
- Dashed [dotted] curves: Mixed sigma interval of theory predictions
- The vertical boundaries of the shaded regions arise because $|\Delta \Gamma_s| > 2 |\Gamma_{12}^s|$ is unphysical.

Plot on Individual Bound on B_s

Interpretation

- Horizontal lines correspond to LHCb measurement
- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Plot on Individual Bound on B_d

Interpretation

- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment
- Non-zero measurement of ΔΓ_d would strengthen upper bound

Sascha Turczyk

Unitarity Constraint Deriving a Relation using Theoretical Input Application to Recent Data

Plot on Individual Bound on B_d

Interpretation

- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment
- Non-zero measurement of $\Delta \Gamma_d$ would strengthen upper bound

Numerical Interpretation

Remarks

- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2 |\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish \Rightarrow Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results

 2-3 times better than best current experimental bound
 For the B_d system we obtain a comparable bound |A^d_{SL}| < 7.4 × 10⁻³

• Significant improvement possible by observing $|\Delta \Gamma_d| > 0$

Numerical Interpretation

Remarks

- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2 |\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish \Rightarrow Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results

• For *B_s* system, we obtain by propagating the uncertainties, taking into account the unphysical region

 $|A_{\rm SL}^{\rm s}| < 4.2 \times 10^{-3}$

- 2-3 times better than best current experimental bound
- For the B_d system we obtain a comparable bound $|A_{\rm SL}^d| < 7.4 \times 10^{-3}$

• Significant improvement possible by observing $|\Delta \Gamma_d| > 0$

Numerical Interpretation

Remarks

- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2 |\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish \Rightarrow Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results

• For *B_s* system, we obtain by propagating the uncertainties, taking into account the unphysical region

 $|A_{\rm SL}^{\rm s}| < 4.2 \times 10^{-3}$

- 2-3 times better than best current experimental bound
- For the B_d system we obtain a comparable bound $|A_{\rm SI}^d| < 7.4 \times 10^{-3}$

• Significant improvement possible by observing $|\Delta \Gamma_d| > 0$

Discussion of the Results

Strength of the Bound

- Upper bound on y_{12} implies an upper bound on $|\delta|$
- Relation is much stronger for small y_{12} , as e.g. in the B_d system

Comparing to Known Results

- DØ $A_{\rm SL}$ measurement: 3.9 σ discrepancy with SM
- \Rightarrow Correlated with the discrepancy found in our analysis
 - 0 SM prediction of $A_{
 m SL}$ uses calculation of $arGamma_{12}$
 - 2) The relation uses $|\Gamma_{12}|$ as an input
 - 3 Calculation of $|arGamma_{12}|$ and ${
 m Im}(arGamma_{12})$ rely on the same OPE
 - Large cancellations in $Im(\Gamma_{12}) \Rightarrow$ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]
 - The sensitivity of Γ₁₂ to NP is generally weak
 - Interesting to determine δ additionally from this relation

Discussion of the Results

Strength of the Bound

- Upper bound on y_{12} implies an upper bound on $|\delta|$
- Relation is much stronger for small y_{12} , as e.g. in the B_d system

Comparing to Known Results

- DØ $A_{\rm SL}$ measurement: 3.9 σ discrepancy with SM
- $\Rightarrow\,$ Correlated with the discrepancy found in our analysis
 - ① SM prediction of $A_{\rm SL}$ uses calculation of Γ_{12}
 - 2 The relation uses $|\Gamma_{12}|$ as an input
 - **③** Calculation of $|\Gamma_{12}|$ and $\operatorname{Im}(\Gamma_{12})$ rely on the same OPE
 - Large cancellations in $Im(\Gamma_{12}) \Rightarrow$ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]
 - The sensitivity of Γ_{12} to NP is generally weak
 - Interesting to determine δ additionally from this relation

Discussion of the Results

Strength of the Bound

- Upper bound on y_{12} implies an upper bound on $|\delta|$
- Relation is much stronger for small y_{12} , as e.g. in the B_d system

Comparing to Known Results

- DØ $A_{\rm SL}$ measurement: 3.9 σ discrepancy with SM
- \Rightarrow Correlated with the discrepancy found in our analysis
 - ① SM prediction of $A_{\rm SL}$ uses calculation of Γ_{12}
 - 2 The relation uses $|\Gamma_{12}|$ as an input
 - Solution of $|\Gamma_{12}|$ and $\operatorname{Im}(\Gamma_{12})$ rely on the same OPE
 - Large cancellations in $Im(\Gamma_{12}) \Rightarrow$ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]
 - The sensitivity of Γ_{12} to NP is generally weak
 - Interesting to determine δ additionally from this relation

No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

• Unitarity bound is satured if

 $\langle f|\mathbf{T}|B_H\rangle\propto\langle f|\mathbf{T}|B_L\rangle$

- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
- \Rightarrow Orthogonal, non CP violating system as starting point
- Arbitrary new UV physics can change M_{12} independently of Γ_{12}
- Varying M₁₂ keeping mass and width of states physical
- ⇒ Unitarity bound can be satured (relax constraint Arg M_{12} = Arg Γ_{12}) • Explicit mathematical check

No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

• Unitarity bound is satured if

$\langle f | \mathrm{T} | B_H \rangle \propto \langle f | \mathrm{T} | B_L \rangle$

- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
- \Rightarrow Orthogonal, non CP violating system as starting point
- Arbitrary new UV physics can change M_{12} independently of Γ_{12}
- Varying M_{12} keeping mass and width of states physical
- \Rightarrow Unitarity bound can be satured (relax constraint Arg M_{12} = Arg $arGamma_{12})$
 - Explicit mathematical check

No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

• Unitarity bound is satured if

 $\langle f | \mathbf{T} | B_H \rangle \propto \langle f | \mathbf{T} | B_L \rangle$

- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
- $\Rightarrow\,$ Orthogonal, non CP violating system as starting point
 - Arbitrary new UV physics can change M_{12} independently of Γ_{12}
 - Varying M_{12} keeping mass and width of states physical
- \Rightarrow Unitarity bound can be satured (relax constraint Arg $M_{12}=$ Arg $arGamma_{12})$
- Explicit mathematical check

No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

• Unitarity bound is satured if

 $\langle f | \mathbf{T} | B_H \rangle \propto \langle f | \mathbf{T} | B_L \rangle$

- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
- $\Rightarrow\,$ Orthogonal, non CP violating system as starting point
 - Arbitrary new UV physics can change M_{12} independently of Γ_{12}
 - Varying M_{12} keeping mass and width of states physical
- \Rightarrow Unitarity bound can be satured (relax constraint Arg M_{12} = Arg Γ_{12})
- Explicit mathematical check

No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

• Unitarity bound is satured if

 $\langle f | \mathbf{T} | B_H \rangle \propto \langle f | \mathbf{T} | B_L \rangle$

- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
- $\Rightarrow\,$ Orthogonal, non CP violating system as starting point
 - Arbitrary new UV physics can change M_{12} independently of Γ_{12}
 - Varying M_{12} keeping mass and width of states physical
- \Rightarrow Unitarity bound can be satured (relax constraint Arg M_{12} = Arg Γ_{12})
 - Explicit mathematical check

Summary

- Provided a physical derivation of the exact relation allowing for theoretical input on $|{\cal \Gamma}_{12}|$
 - Input is typically insensitive to New Physics
 - Avoids largest uncertainties of theory calculation
 - Valid even if CPT is violated
- Independent of the discrepancy found from a global fit
 - **(**) Application to $B_{d,s}$ systems leads to the individual bounds

 $|A_{\rm SL}^{\rm s}| < 4.2 \times 10^{-3}$ $|A_{\rm SL}^{\rm d}| < 7.4 \times 10^{-3}$

- Providing a bound on the individual asymmetries at comparable or better levels than the current experimental bounds
- **③** Bounds are in tension with the DØ measurement of A^b_{SL}
- Once an unambiguous determination of $A_{\rm SL}$ or $\Delta\Gamma$ is made, we can use it to constrain the other observable.
Backup Slides

Direct CP Violation

General Comment

[Bigi,Sanda: CP violation

• Need CP even and odd phases

 $\Gamma \propto |A_1(f) + A_2(f)|^2$

- ⇒ Interference of CP conserving (strong) and violating (weak) phases
 - Occurs in neutral and charged meson decays
 - Neccessary condition: $|A(f)| \neq |\overline{A}(\overline{f})|$

Example of Process

Only source of CP violation in charged meson decays

$$A_{f^{\pm}} \equiv \frac{\Gamma(P^{-} \to f^{-}) - \Gamma(P^{+} \to f^{+})}{\Gamma(P^{-} \to f^{-}) + \Gamma(P^{+} \to f^{+})} = \frac{\left|\bar{A}(f^{-})/A(f^{+})\right|^{2} - 1}{\left|\bar{A}(f^{-})/A(f^{+})\right|^{2} + 1}$$

CP Violation in Interference of Mixing and Decay

General Comments [Bigi,Sanda: CP violation]

- Interference between decay and mixing to common final state
- Neccessary condition:

$$\operatorname{Im}\left[\frac{q}{p}\frac{\bar{A}(f)}{A(f)}\neq 0\right]$$

Example of Process

• CP Asymmetry (easy form only in limits, e.g. *B* mesons)

$$\begin{aligned} A_{f_{CP}}(t) &\equiv \frac{\Gamma(\bar{P}_0 \to f_{CP}) - \Gamma(P_0 \to f_{CP})}{\Gamma(\bar{P}_0 \to f_{CP}) + \Gamma(P_0 \to f_{CP})} \\ &= \frac{-\mathcal{A}_{CP}^{dir}\cos(\Delta M t) - \mathcal{A}_{CP}^{mix}\sin(\Delta M t)}{\cosh(\Delta\Gamma t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)} \end{aligned}$$

• $B_s \rightarrow J/\Psi \phi$ and $B_s \rightarrow J/\Psi f_0$