Linking models with data - The Nelder-Mead method

Patrick Ludl

Faculty of Physics, University of Vienna

March 29, 2012

Der Wissenschaftsfonds.

FWF Project P 24161-N16

- Linking models with data A figure of merit function
- Linking models with data The Nelder-Mead method
- Towards application The pinning term method
- Towards application An illustrative example

Linking models with data - A figure of merit function

Patrick Ludl (University of Vienna)

A figure of merit function

Common situation in model building:

- On the theoretical side: Model with *n* (real) free parameters x_α (α = 1, ..., n).
- On the experimental side:
 Experimental results for *q* observables O_i

$$\mathcal{O}_i = \bar{\mathcal{O}}_i \pm \sigma_i \quad (i = 1, ..., q).$$

 \rightarrow Most important question:

How well can the exp. results \overline{O}_i be accommodated within the model?

 \rightarrow We need some measure how well the predictions of the model agree with the experiment.

$$\Rightarrow$$
 figure of merit function χ^2 .

A figure of merit function

Experiment: q observables $\mathcal{O}_i = \overline{\mathcal{O}}_i \pm \sigma_i$ (i = 1, ..., q). Model: n free parameters $x_{\alpha} \Rightarrow$ Predictions $P_i(\vec{x})$ for the observables \mathcal{O}_i .

$$\chi^2(\vec{x}) := \sum_{i=1}^q \left(\frac{P_i(\vec{x}) - \bar{\mathcal{O}}_i}{\sigma_i} \right)^2.$$

Properties of χ^2 :

- $\chi^2(ec{x}) \geq 0$,
- Global minimum: $\chi^2(\vec{x}) = 0$ if $P_i(\vec{x}) = \bar{\mathcal{O}}_i$.

The smaller the **global minimum of** χ^2 , the better the agreement between model predictions and observations.

Problem: In many cases the local minima of χ^2 are not known analytically.

\Rightarrow We need **numerical methods**.

Using numerical methods we need to take into account several issues.

- Probably very large number of local minima.
 ⇒ Algorithm must avoid to get stuck in a local minimum.
- "Landscape" of the χ^2 -function may show a complicated topology. \Rightarrow Algorithm should adapt to this topology.
- The functions P_i(x) may be complicated.
 ⇒ Large computational effort needed.
- Finite accuracy of numerical methods.
- Convergence properties of the algorithm.

Linking models with data - The Nelder-Mead method

Patrick Ludl (University of Vienna)

The Nelder-Mead method

March 29, 2012 7 / 42

The Nelder-Mead method (NMM)

First described by¹ J.A. Nelder and R. Mead (1965) (>10000 citations). The NMM is an algorithm to minimize scalar functions

 $f: \mathbb{R}^n \to \mathbb{R}.$

It is a so-called direct search method:

Direct search methods

A direct search method is an algorithm which is based on comparison of function values only.

E.g. $f_1 < f_2, ...$

It does not need any information on derivatives (neither analytical, nor numerical).

 \Rightarrow Advantage: The function does not need to be differentiable or <u>continuous</u>.

¹Computer Journal 7 (1965) 308-313;

Patrick Ludl (University of Vienna)

イロト イポト イヨト イヨト

The basic element of the NMM is the so-called **simplex**.

The simplex

Consider n + 1 points in \mathbb{R}^n . These points describe the vertices of a **simplex**.

The simplex is the *convex hull* of its vertices.

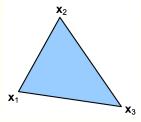
2 dimensions: triangle, 3 dimensions: tetrahedron,...

In the course of the algorithm the simplex can **change its form**, **orientation and position**.

The Nelder-Mead method: Initial simplex

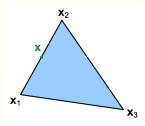
Creation of the initial simplex:

- Create a random simplex (in the domain of choice).
- Calculate function values $f_i = f(x_i)$.
- Order vertices such that $f_1 \leq f_2 \leq \ldots \leq f_{n+1}$.



Calculation of the centroid (barycenter of the *n* best points):

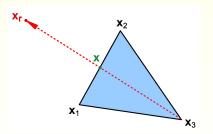
$$x=\frac{1}{n}\sum_{i=1}^n x_i.$$



The Nelder-Mead method: Reflection point

Calculation of the reflection point:

$$\mathbf{x}_{\mathbf{r}} = \mathbf{x} + \rho(\mathbf{x} - \mathbf{x}_{n+1}).$$



 $\rho > 0$ is the reflection parameter (standard choice: $\rho = 1$).

We calculate the value f_r of f at the reflection point x_r .

 \Rightarrow 4 possibilities:

- (1) x_r is better than x_n , but worse than x_1 .
- (2) x_r is better than all other points.
- (3) x_r is better than x_{n+1} , but worse than all other points.
- (4) x_r is worse than all other points.

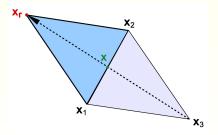
For each of this possibilities the NMM algorithm proceeds differently.

The Nelder-Mead method: Reflection

(1) x_r is better than x_n , but worse than x_1 .

$$f_1 \leq f_r \leq f_n$$
.

 \Rightarrow New simplex: (x_1, \ldots, x_n, x_r) (*reflection*).



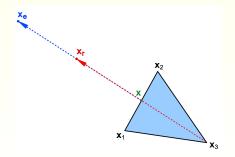
The Nelder-Mead method: Expansion point

(2) x_r is better than all other points.

$$\mathbf{f_r} \leq \mathbf{f_1} \leq \mathbf{f_2} \leq \ldots \leq \mathbf{f_{n+1}}.$$

 \Rightarrow Calculate expansion point x_e .

$$\mathbf{x}_{e} = \mathbf{x} + \chi(\mathbf{x}_{r} - \mathbf{x}).$$



$\chi>1$ is the expansion parameter (standard choice: $\chi = 2$).

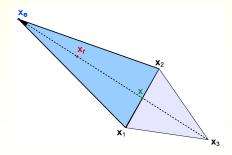
Patrick Ludl (University of Vienna)

The Nelder-Mead method

March 29, 2012 15 / 42

The Nelder-Mead method: Expansion

- (2) x_r is better than all other points. \Rightarrow Expansion point x_e . \rightarrow 2 possibilities
- (2a) x_e is worse than $x_r \Rightarrow \text{Accept } x_r$ (reflection).
- (2b) x_e is better than $x_r \Rightarrow$ Accept x_e (*expansion*).
 - \Rightarrow New simplex: (x_1, \ldots, x_n, x_e)

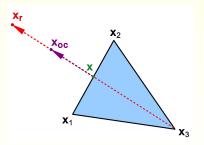


The Nelder-Mead method: Outside contraction point

(3) x_r is better than x_{n+1} , but worse than x_n .

 $f_n \leq f_r \leq f_{n+1}.$

 \Rightarrow Try outside contraction

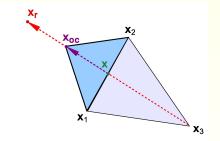


$$x_{oc} = x + \gamma (x_r - x).$$

 $0 < \gamma < 1$ is the contraction parameter (standard choice: $\gamma = \frac{1}{2}$).

The Nelder-Mead method: Outside contraction

If x_{oc} is better than x_r , accept x_{oc} (outside contraction). \Rightarrow New simplex: $(x_1, \ldots, x_n, x_{oc})$



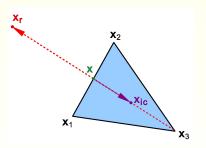
Else perform a shrinkage of the simplex.

The Nelder-Mead method: Inside contraction point

(4) x_r is worse than all other points.

 $f_r \geq f_{n+1}$.

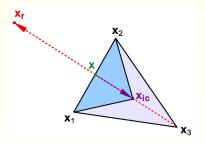
 \Rightarrow Try inside contraction



 $x_{ic} = x - \gamma(x - x_{n+1}).$

The Nelder-Mead method: Inside contraction

If x_{ic} is better than x_{n+1} , accept x_{ic} (inside contraction). \Rightarrow New simplex: $(x_1, \ldots, x_n, x_{ic})$

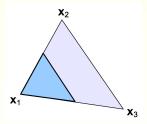


Else perform a shrinkage of the simplex.

If all else fails,...

...we perform a shrinkage of the simplex towards the best point x_1 .

$$x_i \rightarrow x_1 + \sigma(x_i - x_1).$$



 $0 < \sigma < 1$ is the shrinkage parameter (standard choice: $\sigma = \frac{1}{2}$).

The Nelder-Mead method: Stopping criterion

Up to now: No stopping criterion for the algorithm. \Rightarrow would run forever. Criterion suggested by Nelder and Mead:

$$\frac{1}{n+1}\sum_{i=1}^{n+1}(f_i-\bar{f})^2<\epsilon.$$

$$\bar{f}=\frac{1}{n+1}\sum_{i=1}^{n+1}f_i.$$

In words:

Stop when values of f on the vertices are close enough to each other.

Alternative: Stop when the vertices are close enough to each other, i.e. when the volume of the simplex is small enough.

The Nelder-Mead method: Convergence

Important question: Convergence properties of the NMM.

 \rightarrow A major problem of the NMM. Only few theorems on convergence known.

```
Lagarias et al.<sup>2</sup> (1998):
```

Convergence of the NMM

The NMM in one dimension converges $\Leftrightarrow \rho \chi \ge 1$.

According to this paper it is even unknown whether there exists any function $f : \mathbb{R}^2 \to \mathbb{R}$ for which the NMM always converges to a minimum.

 \Rightarrow We need an "emergency exit"

If too many iterations:

Discard results and start with a new random simplex.

²SIAM J. Optim. Vol. 9, No. 1 (1998) 112-147

By construction the simplex always moves to smaller values of f.

\Rightarrow Downhill simplex method.

 \rightarrow Even if NMM converges, it is only suited to find local minima.

- \rightarrow Several possibilities for a way out of this dilemma.
 - **1** Repeat the algorithm with many random initial simplices.
 - If local minimum found: perturb current simplex and start again (NM + perturbations).
 - Solution Allow uphill moves, e.g.: NM + simulated annealing.

How many iterations are usually needed to find the local minimum of a function *f*?

 \rightarrow We need a test function, e.g.

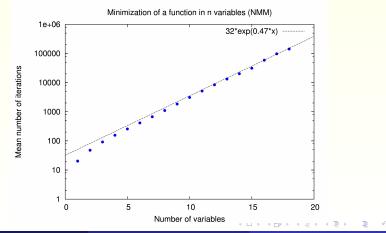
$$T_n(x_1,\ldots,x_n):=\sum_{i=1}^n x_i^4$$

As initial simplices we use n + 1 vertices whose coordinates are random numbers in (-1, 1).

In order to achieve reasonable accuracy also for large *n* we set $\epsilon = 10^{-50}$ (Nelder, Mead (1965): 10^{-16}).

Found minima:
$$n = 1$$
: $|x_i| \sim 10^{-7}$
 $n = 5$: $|x_i| \sim 10^{-7}$
 $n = 10$: $|x_i| \sim 10^{-6}$
 $n = 15$: $|x_i| \sim 10^{-6}$

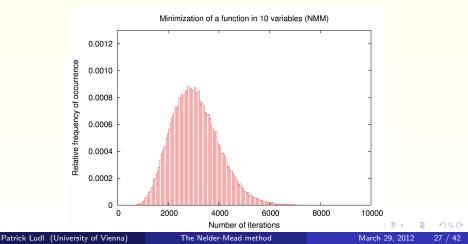
How many iterations are usually needed to find a local minimum? We minimize T_n (10000 times for each n) and determine the mean number of iterations needed to find a local minimum.



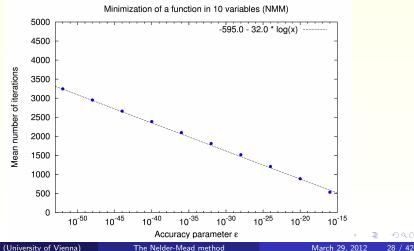
How large is the influence of the initial simplex?

 \rightarrow We minimize T_{10} with 50000 random initial simplices $(x_i)_j \in (-1, 1)$.

 $\Rightarrow \approx 3000$ iterations needed ($\epsilon = 10^{-50}$).



If we use $\epsilon = 10^{-16}$ (as Nelder and Mead did): ≈ 500 iterations needed. Accuracy parameter ϵ has a large influence on the computational effort. \Rightarrow



Patrick Ludl (University of Vienna)

Advantages:

- It is suited to deal with functions of many variables.
- It is easy to implement.
- It needs only function evaluations ⇒ Suited to minimize non-differentiable functions.
- It usually needs only \approx 2 function evaluations per iteration (exception: shrinkage).
- It has proven to work well in practice.

Disadvantages:

- The NMM can be very slow compared to other minimization routines (based on estimation of gradients).
- Little is known on its convergence properties for n > 1.
- There are situations where the algorithm fails³ or converges extremely slowly.
- The simplex moves strictly downhill ⇒ not suited to find global minimum.

³K.I.M. McKinnon, SIAM J. Optim. 9 (1998) 148-158

Patrick Ludl (University of Vienna)

The Nelder-Mead method

Towards application - The pinning term method

Patrick Ludl (University of Vienna)

The Nelder-Mead method

March 29, 2012 31 / 42

Nelder-Mead algorithm "lives" on the whole space \mathbb{R}^n .

- \rightarrow By the algorithm itself: No restriction on the variables possible.
- \rightarrow We have to modify the function to implement additional restrictions.

E.g.: Restriction of the variables to a domain $D \subset \mathbb{R}^n$ can be done via replacing

$$f(ec{x})\mapsto \widetilde{f}(ec{x}):=egin{cases} f(ec{x}) & ext{for } ec{x}\in D, \ \infty & ext{for } ec{x}
otin D. \end{cases}$$

The pinning term method

In the case of a χ^2 -minimization one can also modify χ^2 to **pin down** an observable to a desired value.

$$\chi^2(\vec{x}) = \sum_{i=1}^q \left(\frac{P_i(\vec{x}) - \bar{\mathcal{O}}_i}{\sigma_i}\right)^2.$$

can be replaced by

$$\tilde{\chi}^2(\vec{x}) = \sum_{i \neq j} \left(\frac{P_i(\vec{x}) - \bar{\mathcal{O}}_i}{\sigma_i} \right)^2 \underbrace{+ \left(\frac{P_j(\vec{x}) - \lambda}{0.01\lambda} \right)^2}_{\text{pinning term}}.$$

⇒ $\tilde{\chi}^2$ becomes large, if $P_j(\vec{x})$ is not within a small 1%-region around λ . ⇒ $P_i(\vec{x})$ effectively pinned down to λ .

 \rightarrow Enables to answer the question: How good can the fit get if an observable is restricted to a special value?

Patrick Ludl (University of Vienna)

The Nelder-Mead method

Towards application - An illustrative example

Patrick Ludl (University of Vienna)

The Nelder-Mead method

March 29, 2012 34 / 42

Preliminaries: Lepton mixing in a nutshell

Fermion mass terms in the Lagrangian (formulated as flavour eigenfields):

 $-\bar{\ell}_L \mathcal{M}_\ell \ell_R + \text{H.c.}$ (Dirac fermions)

or

$$rac{1}{2}
u_L^{\mathcal{T}}\mathcal{C}^{-1}\mathcal{M}_
u
u_L + ext{H.c.}$$
 (Majorana fermions); $\mathcal{M}_
u^{\mathcal{T}} = \mathcal{M}_
u$.

 \mathcal{M}_{ℓ} and \mathcal{M}_{ν} are (in the simplest case) 3 × 3-matrices. Transformation to mass eigenfields corresponds to diagonalization of the mass matrices:

$$U^{\dagger}\mathcal{M}_{\ell}V = \hat{m}_{\ell}, \quad W^{T}\mathcal{M}_{\nu}W = \hat{m}_{\nu}.$$

Lepton mixing matrix:

$$U_{\text{PMNS}} = U^{\dagger}W$$
 (unitary).

 U_{PMNS} parameterized by three mixing angles θ_{12} , θ_{13} , θ_{23} and six phases.

Example: Texture zeros

Assumptions:

- Majorana neutrinos $\Rightarrow \mathcal{M}_{\nu}$ symmetric.
- Charged lepton mass matrix \mathcal{M}_{ℓ} diagonal. $\Rightarrow U = \mathbb{1} \Rightarrow U_{PMNS} = W.$
- We assume **texture zeros** in \mathcal{M}_{ν} .

$$\mathcal{M}_{
u} = \left(egin{array}{ccc} a_1 & 0 & a_2 \ 0 & 0 & a_3 \ a_2 & a_3 & a_4 \end{array}
ight)$$

 $a_j = r_j e^{i\varphi_j}$ are complex parameters. Global phase not relevant. \Rightarrow We set $\varphi_1 = 0$.

 $\Rightarrow \mathcal{M}_{\nu}$ has 7 real free parameters.

Our question: Are these assumptions compatible with the experimental data?

 \Rightarrow We perform a χ^2 -analysis.

Free parameters: r_1 , r_2 , r_3 , r_4 , φ_2 , φ_3 , φ_4 .

Observables: Δm^2_{21} , Δm^2_{31} , $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$

$$\chi^{2}(r_{j},\varphi_{j}) := \sum_{i=1}^{q} \left(\frac{P_{i}(r_{j},\varphi_{j}) - \bar{\mathcal{O}}_{i}}{\sigma_{i}} \right)^{2}$$

Additional constraint: From cosmology: Sum of all three neutrino masses smaller than $\sim 1~\text{eV}$ (let's say 2 eV).

$$\chi^2_{\text{cosm.}} := \begin{cases} 0 & \text{if } m_1 + m_2 + m_3 < 2 \text{ eV} \\ \infty & \textit{else} \end{cases}$$
$$\chi^2 \mapsto \chi^2 + \chi^2_{\text{cosm.}}.$$

Example: Texture zeros

 \Rightarrow Minimize χ^2 !

Steps involved in calculating χ^2 :

- Singular value decomposition of \mathcal{M}_{ν} (\rightarrow LAPACK). $\Rightarrow m_1, m_2, m_3, W.$ (Further assumption: normal neutrino mass spectrum: $m_1 < m_2 < m_3$.)
- **2** Calculate mass squared differences $\Delta m_{ii}^2 = m_i^2 m_i^2$ and $\sin^2 \theta_{ij}$.
- 3 Calculate χ^2 .
- Start values (for random simplices): $r_j \in [0, 5 \text{ eV}]$; $\varphi_j \in [0, 2\pi)$.
- Maximal allowed number of Nelder-Mead iterations: 10000.
- Number of random initial simplices: 1000.

After 44.6 seconds (Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz):

$$\chi^2_{\rm min} = 8.74 \times 10^{-2}.$$

 \Rightarrow Assumptions compatible with data.

This special set of texture zeros implies that⁴

Neutrino mass spectrum quasi-degenerate (i.e. m_1 large) $\Rightarrow \sin^2 \theta_{23} \approx 1/2.$

⇒ Strategy: We **pin down** m_1 to a large value (0.2 eV), and $\sin^2 \theta_{23}$ to different values between 0 and 1.

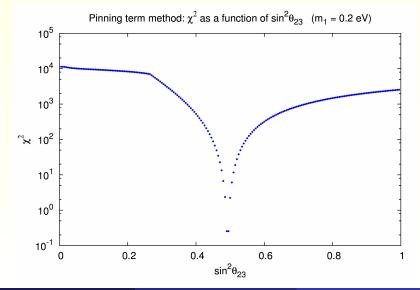
$$\chi^{2} := \sum_{\mathcal{O}_{i} \neq \sin^{2} \theta_{23}} \left(\frac{P_{i} - \bar{\mathcal{O}}_{i}}{\sigma_{i}} \right)^{2} + \chi^{2}_{\text{cosm.}} + \left(\frac{m_{1} - 0.2 \,\text{eV}}{0.01 \times 0.2 \,\text{eV}} \right)^{2} + \left(\frac{\sin^{2} \theta_{23} - \lambda}{0.01 \lambda} \right)^{2}$$

We minimize this χ^2 -function for different $\lambda = \sin^2 \theta_{23}$.

 \Rightarrow Plot $\chi^2(\sin^2\theta_{23})$.

⁴W. Grimus and P.O. Ludl, Phys.Lett. B700 (2011) 356-361 🗇 🗟 🖉 🖉

Example: What else can we learn?



Patrick Ludl (University of Vienna)

March 29, 2012 40 / 42

- Minimization of χ^2 -functions is an appropriate tool to link models with data.
- For many realistic applications χ^2 will be a (probably complicated) non-differentiable (or non-continuous) function.

 \Rightarrow Numerical methods which rely on analytic knowledge or numerical approximation of derivatives are not applicable.

 \Rightarrow We need a direct search method.

- The Nelder-Mead method is appropriate, because
 - it can deal with a very high number of variables,
 - it only needs ~ 2 function evaluations per iteration (except shrinkage).
 ⇒ For a direct search method it is very fast.
- The pinning-term method allows to put additional constraints on the variables.
 - \Rightarrow Possibility to extract physical predictions.

Thank you for your attention!