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Linking models with data - A figure of
merit function

Patrick Ludl (University of Vienna) The Nelder-Mead method March 29, 2012 3 / 42



A figure of merit function

Common situation in model building:

On the theoretical side:
Model with n (real) free parameters xα (α = 1, ..., n).

On the experimental side:
Experimental results for q observables Oi

Oi = Ōi ± σi (i = 1, ..., q).

→ Most important question:

How well can the exp. results Ōi be accommodated within the model?

→ We need some measure how well the predictions of the model agree
with the experiment.

⇒ figure of merit function χ2.
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A figure of merit function

Experiment: q observables Oi = Ōi ± σi (i = 1, ..., q).

Model: n free parameters xα ⇒ Predictions Pi (~x) for the observables Oi .

χ2(~x) :=

q∑
i=1

(
Pi (~x)− Ōi

σi

)2

.

Properties of χ2:

χ2(~x) ≥ 0,

Global minimum: χ2(~x) = 0 if Pi (~x) = Ōi .

The smaller the global minimum of χ2, the better the agreement
between model predictions and observations.
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A figure of merit function

Problem: In many cases the local minima of χ2 are not known analytically.

⇒ We need numerical methods.

Using numerical methods we need to take into account several issues.

Probably very large number of local minima.
⇒ Algorithm must avoid to get stuck in a local minimum.

“Landscape” of the χ2-function may show a complicated topology.
⇒ Algorithm should adapt to this topology.

The functions Pi (~x) may be complicated.
⇒ Large computational effort needed.

Finite accuracy of numerical methods.

Convergence properties of the algorithm.
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Linking models with data - The
Nelder-Mead method
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The Nelder-Mead method (NMM)

First described by1 J.A. Nelder and R. Mead (1965) (>10000 citations).

The NMM is an algorithm to minimize scalar functions

f : Rn → R.

It is a so-called direct search method:

Direct search methods

A direct search method is an algorithm which is based on comparison of
function values only.

E.g. f1 < f2, . . .

It does not need any information on derivatives (neither analytical, nor
numerical).

⇒ Advantage: The function does not need to be differentiable or
continuous.

1Computer Journal 7 (1965) 308-313;
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The simplex

The basic element of the NMM is the so-called simplex.

The simplex

Consider n + 1 points in Rn. These points describe the vertices of a
simplex.
The simplex is the convex hull of its vertices.

2 dimensions: triangle, 3 dimensions: tetrahedron,...

In the course of the algorithm the simplex can change its form,
orientation and position.
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The Nelder-Mead method: Initial simplex

Creation of the initial simplex:

Create a random simplex (in the domain of choice).

Calculate function values fi = f (xi ).

Order vertices such that f1 ≤ f2 ≤ . . . ≤ fn+1.
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The Nelder-Mead method: Centroid

Calculation of the centroid (barycenter of the n best points):

x =
1

n

n∑
i=1

xi .
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The Nelder-Mead method: Reflection point

Calculation of the reflection point:

xr = x + ρ(x − xn+1).

ρ > 0 is the reflection parameter (standard choice: ρ = 1).
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The Nelder-Mead method: Reflection point

We calculate the value fr of f at the reflection point xr .

⇒ 4 possibilities:

(1) xr is better than xn, but worse than x1.

(2) xr is better than all other points.

(3) xr is better than xn+1, but worse than all other points.

(4) xr is worse than all other points.

For each of this possibilities the NMM algorithm proceeds differently.
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The Nelder-Mead method: Reflection

(1) xr is better than xn, but worse than x1.

f1 ≤ fr ≤ fn.

⇒ New simplex: (x1, . . . , xn, xr ) (reflection).
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The Nelder-Mead method: Expansion point

(2) xr is better than all other points.

fr ≤ f1 ≤ f2 ≤ . . . ≤ fn+1.

⇒ Calculate expansion point xe .

xe = x + χ(xr − x).

χ > 1 is the expansion parameter (standard choice: χ = 2).
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The Nelder-Mead method: Expansion

(2) xr is better than all other points. ⇒ Expansion point xe .

→ 2 possibilities

(2a) xe is worse than xr ⇒ Accept xr (reflection).

(2b) xe is better than xr ⇒ Accept xe (expansion).
⇒ New simplex: (x1, . . . , xn, xe)
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The Nelder-Mead method: Outside contraction point

(3) xr is better than xn+1, but worse than xn.

fn ≤ fr ≤ fn+1.

⇒ Try outside contraction

xoc = x + γ(xr − x).

0 < γ < 1 is the contraction parameter (standard choice: γ = 1
2).

Patrick Ludl (University of Vienna) The Nelder-Mead method March 29, 2012 17 / 42



The Nelder-Mead method: Outside contraction

If xoc is better than xr , accept xoc (outside contraction).

⇒ New simplex: (x1, . . . , xn, xoc)

Else perform a shrinkage of the simplex.
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The Nelder-Mead method: Inside contraction point

(4) xr is worse than all other points.

fr ≥ fn+1.

⇒ Try inside contraction

xic = x − γ(x − xn+1).
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The Nelder-Mead method: Inside contraction

If xic is better than xn+1, accept xic (inside contraction).

⇒ New simplex: (x1, . . . , xn, xic)

Else perform a shrinkage of the simplex.
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The Nelder-Mead method: Shrinkage

If all else fails,...

...we perform a shrinkage of the simplex towards the best point x1.

xi → x1 + σ(xi − x1).

0 < σ < 1 is the shrinkage parameter (standard choice: σ = 1
2).
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The Nelder-Mead method: Stopping criterion

Up to now: No stopping criterion for the algorithm. ⇒ would run forever.

Criterion suggested by Nelder and Mead:

1

n + 1

n+1∑
i=1

(fi − f̄ )2 < ε.

f̄ =
1

n + 1

n+1∑
i=1

fi .

In words:

Stop when values of f on the vertices are close enough to each other.

Alternative: Stop when the vertices are close enough to each other, i.e.
when the volume of the simplex is small enough.
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The Nelder-Mead method: Convergence

Important question: Convergence properties of the NMM.

→ A major problem of the NMM. Only few theorems on convergence
known.

Lagarias et al.2 (1998):

Convergence of the NMM

The NMM in one dimension converges ⇔ ρχ ≥ 1.

According to this paper it is even unknown whether there exists any
function f : R2 → R for which the NMM always converges to a minimum.

⇒ We need an “emergency exit”

If too many iterations:
Discard results and start with a new random simplex.

2SIAM J. Optim. Vol. 9, No. 1 (1998) 112-147
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The Nelder-Mead method: Convergence

By construction the simplex always moves to smaller values of f .

⇒ Downhill simplex method.

→ Even if NMM converges, it is only suited to find local minima.

→ Several possibilities for a way out of this dilemma.

1 Repeat the algorithm with many random initial simplices.

2 If local minimum found: perturb current simplex and start again
(NM + perturbations).

3 Allow uphill moves, e.g.: NM + simulated annealing.
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The Nelder-Mead method: Performance

How many iterations are usually needed to find the local minimum of a
function f ?

→ We need a test function, e.g.

Tn(x1, . . . , xn) :=
n∑

i=1

x4
i

As initial simplices we use n + 1 vertices whose coordinates are random
numbers in (−1, 1).

In order to achieve reasonable accuracy also for large n we set ε = 10−50

(Nelder, Mead (1965): 10−16).

Found minima: n = 1 : |xi | ∼ 10−7

n = 5 : |xi | ∼ 10−7

n = 10 : |xi | ∼ 10−6

n = 15 : |xi | ∼ 10−6
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The Nelder-Mead method: Performance

How many iterations are usually needed to find a local minimum?

We minimize Tn (10000 times for each n) and determine the mean
number of iterations needed to find a local minimum.
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The Nelder-Mead method: Performance

How large is the influence of the initial simplex?

→ We minimize T10 with 50000 random initial simplices (xi )j ∈ (−1, 1).

⇒ ≈ 3000 iterations needed (ε = 10−50).
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The Nelder-Mead method: Performance

If we use ε = 10−16 (as Nelder and Mead did): ≈ 500 iterations needed.

⇒ Accuracy parameter ε has a large influence on the computational effort.
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Summary: Advantages and disadvantages of the NMM

Advantages:

It is suited to deal with functions of many variables.

It is easy to implement.

It needs only function evaluations ⇒ Suited to minimize
non-differentiable functions.

It usually needs only ≈ 2 function evaluations per iteration
(exception: shrinkage).

It has proven to work well in practice.
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Summary: Advantages and disadvantages of the NMM

Disadvantages:

The NMM can be very slow compared to other minimization routines
(based on estimation of gradients).

Little is known on its convergence properties for n > 1.

There are situations where the algorithm fails3 or converges extremely
slowly.

The simplex moves strictly downhill ⇒ not suited to find global
minimum.

3K.I.M. McKinnon, SIAM J. Optim. 9 (1998) 148-158
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Towards application - The pinning term
method

Patrick Ludl (University of Vienna) The Nelder-Mead method March 29, 2012 31 / 42



Restricting variables to a domain

Nelder-Mead algorithm “lives” on the whole space Rn.

→ By the algorithm itself: No restriction on the variables possible.

→ We have to modify the function to implement additional restrictions.

E.g.: Restriction of the variables to a domain D ⊂ Rn can be done via
replacing

f (~x) 7→ f̃ (~x) :=

{
f (~x) for ~x ∈ D,

∞ for ~x 6∈ D.
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The pinning term method

In the case of a χ2-minimization one can also modify χ2 to pin down an
observable to a desired value.

χ2(~x) =

q∑
i=1

(
Pi (~x)− Ōi

σi

)2

.

can be replaced by

χ̃2(~x) =
∑
i 6=j

(
Pi (~x)− Ōi

σi

)2

+

(
Pj(~x)− λ

0.01λ

)2

︸ ︷︷ ︸
pinning term

.

⇒ χ̃2 becomes large, if Pj(~x) is not within a small 1%-region around λ.

⇒ Pj(~x) effectively pinned down to λ.

→ Enables to answer the question: How good can the fit get if an
observable is restricted to a special value?
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Towards application - An illustrative
example
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Preliminaries: Lepton mixing in a nutshell

Fermion mass terms in the Lagrangian (formulated as flavour eigenfields):

−¯̀
LM``R + H.c. (Dirac fermions)

or
1

2
νT
L C−1MννL + H.c. (Majorana fermions); MT

ν =Mν .

M` and Mν are (in the simplest case) 3× 3-matrices. Transformation to
mass eigenfields corresponds to diagonalization of the mass matrices:

U†M`V = m̂`, W TMνW = m̂ν .

Lepton mixing matrix:

UPMNS = U†W (unitary).

UPMNS parameterized by three mixing angles θ12, θ13, θ23 and six phases.
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Example: Texture zeros

Assumptions:

Majorana neutrinos ⇒ Mν symmetric.

Charged lepton mass matrix M` diagonal.
⇒ U = 1⇒ UPMNS = W .

We assume texture zeros in Mν .

Mν =

 a1 0 a2

0 0 a3

a2 a3 a4


aj = rje

iϕj are complex parameters. Global phase not relevant.
⇒ We set ϕ1 = 0.

⇒ Mν has 7 real free parameters.
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Example: Texture zeros

Our question: Are these assumptions compatible with the experimental
data?

⇒ We perform a χ2-analysis.

Free parameters: r1, r2, r3, r4, ϕ2, ϕ3, ϕ4.

Observables: ∆m2
21, ∆m2

31, sin2 θ12, sin2 θ13, sin2 θ23

χ2(rj , ϕj) :=

q∑
i=1

(
Pi (rj , ϕj)− Ōi

σi

)2

.

Additional constraint: From cosmology: Sum of all three neutrino masses
smaller than ∼ 1 eV (let’s say 2 eV).

χ2
cosm. :=

{
0 if m1 + m2 + m3 < 2 eV

∞ else

χ2 7→ χ2 + χ2
cosm..

Patrick Ludl (University of Vienna) The Nelder-Mead method March 29, 2012 37 / 42



Example: Texture zeros

⇒ Minimize χ2!

Steps involved in calculating χ2:
1 Singular value decomposition of Mν (→ LAPACK).
⇒ m1, m2, m3, W .
(Further assumption: normal neutrino mass spectrum:
m1 < m2 < m3.)

2 Calculate mass squared differences ∆m2
ij = m2

i −m2
j and sin2 θij .

3 Calculate χ2.

Start values (for random simplices): rj ∈ [0, 5 eV]; ϕj ∈ [0, 2π).

Maximal allowed number of Nelder-Mead iterations: 10000.

Number of random initial simplices: 1000.

After 44.6 seconds (Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz):

χ2
min = 8.74× 10−2.

⇒ Assumptions compatible with data.
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Example: What else can we learn?

This special set of texture zeros implies that4

Neutrino mass spectrum quasi-degenerate (i.e. m1 large)
⇒ sin2 θ23 ≈ 1/2.

⇒ Strategy: We pin down m1 to a large value (0.2 eV),
and sin2 θ23 to different values between 0 and 1.

χ2 :=
∑

Oi 6=sin2 θ23

(
Pi − Ōi

σi

)2

+χ2
cosm.+

(
m1 − 0.2 eV

0.01× 0.2 eV

)2

+

(
sin2 θ23 − λ

0.01λ

)2

.

We minimize this χ2-function for different λ = sin2 θ23.

⇒ Plot χ2(sin2 θ23).

4W. Grimus and P.O. Ludl, Phys.Lett. B700 (2011) 356-361
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Example: What else can we learn?
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Summary

Minimization of χ2-functions is an appropriate tool to link models
with data.

For many realistic applications χ2 will be a (probably complicated)
non-differentiable (or non-continuous) function.
⇒ Numerical methods which rely on analytic knowledge or numerical
approximation of derivatives are not applicable.
⇒ We need a direct search method.

The Nelder-Mead method is appropriate, because

it can deal with a very high number of variables,
it only needs ∼ 2 function evaluations per iteration (except shrinkage).
⇒ For a direct search method it is very fast.

The pinning-term method allows to put additional constraints on the
variables.
⇒ Possibility to extract physical predictions.
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Thank you for your attention!
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