

Masses in perturbative QCD

Ingo Schienbein LPSC Grenoble/Université Joseph Fourier

based on work in collaboration with

F. Olness, T. Stavreva, S. Kretzer B. Kniehl, G. Kramer, H. Spiesberger, T. Kneesch

Theorieseminar Univ. Wien

- **1** The PQCD formalism: Bird's eye view
- **2** The PQCD Formalism with quark masses
- **3** DEEP-INELASTIC SCATTERING AND PDFs
- **4** One-particle inclusive production in a GM-VFNS

The pQCD formalism: Bird's eye view

QUANTUM CHROMODYNAMICS (QCD)

QCD: A QFT for the strong interactions

- Statement: Hadronic matter is made of spin-1/2 quarks [↔ SU(3)_{fl}]
- Baryons like Δ⁺⁺ = |u[↑]u[↑]u[↑]⟩ forbidden by Pauli exclusion/Fermi-Dirac stat. Need additional colour degree of freedom!
- Local SU(3)-color gauge symmetry:

$$\mathcal{L}_{ ext{QCD}} = \sum_{q=u,d,s,c,b,t} ar{q}(i \partial \!\!\!/ - m_{\!q}) q - g ar{q} \mathcal{G} q - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a + \mathcal{L}_{gf} + \mathcal{L}_{ghost}$$

- Fundamental d.o.f.: quark and gluon fields
- Free parameters:
 - gauge coupling: g
 - quark masses: m_u, m_d, m_s, m_c, m_b, m_t

QCD

Properties:

Confinement and Hadronization:

- Free quarks and gluons have not been observed:
 - A) They are confined in color-neutral hadrons of size \sim 1 fm.
 - B) They hadronize into the observed hadrons.
- Hadronic energy scale: a few hundred MeV [1 fm ↔ 200 MeV]
- Strong coupling large at long distances (≥ 1 fm): 'IR-slavery'
- Hadrons and hadron masses enter the game
- Asymptotic freedom:
 - Strong couling small at short distances: perturbation theory
 - Quarks and gluons behave as free particles at asymptotically large energies

Renormalization of UV-divergences: Running coupling constant $a_s := \alpha_s/(4\pi)$

$$a_{\rm s}(\mu) = \frac{1}{\beta_0 \ln(\mu^2/\Lambda^2)}$$

• Gross, Wilczek ('73); Politzer ('73)

Non-abelian gauge theories: negative beta-functions

 $\frac{da_s}{d\ln\mu^2} = -\beta_0 a_s^2 + \dots$

where $\beta_0 = \frac{11}{3} C_A - \frac{2}{3} n_f$

 \Rightarrow asympt. freedom: $a_{s} \searrow$ for $\mu \nearrow$

Nobel Prize 2004

PERTURBATIVE QCD

Asymptotic freedom:

- pQCD directly applicable if **all** energy scales large (hard scales)
- However, usually long-distance contributions to the amplitudes present:
 - emission of soft gluons
 - emission of collinear gluons and quarks

pQCD still useful for two classes of observables:

- IR- and collinear-save observables (insensitive to soft or collinear branching)
- Factorizable observables (separate physics from different scales)

Factorization:

- Separate amplitudes into (quantum mechanically) independent factors:
 - Soft parts (long distances/small energies): universal
 - hard parts (short distances/large energies): perturbatively calculable
- Soft parts non-perturbative but universal → **Predictive framework**

THE PQCD FORMALISM

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

- PDF:
 - Proton composed of partons = quarks, gluons
 - Structure of proton described by parton distribution functions (PDF)
 - Factorization theorems provide field theoretic definition of PDFs
 - PDFs universal → PREDICTIVE POWER
- Hard part dô:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate dô:
 - " $d\hat{\sigma} = partonic cross section mass factorization"$
- Statement about error: remainder suppressed by hard scale, O((Λ/Q)^p)

Original factorization proofs considered massless partons

I. Schienbein (LPSC Grenoble)

PDFs: Evolution equations and sum rules

Mass factorization \rightarrow Scale-dependence of PDFs

DGLAP evolution:

$$\begin{array}{lll} \frac{\mathrm{d}f_i(x,\mathbf{Q}^2)}{\mathrm{d}\ln\mathbf{Q}^2} & = & \frac{\alpha_s(\mathbf{Q}^2)}{2\pi} \int_x^1 \frac{\mathrm{d}y}{y} \ P_{ij}(y) \ f_j(x/y,\mathbf{Q}^2) \\ & = & \frac{\alpha_s(\mathbf{Q}^2)}{2\pi} [P_{ij}\otimes f_j](x,\mathbf{Q}^2) \ . \end{array}$$

Sum rules:

and

$$\int_0^1 dx \ u_v(x, Q^2) = 2 , \qquad \int_0^1 dx \ d_v(x, Q^2) = 1$$
$$\int_0^1 dx \ x \ \left[\Sigma(x, Q^2) + g(x, Q^2) \right] = 1 ,$$

PDFs determined in global χ^2 -analyses from data

Traditionally partons considered to be massless

- In factorization ansatz:
 - relate 4-momenta of partons to 4-momenta of hadrons

$$d\sigma[P] = \int_0^1 dx f(x) d\hat{\sigma}[\hat{p} = xP] \quad \text{with} \quad P^2 = \hat{p}^2 = 0$$

- Use massless evolution kernels (in $\overline{\mathrm{MS}}$ scheme)
- In dynamics: massless parton propagators
- In kinematics: massless partons in phase space
- At higher orders: calculate in *n* dimensions, renormalization and mass factorization in MS ⇒ short distance d∂ massless.
 Unavoidable for practical reasons!

HEAVY QUARKS

A quark *h* is heavy : $\Leftrightarrow m_h \gg \Lambda_{QCD} \sim 250 \text{ MeV}$

- $m_h \gg \Lambda_{\text{QCD}} \Rightarrow \alpha_s(m_h^2) \propto \ln^{-1}(\frac{m_h^2}{\Lambda_{\text{QCD}}^2}) \ll 1$ (asymptotic freedom)
- *m_h* sets hard scale; acts as long distance cut-off
- Perturbtation theory (pQCD) applicable

charm:	$m_c \sim 1.5~{ m GeV}$	$\Lambda_{ m QCD}/\textit{m}_{c}\sim 0.17$	$\alpha_s(m_c^2) \sim 0.34$
bottom:	$m_b\sim 5~{ m GeV}$	$\Lambda_{ m QCD}/m_b\sim 0.05$	$lpha_{s}(m_{b}^{2})\sim$ 0.21
top:	$m_t \sim 175~{ m GeV}$	$\Lambda_{ m QCD}/m_t \sim 0.001$	$\alpha_s(m_t^2) \sim 0.11$

- The smaller the ratio Λ_{QCD}/m_h, the smaller effects of non-perturbative QCD (such as hadronization)
- Top quark decays before it could hadronize due to its large mass ($\Gamma \propto m_t^3$): $\Gamma \simeq \Gamma(t \to bW) \simeq \frac{G_F m_t^3}{8\pi\sqrt{2}} |V_{tb}|^2 \simeq 1.76 \text{ GeV} (\frac{m_t}{175 \text{ GeV}})^3$

How to incorporate heavy quark masses into the pQCD formalism?

The pQCD formalism with quark masses

Hard-scattering factorization with heavy quarks: A general treatment J. Collins, PRD58(1998)094002

See also: R. Thorne, W. K. Tung, arXiv:0809.0714

F. Olness, I. Schienbein, Proceedings of Ringberg workshop 2008, arXiv: 08mm.nnnn

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Problems:

- Multiple hard scales: m_c, m_b, m_t, μ
- Mass-independent factorization/renormalization schemes like MS
- A single $\overline{\rm MS}$ scheme cannot meet requirements (1) and (3) (is unphysical).

Way out: Patchwork of $\overline{\text{MS}}$ schemes S^{n_f, n_R}

- Variable Flavor-Number Scheme (VFNS): $S^{3,3} \xrightarrow{m_c} S^{4,4} \xrightarrow{m_b} S^{5,5} \xrightarrow{m_t} S^{6,6}$
- **Masses reintroduced** by backdoor: matching $S^{3,3} \leftrightarrow S^{4,4}$ at m_c : $f_i^{n_f=4}(x, m_c) = [A_{ij} \otimes f_j^{n_f=3}](x, m_c), \alpha_s^{n_f=4}(m_c) = B \alpha_s^{n_f=3}(m_c)$, etc.
- Fixed Flavor-Number Scheme (3-FFNS): $S^{3,3}$ or $S^{3,3} \to S^{3,4} \to S^{3,5} \to S^{3,6}$

3-FFNS/FIXED ORDER

- No charm PDF! Of course need exp. Input for u, d, s, g PDFs at scale Q₀⁽³⁾
- fi nite collinear logs $\ln Q/m_c$ arise \rightarrow are kept in hard part (unresummed, in fi xed order)
- Requirement (3) naturally satisfied
- Not IR-safe, does not meet requirement (2):
 - Not valid for Q >> m_c
 - Can we quantify? Valid for $Q < m_c, 3m_c, 5m_c$?

- often large ratios of scales involved: multi-scale problems For $Q \gg m_c$: write $\ln Q/m_c = \ln \mu/m_c + \ln Q/\mu$, subtract $\ln \mu/m_c$ and resum $\ln \mu/m_c$ by introducing charm PDF at $Q_0^{(4)} \simeq m_c$ using a perturbative boundary condition
- $Q < Q_0 : n_f = 3$ no charm PDF, $Q \ge Q_0 : n_f \rightarrow n_f + 1$, charm PDF without fit parameters
- IR-safe, satisfi es requirement (2); resums colliner logarithms
- Problem: original ZM-VFNS (=massless parton model) only valid for Q >> m (Quantify?)
- GM-VFNS: need extra work to satisfy requirement (3) but then valid for all scales Q! approaches FFNS for Q ~ m, approaches ZM-VFNS for Q >> m

MATCHING CONDITIONS

Variable Flavor-Number Scheme (VFNS):

$$S^{3,3}
ightarrow S^{4,4}
ightarrow S^{5,5}
ightarrow S^{6,6}$$

Matching conditions for PDFs at matching point $\mu_M \simeq m$:

 $f_i^{(4)}(x,m_c) = [A_{ij}^{(4)} \otimes f_j^{(3)}](x,m_c)$

with the 4 × 3 matrix $A_{ij}^{(4)}$: $A = \delta + \frac{\alpha_s}{2\pi} [P_1 L + c_1] + (\frac{\alpha_s}{2\pi})^2 [P_1^2 L^2 + P_2 L + c_2] + \dots$ where $L = \ln(\mu^2/m^2)$.

Matching conditions for α_s :

Chetyrkin, Kniehl, Steinhauser '97, '98

$$\alpha_s^{(4)}(m_c) = B^{(4)} \alpha_s^{(3)}(m_c)$$

I. Schienbein (LPSC Grenoble)

BMNS'96.'98

At $\mu_M \simeq m_c$: $f_i^{(4)} = A_{ij}^{(4)} \otimes f_j^{(3)}, A = \delta + \frac{\alpha_s}{2\pi} [P_1 L + c_1] + (\frac{\alpha_s}{2\pi})^2 [P_1^2 L^2 + P_2 L + c_2] + \dots$

1 *A* has exact structure of DGLAP. Only 'unknowns': coefficients c_1, c_2 **2** $c_1^{\overline{MS}} = 0 \Rightarrow \text{At NLO}, \mu_M = m$ is special matching point:

 $L = \ln(\mu^2/m^2) = 0 \Rightarrow f_{1,2,3}^{(4)}(x,m) = f_{1,2,3}^{(3)}(x,m), \ c^{(4)}(x,m) = 0$

3 $c_2^{\overline{\text{MS}}} \neq 0$. At NNLO $\mu_M = m$ not special. In fact, in the matching conditions for fragmentation functions already $c_1^{\overline{\text{MS}}} \neq 0$. Also at NNLO: $f_c(\mu = m) < 0$. Worrisome? PDFs are not observables! Also α_s theoretical construct: $\alpha_s^{n_f+1} = \alpha_s^{n_f} + \mathcal{O}(\alpha_s^3)$

Occurrence of the second se

- PDFs discontinuous at O(α²_s)
- α_s discontinuous at $\mathcal{O}(\alpha_s^3)$

(5) Observables continuous (up to higher orders): $\sigma^{n_f} = \sigma^{n_f+1} + \mathcal{O}(\alpha_s^{K+1})$

- Matching conditions valid for any VFNS (ZM-VFNS, GM-VFNS)
- GM-VFNS: Quark masses are retained in the coefficient functions/hard scattering cross sections
- Factorization proof with massive quarks for inclusive DIS: Collins '98 Remainder $\sim O(\Lambda^2/Q^2) \text{ not} \sim O(m^2/Q^2)$

Deep-inelastic scattering and PDFs

Most important application of GM-VFNS: Deep-inelastic scattering (DIS) Backbone of any PDF global analysis!

- GM-VFNS essential for *W*, *Z* cross sections at the LHC
- Most of the most recent global analyses of proton PDFs use a version of a GM-VFNS
 - MSTW08: TR scheme
 - CTEQ6.6/CT10: S-ACOT χ
 - NNPDF2.1: FONLL
 - HERANPDF1.0: same as MSTW08
 - GJR08, JR09: as GRV in a FFNS
 - CTEQ5,CTEQ6.1,NNPDF2.0,... and older: ZM-VFNS
- The various GM-VFN schemes are 'tuned to' the DIS structure functions F^c₂, F^c₁

IF THESE SCHEME ARE NOT JUST COOKING RECIPES BUT PQCD FORMALISMS WITH HEAVY QUARKS, THEY SHOULD BE APPLICABLE TO OTHER PROCESSES AS WELL

- Factorization proof with massive quarks for inclusive DIS: Collins '98 Remainder ~ O(Λ²/Q²) not ~ O(m²/Q²)
- Many incarnations of VFNS (ACOT, ACOT-χ, TR): Freedom to shift finite *m*-terms between PDFs and hard part without spoiling IR-safety
- S-ACOT scheme: Krämer,Olness,Soper '2000 incoming and cut heavy quark lines with *m* = 0 (↔ scheme choice) more complex at NNLO
- Massive quarks can be described by massless evolution kernels (↔ scheme choice)

- ACOT scheme: Aivazis, Collins, Olness, Tung, PRD50(1994)3102
 Implementation of mass effects based on simple principles. Directly based on
 Collin's factorization theorem.
- NLO corrections to ACOT: Massive kinematics, Factorization ansatz:

$$\mathcal{W}_{\mu
u} = \int rac{\mathsf{d}\xi}{\xi} f(\xi) \, \hat{w}_{\mu
u\,|\hat{p}^+=\xi P^+}$$

S-ACOT scheme

Krämer, Olness, Soper '2000

Kretzer, Schienbein '98

 ACOT_χ, S-ACOT_χ: Kretzer, Tung et al., >2000: Mimic physical charm-production threshold by slow-rescaling prescription

$$c(x) \rightarrow c(\chi), \quad \chi = x \left[1 + \left(\frac{nm_c}{Q}\right)^2\right], \quad n = 2$$

• Work in progress: extension to NNLO and N3LO Olness, Schienbein, Stavreva et al.

Twist-2 TMC and quark masses can be easily treated together!

∃ simple master formula

Rescaling variable factorises:

 $\xi = \eta \chi$

with the Nachtmann variable η :

$$\eta = \frac{2x}{1 + \sqrt{1 + 4x^2M^2/Q^2}}$$

ted together! see Review Schienbein et al, 2008

One-particle inclusive production in a GM-VFNS

I. Schienbein (LPSC Grenoble)

 $A + B \rightarrow H + X$: $d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\sigma(ij \rightarrow kX) \otimes D_k^H(z)$

sum over all possible subprocesses $i + j \rightarrow k + X$

Parton distribution functions: $f_i^A(x_1, \mu_F), f_j^B(x_2, \mu_F)$ non-perturbative input long distance universal Hard scattering cross section: $d\sigma(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$ perturbatively computable short distance (coefficient functions) Fragmentation functions: $D_k^H(z, [\mu'_F])$ non-perturbative input long distance universal

Accuracy:

light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2 heavy hadrons: if m_h is neglected in $d\sigma$: $\mathcal{O}((m_h/p_T)^p)$

```
Details (subprocesses, PDFs, FFs; mass terms) depend on the Heavy Flavour Scheme
```

FFNS/Fixed Order

Start with FFNS = Fixed Order:

- NLO calculation more than 20 years old, very well tested
- Allows to predict the total cross section
- Allows to compute *p*_T spectrum if !(*p*_T >> *m*) (up to inclusion of a non-perturbative FF which is very hard)

Compare data with best FFNS prediction!

- Find p_T -range where FFNS applicable. Guess: $p_T = 5m$ still ok.
- When need for resummation of ln m terms visible? (Apart from smaller uncertainty band in resummed theory)

As described before: GM-VFNS \rightarrow FFNS for $\rho_T \sim m$

Leading order subprocesses:

- 1. $gg \rightarrow Q\bar{Q}$
- 2. $q\bar{q} \rightarrow Q\bar{Q}$ (q = u, d, s)

- The gg-channel is dominant at the LHC ($\sim 85\%$ at $\sqrt{S} = 14$ TeV).
- The total production cross section for heavy quarks is finite.
 The minimum virtuality of the t-channel propagator is m². Sets the scale in α_s.
 Perturbation theory should be reliable.
- Note: For $m^2 \rightarrow 0$ total cross section would diverge.

[See M. Mangano, hep-ph/9711337; Textbook by Ellis, Stirling and Webber]

Next-to-leading order (NLO) subprocesses:

- 1. $gg \rightarrow Q\bar{Q}g$
- 2. $q\bar{q} \rightarrow Q\bar{Q}g \quad (q = u, d, s)$
- 3. $gq \rightarrow Q\bar{Q}q, g\bar{q} \rightarrow Q\bar{Q}\bar{q}$ [new at NLO]
- 4. Virtual corrections to $gg \rightarrow Q\bar{Q}$ and $q\bar{q} \rightarrow Q\bar{Q}$

NLO corrections for σ_{tot} and differential cross sections $d\sigma/dp_T dy$ known since long:

- Nason, Dawson, Ellis, NPB303(1988)607; Beenakker, Kuif, van Neerven, Smith, PRD40(1989)54 [σ_{tot}]
- NDE, NPB327(1989)49; (E)B335(1990)260; Beenakker *et al.*,NPB351(1991)507 [*d*σ/*d*p_T*d*y]

Well tested by recalculations and zero-mass limit:

- Bojak, Stratmann, PRD67(2003)034010 [$d\sigma/dp_T dy$ (un)polarized]
- Kniehl, Kramer, Spiesberger, IS, PRD71(2005)014018 [$m \rightarrow 0$ limit of diff. x-sec]
- Czakon, Mitov, NPB824(2010)111 [σ_{tot}, fully analytic]

NNLO?

ToDo:

- Calculate for $q\bar{q} \rightarrow Q\bar{Q}$ and $gg \rightarrow Q\bar{Q}$
 - *M*⁽⁰⁾(2 → 4) (tree level)
 - $M^{(1)}(2 \rightarrow 3)$ (one-loop)
 - $M^{(2)}(2 \rightarrow 2)$ (two-loop)
 - NNLO subtraction of IR singularities!
- In addition gq channel
- · Goal: total cross section and differential spectra
- Several groups are working on it (Bonciani, Gehrmann, Ferroglia, ...; Czakon, ...)
- $q\bar{q}$ complete (easier); $M^{(2)}(2 \rightarrow 4)$ for gg channel difficult
- Complete calculation still a couple of years away
- See, e.g., arXiv:1012.0258 for a recent talk

HEAVY QUARK HADROPRODUCTION: SOME FIXED ORDER RESULTS

- $d\sigma/dp_T$ for the process $pp \rightarrow B^+X$; Fragmentation $b \rightarrow B$ via Peterson-FF
- CTEQ6.1 PDFs
- Prediction in NLO perturbation theory

Remarks:

- Fixed order theory in reasonable agreement with Tevatron data up to $p_T \simeq 5 m_b$
- At $p_T \leq m_b$ factorization less obvious. Depends on definition of convolution variable *z*: $p_B = zp_b$ or $p_T^B = zp_T^b$ or $p_B^+ = zp_b^+$ or $\vec{p}_B = z\vec{p}_b$
- Less hadronization effects than originally believed:

 ϵ-parameter small corresponding to a hard fragmentation function. Harder FF → harder p_T-spectrum
- Larger $\alpha_s(M_Z) \rightarrow$ harder p_T -spectrum
- Mass dependence imortant for $p_T \lesssim m$ (peak) $ightarrow \sigma_{tot}$
- Only the 4th or 5th Mellin-moment of the FF is relevant for large p_T [M. Mangano]: $d\sigma^b/dp_T(b) \simeq A/p_T(b)^n$ with $n \simeq 4, ..., 5$

 $\frac{d\sigma^B}{dp_T(B)} = \int \frac{dz}{z} \frac{D(z)}{D(z)} \frac{d\sigma^b}{dp_T(b)} [p_T(b) = p_T(B)/z] = A/p_T(B)^n \times \int dz \ z^{n-1} \ D(z)$

ZM-VFNS/RS (RS: Resummed)

Next ZM-VFNS/RS which is the baseline for $p_T >> m$

- Again NLO calculation more than 20 years old, very well tested
- Allows to compute p_T spectrum if $p_T >> m$
- Needs scale-dependent FFs for quarks and gluons $D_q^H(z, \mu_F)$, $D_g^H(z, \mu_F')$
- Same theory used for the computation of inclusive π or K production.

Compare data with best ZM-VFNS prediction!

- Find smallest *p_T* where ZM-VFNS applicable.
- m/p_T terms neglected.
- Is there an overlapping region where both, FFNS and ZM-VFNS are valid?

As said before: GM-VFNS \rightarrow ZM-VFNS for $\rho_T >> m$

LIST OF SUBPROCESSES: ZM-VFNS

Massless NLO calculation: [Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105]

- 1. $gg \rightarrow qX$
- 2. $gg \rightarrow gX$
- 3. $qg \rightarrow gX$
- 4. $qg \rightarrow qX$
- 5. $q\bar{q} \rightarrow gX$
- 6. $q\bar{q} \rightarrow qX$
- 7. $qg \rightarrow \bar{q}X$
- 8. $qg \rightarrow \bar{q}' X$
- 9. $qg \rightarrow q'X$
- 10. $qq \rightarrow gX$
- 11. $qq \rightarrow qX$
- 12. $q\bar{q} \rightarrow q' X$
- 13. $q\bar{q}' \rightarrow gX$
- 14. $q\bar{q}' \rightarrow qX$
- 15. $qq' \rightarrow gX$
- 16. $qq' \rightarrow qX$
- \oplus charge conjugated processes

GM-VFNS/FONLL

FONLL = FO+NLL [1]

$FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m, p_T) = \frac{p_T^2}{p_T^2 + 25m^2} \simeq \begin{cases} 0.04 & : \quad p_T = m \\ 0.25 & : \quad p_T = 3m \\ 0.50 & : \quad p_T = 5m \\ 0.66 & : \quad p_T = 7m \\ 0.80 & : \quad p_T = 10m \end{cases}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & p_T \lesssim 3m \\ \text{RS} & : & p_T \gtrsim 10m \end{cases}$$

[1] Cacciari, Greco, Nason, JHEP05(1998)007

I. Schienbein (LPSC Grenoble)

Fragmentation functions (FFs):

- $D_i^H(z,\mu_F') = D_i^Q \otimes D_Q^H$ where:
 - $D_i^Q(z, \mu_F)$: perturbative FFs of i = q, g, Q into an on-shell heavy quark Q
 - D^H_O(z): scale-independent, non-perturbative FF describing transition of heavy quark to heavy hadron
- Non-perturbative FF fitted to $e^+e^- \rightarrow DX$, BX data

Applications available for:

- $\gamma^* + p \rightarrow D^{*,0,+} + X$ photoproduction
- *p* + *p*→ (*D*⁰, *D*^{*±}, *D*[±], *D*[±]_s, Λ[±]_c) + X good description of Tevatron data
- *p* + *p*→ *B* + *X* good description of Tevatron data
- *p* + *p* → *D*, *B* + *X* good description of RHIC data

[JHEP0103(2001)006]

[JHEP05(1998)007]

[PRL89(2002)122003,JHEP07(2004)033]

[PRL95(2005)122001]

Factorization Formula:

$$d\sigma(p\bar{p} \to D^{\star}X) = \sum_{i,j,k} \int dx_1 dx_2 dz f_i^p(x_1) f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) D_k^{D^{\star}}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^p)$$

Q: hard scale, p = 1, 2

- d
 *d
 ^φ_F*, μ'_F, α_s(μ_R), m_h/_{ρ_T}): hard scattering cross sections
 free of long-distance physics → m_h kept
- PDFs $f_i^p(x_1, \mu_F), f_i^{\bar{p}}(x_2, \mu_F)$: $i, j = g, q, c \quad [q = u, d, s]$
- FFs $D_k^{D^\star}(z,\mu_F')$: k = g,q,c

 \Rightarrow need short distance coeffi cients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

I. Schienbein (LPSC Grenoble)

LIST OF SUBPROCESSES: GM-VFNS

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f gg \to qX$	0 -	$f gg \to QX$
$ 2 gg \to gX $	2 -	2 -
$\textbf{3} qg \to gX$	3 $Qg \rightarrow gX$	3 -
	4 $Qg \rightarrow QX$	4 -
		5 -
	$\mathbf{\hat{O}} Q\bar{Q} \to QX$	6 -
		9 -
8 $qg \rightarrow \bar{q}' X$	8 Qg $\rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$
$ 9 \ qg \to q'X $		
$\textcircled{0} qq \rightarrow gX$	\mathbf{I} QQ \rightarrow gX	1 -
	$\textcircled{1} QQ \rightarrow QX$	① -
		$\mathbf{I} \mathbf{P} \ q \bar{q} ightarrow QX$
$\textcircled{B} q\bar{q}' \to gX$	${ m I}{ m I}$ ${ m Q}ar q o g X, qar Q o g X$	(B) -
	${f Q} {ar q} o {f Q} X, q {ar Q} o q X$	🕐 -
$f g q q' \to g X$	$\textcircled{5} Qq \rightarrow gX, qQ \rightarrow gX$	(5) -
		() -
I. Schienbein (LPSC Grenoble)	Masses in pQCD	Oct. 27, 2011 43 / 71

Mass terms contained in the hard scattering coefficients:

 $d\hat{\sigma}(\mu_F, \mu_{F'}, \alpha_s(\mu_R), \frac{m}{p_T})$

Two ways to derive them:

 Compare massless limit of a massive fixed-order calculation with a massless MS calculation to determine subtraction terms

[Kniehl,Kramer,IS,Spiesberger,PRD71(2005)014018]

OR

(2) Perform mass factorization using partonic PDFs and FFs

[Kniehl,Kramer,IS,Spiesberger,EPJC41(2005)199]

» skip details

 Compare limit m → 0 of the massive calculation (Merebashvili et al., Ellis, Nason; Smith, van Neerven; Bojak, Stratmann; ...) with massless MS calculation (Aurenche et al., Aversa et al., ...)

 $\lim_{m\to 0} \mathrm{d}\tilde{\sigma}(m) = \mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}} + \Delta \mathrm{d}\sigma$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{sub}}\equiv\Delta\mathrm{d}\sigma=\lim_{m
ightarrow0}\mathrm{d}\tilde{\sigma}(m)-\mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}}$$

Subtract dσ_{sub} from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\tilde{\sigma}(m) - \mathrm{d}\sigma_{\mathrm{sub}}$

 \rightarrow d $\hat{\sigma}(m)$ short distance coefficient including *m* dependence

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \otimes massive short distance cross sections

- Treat contributions with <u>charm in the initial state</u> with m = 0
- Massless limit: technically non-trivial, map from phase-space slicing to subtraction method

I. Schienbein (LPSC Grenoble)

Mass factorization

Subtraction terms are associated to mass singularities: can be described by partonic PDFs and FFs for collinear splittings $a \rightarrow b + X$

• initial state: $f_{g \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_{\delta}(\mu)}{2\pi} P_{g \to q}^{(0)}(x) \ln \frac{\mu^2}{m^2}$ $f_{Q \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_{\delta}(\mu)}{2\pi} C_F \left[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1)\right]_+$ $f_{g \to g}^{(1)}(x, \mu^2) = -\frac{\alpha_{\delta}(\mu)}{2\pi} \frac{1}{3} \ln \frac{\mu^2}{m^2} \delta(1-x)$

• final state: $\begin{aligned} & d_{g \to Q}^{(1)}(z, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(z) \ln \frac{\mu^2}{m^2} \\ & d_{Q \to Q}^{(1)}(z, \mu^2) = C_F \frac{\alpha_s(\mu)}{2\pi} \left[\frac{1+z^2}{1-z} \left(\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1 \right) \right]_+ \end{aligned}$

Other partonic distribution functions are zero to order α_s

[Mele, Nason; Kretzer, Schienbein; Melnikov, Mitov]

(2) SUBTRACTION TERMS VIA $\overline{\text{MS}}$ MASS FACTORIZATION: $a(k_1)b(k_2) \rightarrow Q(p_1)X$ [1]

$$\begin{array}{ll} \mbox{Fig. (a):} & d\sigma^{\rm sub}(ab \to QX) &= \int_0^1 dx_1 \ f_{a \to i}^{(1)}(x_1, \mu_F^2) \ d\hat{\sigma}^{(0)}(ib \to QX)[x_1k_1, k_2, p_1] \\ &\equiv \ f_{a \to i}^{(1)}(x_1) \otimes d\hat{\sigma}^{(0)}(ib \to QX) \end{array}$$

$$\begin{array}{lll} \underline{\text{Fig. (b):}} & d\sigma^{\text{sub}}(ab \to QX) & = & \int_0^1 dx_2 \, f_{b \to j}^{(1)}(x_2, \mu_F^2) \, d\hat{\sigma}^{(0)}(aj \to QX)[k_1, x_2 k_2, \rho_1] \\ & \equiv & f_{b \to j}^{(1)}(x_2) \otimes d\hat{\sigma}^{(0)}(aj \to QX) \end{array}$$

 $\begin{array}{ll} \underline{\mathsf{Fig.}} \ (\mathsf{c}): & \mathsf{d}\sigma^{\mathrm{sub}}(ab \to \mathsf{Q}X) & = & \int_0^1 \mathsf{d}z \, \mathrm{d}\hat{\sigma}^{(0)}(ab \to kX)[k_1, k_2, \mathbf{z}^{-1}p_1] \, d_{k \to \mathsf{Q}}^{(1)}(z, {\mu_F'}^2) \\ & \equiv & \mathsf{d}\hat{\sigma}^{(0)}(ab \to kX) \otimes d_{k \to \mathsf{Q}}^{(1)}(z) \end{array}$

[1] Kniehl, Kramer, I.S., Spiesberger, EPJC41(2005)199

I. Schienbein (LPSC Grenoble)

GRAPHICAL REPRESENTATION OF SUBTRACTION TERMS FOR $q\bar{q}
ightarrow Q\bar{Q}g$ and $gq
ightarrow Q\bar{Q}q$

$$rac{{
m d}\hat{\sigma}^{(0)}(gq
ightarrow gq)\otimes d^{(1)}_{g
ightarrow {
m Q}}(z):}{}$$

$$f_{g
ightarrow \mathsf{Q}}^{(1)}(x_1) \otimes \mathrm{d} \hat{\sigma}^{(0)}(\mathbf{Q} q
ightarrow \mathbf{Q} q)$$
:

S-ACOT AND S-ACOT χ

$$S - ACOT_{\chi} = FO + (RS - FOM0)H(m, p_T)$$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$H(m, p_T) = \begin{cases} 1 : S - ACOT \\ f(p_T/m) : S - ACOT_{\chi} \end{cases}$$

Goal: $H(m, p_T)$ not ad hoc! Calculated from a general principle.

$$\Rightarrow S - ACOT_{\chi} \rightarrow \begin{cases} FO & : & p_T \sim m \\ RS & : & p_T \gg m \end{cases}$$

Present implementation: S – ACOT (transition to FFNS at small p_T problematic)

[1] Cacciari, Greco, Nason, JHEP05(1998)007

Applications available for

- γ + γ → D^{*±} + X direct and resolved contributions
- $\gamma^* + p \rightarrow D^{*\pm} + X$ photoproduction
- *p* + *p*→ (*D*⁰, *D*^{*±}, *D*[±], *D*[±]_s, Λ[±]_c) + X good description of Tevatron data
- $p + \bar{p} \rightarrow B + X$ works for Tevatron data at large p_T
- work in progress for $e + p \rightarrow D + X$

EPJC22, EPJC28

EPJC38, EPJC62

PRD71, PRL96, PRD79

PRD77

Non-perturbative input

FRAGMENTATION FUNCTIONS INTO D MESONS

FF for $c \to D^*$ from fitting to e^+e^- data 2008 analysis based on GM-VFNS $\mu_0 = m$

global fit: data from ALEPH, OPAL, BELLE, CLEO

BELLE/CLEO fit

[KKKS: Kneesch, Kramer, Kniehl, IS NPB799 (2008)]

tension between low and high energy data sets \rightarrow speculations about non-perturbative (power-suppressed) terms

FFS INTO B MESONS [1] FROM LEP1/SLC DATA [2]

Petersen

 $D(x, \mu_0^2) = N \frac{x(1-x)^2}{[(1-x)^2 + \epsilon x]^2}$

Kartvelishvili-Likhoded

$$D(x,\mu_0^2) = Nx^lpha (1-x)^eta$$

 [1] Kniehl,Kramer,IS,Spiesberger,PRD77(2008)014011
 [2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300; PRD65(2002)092006

I. Schienbein (LPSC Grenoble)

Numerical Results

- Predictions for the LHC
 - ALICE: $pp \rightarrow DX$ at 7 TeV
 - CMS: $pp \rightarrow BX$ at 7 TeV
 - ATLAS: $pp \rightarrow DX$ at 7 TeV
 - LHCb: $pp \rightarrow DX$ at 7 TeV
- Predictions for the Tevatron
 - CDF: $p\bar{p} \rightarrow DX$ at 1.96 TeV
 - CDF: $p\bar{p} \rightarrow BX$ at 1.96 TeV
- Predictions for RHIC
 - RHIC: $pp \rightarrow DX$ at 200 GeV and 500 GeV

GM-VFNS predictions for D^0 , $D^{\star\pm}$, D^{\pm} production at ALICE

- pp collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.5 PDF, KKKSc FF, m_c = 1.5 GeV
- Results for $(D^0 + \bar{D}^0)/2$, $(D^{\star +} + D^{\star -})/2$, $(D^+ + D^-)/2$ (check)
- Error bands: Varying μ_R by factors 2 up and down (Except for very small p_T this gives maximal variation in the cross section)

I. Schienbein (LPSC Grenoble)

Preliminary ALICE results for D^0 and D^+

Presented by A. Dainese at LHC Physics Day, 3. Dec. 2010

pQCD predictions (FONLL, GM-VFNS) compatible with data

GM-VFNS PREDICTIONS FOR **B** PRODUCTION AT CMS

- CMS data: PRL106(2011)112001
- Error band: scale uncertainty

- pp collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.6 PDF, KKKS06 FF, m_c = 1.5 GeV
- Rapidity bins (top to bottom): $|\eta|<0.2,\,0.2<|\eta|<0.5,0.5<|\eta|<0.8,0.8<|\eta|<1.3,\,1.3<|\eta|<2.1$
- Results for average $(D^0 + \overline{D}^0)/2$, $(D^{\star +} + D^{\star -})/2$, $(D^+ + D^-)/2$

GM-VFNS predictions for D^0 , $D^{\star\pm}$, D^{\pm} production at ATLAS

Figures provided by S. Head

- *pp* collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.6 PDF, KKKS06 FF, m_c = 1.5 GeV
- Left figure: $d\sigma/d\eta$ for 3.5 < p_T < 40
- Right figure: $d\sigma/dp_T$ for $0 < \eta < 2.1$
- Results for sum $D^0 + \bar{D}^0$, $D^{*+} + D^{*-}$, $D^+ + D^-$
- Independent variation of μ_R and μ_F by a factor two up and down

LHCB: D⁰ CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Prelim. results ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^0 \rightarrow K^- \pi^+$, Data: 12 % correlated error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

Masses in pQCD

Oct. 27, 2011 62 / 71

LHCB: D⁺ CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Prelim. results ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^+ \rightarrow K^- \pi^+ \pi^+$, Data: 14 % correlated error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

LHCB: D^{*+} CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Preliminary ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^{\star +} \rightarrow (D^0 \rightarrow K^- \pi^+)\pi^+$, Data: 14 % corr. error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

Masses in pQCD

Oct. 27, 2011 64 / 71

LHCB: D_s cross section (talk by P. Urquijo at LPCC, Dec. 2010)

• Preliminary ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^{s} \rightarrow K^{-}K^{+}\pi^{+}$, Data: 16 % corr. error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

HADROPRODUCTION OF D^0 , D^+ , D^{*+} , D^+_s GM-VFNS results w/ KKKSc FFs [1]

• $d\sigma/dp_T [nb/GeV]$ $|y| \le 1$ prompt charm

- Uncertainty band: $1/2 \le \mu_R/m_T, \mu_F/m_T \le 2$ $(m_T = \sqrt{p_T^2 + m_c^2})$
- CDF data from run II [2]
- GM-VFNS describes data within errors

[1] Kniehl,Kramer,IS,Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear) [2] Acosta et al., PRL91(2003)241804

I. Schienbein (LPSC Grenoble)

COMPARISON W/ PREVIOUS KK FFs [1]

• New KKKSc FFs improve agreement w/ CDF data.

[1] Kniehl, Kramer, PRD74(2006)037502

I. Schienbein (LPSC Grenoble)

GM-VFNS PREDICTION VS. CDF II [1,2]

- CDF (1.96 TeV):
 - open squares J/ψX [1]
 - solid squares $J/\psi K^+$ [2]
- CTEQ6.1M PDFs

•
$$\Lambda_{\overline{\rm MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_{\rm S}^{(5)} = 0.1181$$

•
$$1/2 \le \mu_R/m_T, \mu_F/m_T, \mu_R/\mu_F \le 2$$

 $(m_T = \sqrt{p_T^2 + m_b^2})$

[1] CDF, PRD71(2005)032001[2] CDF, PRD75(2007)012010

I. Schienbein (LPSC Grenoble)

- CDF II (preliminary) [1]
- $\mu_R = \mu_F = m_T$
- for $p_T \gg m_b$:
 - GM-VFN merges w/ ZM-VFN
 - FFN breaks down
- data point in bin [29,40] favors GM-VFN

[1] Kraus, FERMILAB-THESIS-2006-47; Annovi, FERMILAB-CONF-07-509-E

FFN vs. CDF II [1]

- obsolete FFN as above
- up-to-date FFN evaluated with
 - CTEQ6.1M PDFs
 - m_b = 4.5 GeV

•
$$\Lambda_{\overline{MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_s^{(5)} = 0.1181$$

• $D(x) = B(b \rightarrow B)\delta(1 - x)$ with $B(b \rightarrow B) = 39.8\%$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77(2008)014011

I. Schienbein (LPSC Grenoble)

INTRINSIC CHARM IN THE PROTON D-mesons at RHIC

I. Schienbein (LPSC Grenoble)