The Frobenius group T_{7} as a symmetry in the lepton sector

Ulrike Regner, University of Vienna

06.10.2011

Overview

- Introduction
- The discrete symmetry group T_{7}
- Yukawa terms and mass matrices
- The neutrino mixing matrix
- Interactions
- The scalar potential of Φ
- Conclusions

Introduction

Neutrinos are puzzling:

- experimentally found properties (i.e. nonzero mass differences) can not be included in the SM without righthanded neutrinos
- mixing angles (one vanishingly small, others large) can not be explained
- absolute masses still unknown
- smallness of masses can not be explained
- mass spectrum can not be explained
- Dirac or Majorana nature is unsolved
- extremely hard to measure due to small interaction rates
- ...

Introduction

Favoured:
Tribimaximal neutrino mixing matrix (good agreement with experimental data)

$$
U_{P M N S}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \tag{1}\\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

\Rightarrow underlying family symmetry: discrete subgroups of $S U(3)$

Smallest group with 3-dim irreps: A_{4}
Smallest group with two nonequivalent 3-dim irreps: T_{7}, suggested by Cao, Khalil, Ma, Okada (2010)

The Frobenius group T_{7} as a symmetry in the lepton sector
The discrete symmetry group T_{7}
Properties of T_{7}

Elements of T_{7}

21 elements, two generators:

$$
\begin{gathered}
a=\left(\begin{array}{ccc}
\rho & 0 & 0 \\
0 & \rho^{2} & 0 \\
0 & 0 & \rho^{4}
\end{array}\right) \text { and } b=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
\rho=e^{\frac{2 i \pi}{7}}
\end{gathered}
$$

Important identities:

$$
\begin{equation*}
a^{7}=e, b^{3}=e, b a=a^{2} b \tag{3}
\end{equation*}
$$

Properties of T_{7}

Elements of T_{7}

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& b=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& b^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& a=\left(\begin{array}{ccc}
\rho & 0 & 0 \\
0 & \rho^{2} & 0 \\
0 & 0 & \rho^{4}
\end{array}\right) \\
& a b=\left(\begin{array}{ccc}
0 & \rho & 0 \\
0 & 0 & \rho^{2} \\
\rho^{4} & 0 & 0
\end{array}\right) \\
& a b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho \\
\rho^{2} & 0 & 0 \\
0 & \rho^{4} & 0
\end{array}\right) \\
& a^{2}=\left(\begin{array}{ccc}
\rho^{2} & 0 & 0 \\
0 & \rho^{4} & 0 \\
0 & 0 & \rho
\end{array}\right) \\
& a^{2} b=\left(\begin{array}{ccc}
0 & \rho^{2} & 0 \\
0 & 0 & \rho^{4} \\
\rho & 0 & 0
\end{array}\right) \\
& a^{2} b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho^{2} \\
\rho^{4} & 0 & 0 \\
0 & \rho & 0
\end{array}\right) \\
& a^{3}=\left(\begin{array}{ccc}
\rho^{3} & 0 & 0 \\
0 & \rho^{6} & 0 \\
0 & 0 & \rho^{5}
\end{array}\right) \\
& a^{3} b=\left(\begin{array}{ccc}
0 & \rho^{3} & 0 \\
0 & 0 & \rho^{6} \\
\rho^{5} & 0 & 0
\end{array}\right) \\
& a^{3} b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho^{3} \\
\rho^{6} & 0 & 0 \\
0 & \rho^{5} & 0
\end{array}\right) \\
& a^{4}=\left(\begin{array}{ccc}
\rho^{4} & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \rho^{2}
\end{array}\right) \quad a^{4} b=\left(\begin{array}{ccc}
0 & \rho^{4} & 0 \\
0 & 0 & \rho \\
\rho^{2} & 0 & 0
\end{array}\right) \quad a^{4} b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho^{4} \\
\rho & 0 & 0 \\
0 & \rho^{2} & 0
\end{array}\right) \\
& a^{5}=\left(\begin{array}{ccc}
\rho^{5} & 0 & 0 \\
0 & \rho^{3} & 0 \\
0 & 0 & \rho^{6}
\end{array}\right) \quad a^{5} b=\left(\begin{array}{ccc}
0 & \rho^{5} & 0 \\
0 & 0 & \rho^{3} \\
\rho^{6} & 0 & 0
\end{array}\right) \quad a^{5} b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho^{5} \\
\rho^{3} & 0 & 0 \\
0 & \rho^{6} & 0
\end{array}\right) \\
& a^{6}=\left(\begin{array}{ccc}
\rho^{6} & 0 & 0 \\
0 & \rho^{5} & 0 \\
0 & 0 & \rho^{3}
\end{array}\right) \quad a^{6} b=\left(\begin{array}{ccc}
0 & \rho^{6} & 0 \\
0 & 0 & \rho^{5} \\
\rho^{3} & 0 & 0
\end{array}\right) \quad a^{6} b^{2}=\left(\begin{array}{ccc}
0 & 0 & \rho^{6} \\
\rho^{5} & 0 & 0 \\
0 & \rho^{3} & 0
\end{array}\right)
\end{aligned}
$$

The Frobenius group T_{7} as a symmetry in the lepton sector
The discrete symmetry group T_{7}
Properties of T_{7}

Irreducible representations of T_{7}

$$
\begin{equation*}
\sum_{i} d_{i}^{2}=|G| \tag{4}
\end{equation*}
$$

| dim. | name | a | b |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\underline{1}_{1}$ | 1 | 1 |
| 1 | $\underline{1}_{2}$ | 1 | ω |
| 1 | $\underline{1}_{3}$ | 1 | ω^{2} |
| 3 | $\underline{3}$ | $\left(\begin{array}{ccc}\rho & 0 & 0 \\ 0 & \rho^{2} & 0 \\ 0 & 0 & \rho^{4}\end{array}\right)$ | $\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0\end{array}\right)$ |
| 3 | $\underline{3}^{*}$ | $\left(\begin{array}{ccc}\rho^{6} & 0 & 0 \\ 0 & \rho^{5} & 0 \\ 0 & 0 & \rho^{3}\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ |

$$
\omega=e^{\frac{2 i \pi}{3}}
$$

Tensor products of the irreps of T_{7}

$\underline{1}_{p} \otimes \underline{1}_{q} \cong \underline{1}_{(p+q) \bmod (3)}$
$\underline{1}_{p} \otimes \underline{3}^{\cong} \cong \underline{3}^{*}$
$\underline{1}_{p} \otimes \underline{3}^{*} \cong \underline{3}^{*}$
$\underline{3}^{3} \otimes \underline{3}^{\cong} \underline{3}^{3} \oplus \underline{3}^{*} \oplus \underline{3}^{*}$
$\underline{3}^{*} \otimes \underline{3}^{*} \cong \underline{3}^{*} \oplus \underline{3} \oplus \underline{3}^{*}$
$\underline{3} \otimes \underline{3}^{*} \cong \underline{3}^{*} \oplus \underline{3} \oplus \underline{1}_{1} \oplus \underline{1}_{2} \oplus \underline{1}_{3}$

Conjugacy classes of T_{7}

name	\# elements	elements
C_{1}	1	e
C_{2}	3	a, a^{2}, a^{4}
C_{3}	3	a^{3}, a^{5}, a^{6}
C_{4}	7	$b, a b, a^{2} b, a^{3} b, a^{4} b, a^{5} b, a^{6} b$
C_{5}	7	$b^{2}, a b^{2}, a^{2} b^{2}, a^{3} b^{2}, a^{4} b^{2}, a^{5} b^{2}, a^{6} b^{2}$

The Frobenius group T_{7} as a symmetry in the lepton sector
The discrete symmetry group T_{7}

Properties of T_{7}

Character table of T_{7}

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
n	1	3	3	7	7
$\operatorname{ord}(\mathrm{~g})$	1	7	7	3	3
$\underline{1_{1}}$	1	1	1	1	1
$\underline{1_{2}}$	1	1	1	ω	ω^{2}
$\underline{1_{3}}$	1	1	1	ω^{2}	ω
$\underline{3}^{3}$	3	η	η^{*}	0	0
$\underline{3}^{*}$	3	η^{*}	η	0	0

$$
\begin{gathered}
\omega=e^{\frac{2 i \pi}{3}} \\
\eta=-\frac{1}{2}+i \frac{\sqrt{7}}{2}
\end{gathered}
$$

Frobenius groups: Definitions

Definition

Let G be a finite group that contains a nontrivial subgroup H with the property that $H \cap H^{g}=\{e\}$, where e is the neutral element of G and $\forall g \in G \backslash H, H^{g}$ is defined as $H^{g}:=\left\{g^{-1} h g \mid h \in H\right\}$. Then G is a Frobenius group and the subgroup H is called a Frobenius complement of G.

Definition

$K=\left(G \backslash \bigcup_{g \in G} H^{g}\right) \cup\{e\}$ is called the Frobenius kernel of G with respect to H.

The discrete symmetry group T_{7}
T_{7} as a Frobenius group

Frobenius groups: Theorems

Theorem

Theorem of Frobenius
$K \leq G$.

Theorem

$G \cong K \rtimes H$ as a semidirect product.

T_{7} as a Frobenius group

$H=\left\{e, b, b^{2}\right\}$ is a Frobenius complement of T_{7}.
The Frobenius kernel of T_{7} with respect to H is

$$
\begin{equation*}
K=\left(T_{7} \backslash \bigcup_{g \in T_{7}} H^{g}\right) \cup\{e\}=\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\right\} . \tag{5}
\end{equation*}
$$

Every element $g \in T_{7}$ can be written as $k h, T_{7} \cong K \rtimes H$.

Transformation properties of the particles

Model suggested by Cao, Khalil, Ma, Okada (2010)

field	$L_{L, i}$	$\bar{\ell}_{R, i}$	$\nu_{R, i}$	Φ_{i}	$\tilde{\Phi}_{i}$	χ_{i}	η_{i}
$S U(2)_{L}$	$\underline{2}$	$\underline{1}$	$\underline{1}$	$\underline{2}$	$\underline{2}$	$\underline{1}$	$\underline{1}$
Y	-1	+2	0	+1	-1	0	0
T_{7}	$\underline{3}$	$\underline{1}_{i}$	$\underline{3}$	$\underline{3}$	$\underline{3}^{*}$	$\underline{3}$	$\underline{3}^{*}$
Y_{B-L}	-1	1	-1	0	0	-2	-2

$$
\Phi_{i}=\binom{\Phi_{i}^{+}}{\Phi_{i}^{0}}
$$

Goal: Mass matrices

Yukawa terms for the charged leptons

Yukawa terms $\bar{L}_{L} \Phi \ell_{R}$ and $\bar{\ell}_{R} \Phi^{\dagger} L_{L}$
\Rightarrow mass terms $\bar{\ell}_{L} M_{\ell} \ell_{R}$ and $\bar{\ell}_{R} M_{\ell}^{\dagger} \ell_{L}$

Tensor products:

$$
\begin{align*}
& f_{1}\left(\bar{L}_{L, 1} \Phi_{1}+\bar{L}_{L, 2} \Phi_{2}+\bar{L}_{L, 3} \Phi_{3}\right) \ell_{R, 1}+ \\
& f_{2}\left(\bar{L}_{L, 1} \Phi_{1}+\omega^{2} \bar{L}_{L, 2} \Phi_{2}+\omega \bar{L}_{L, 3} \Phi_{3}\right) \ell_{R, 2}+ \tag{6}\\
& f_{3}\left(\bar{L}_{L, 1} \Phi_{1}+\omega \bar{L}_{L, 2} \Phi_{2}+\omega^{2} \bar{L}_{L, 3} \Phi_{3}\right) \ell_{R, 3}
\end{align*}
$$

Invariance under T_{7}

Sums inside brackets transform as 1-dimensional representations:

$$
\begin{array}{r}
\left(\bar{L}_{L, 1} \Phi_{1}+\bar{L}_{L, 2} \Phi_{2}+\bar{L}_{L, 3} \Phi_{3}\right) \sim \underline{1}_{1}, \\
\left(\bar{L}_{L, 1} \Phi_{1}+\omega^{2} \bar{L}_{L, 2} \Phi_{2}+\omega \bar{L}_{L, 3} \Phi_{3}\right) \sim \underline{1}_{2}, \tag{7}\\
\left(\bar{L}_{L, 1} \Phi_{1}+\omega \bar{L}_{L, 2} \Phi_{2}+\omega^{2} \bar{L}_{L, 3} \Phi_{3}\right) \sim \underline{1}_{3} .
\end{array}
$$

$\ell_{R, i}$ outside brackets: $\ell_{R, 1} \sim \underline{1}_{1}, \ell_{R, 2} \sim \underline{1}_{3}, \ell_{R, 3} \sim \underline{1}_{2}$ \Rightarrow invariance under the group T_{7}

Charged lepton mass matrix

Mass matrix for the charged leptons

Read off charged lepton mass matrix:

$$
\begin{array}{r}
M_{\ell}=\left(\begin{array}{ccc}
f_{1} v_{1} & f_{2} v_{1} & f_{3} v_{1} \\
f_{1} v_{2} & f_{2} \omega^{2} v_{2} & f_{3} \omega v_{2} \\
f_{1} v_{3} & f_{2} \omega v_{3} & f_{3} \omega^{2} v_{3}
\end{array}\right) \tag{8}\\
v_{i} \text { are VEV of } \Phi_{i}^{0}
\end{array}
$$

Hermitian conjugate:

$$
M_{\ell}^{\dagger}=\left(\begin{array}{ccc}
f_{1}^{*} v_{1}^{*} & f_{1}^{*} v_{2}^{*} & f_{1}^{*} v_{3}^{*} \tag{9}\\
f_{2}^{*} v_{1}^{*} & f_{2}^{*} \omega v_{2}^{*} & f_{2}^{*} \omega^{2} v_{3}^{*} \\
f_{3}^{*} v_{1}^{*} & f_{3}^{*} \omega^{2} v_{2}^{*} & f_{3}^{*} \omega v_{3}^{*}
\end{array}\right)
$$

Yukawa terms for the neutrinos

Goal: Find seesaw mass matrix

$$
\begin{equation*}
M_{\text {light }}=-M_{D}^{T}\left(M_{h}^{*}\right)^{-1} M_{D} \tag{10}
\end{equation*}
$$

Yukawa terms $-\bar{\nu}_{R} \tilde{\Phi}^{\dagger} L_{L}$ and $-\bar{L}_{L} \tilde{\Phi} \nu_{R}$
\Rightarrow Dirac mass terms $\bar{\nu}_{R} M_{D} \nu_{L}$ and $\bar{\nu}_{L} M_{D}^{\dagger} \nu_{R}$

Symmetry \rightarrow all coupling constants need to be equal, $f_{D, 1}=f_{D, 2}=f_{D, 3}=: f_{D}$

Dirac mass matrix for the neutrinos

Dirac neutrino mass matrix:

$$
M_{D}=f_{D}^{*}\left(\begin{array}{ccc}
0 & 0 & v_{3} \tag{11}\\
v_{1} & 0 & 0 \\
0 & v_{2} & 0
\end{array}\right)
$$

Hermitian conjugate:

$$
M_{D}^{\dagger}=f_{D}\left(\begin{array}{ccc}
0 & v_{1}^{*} & 0 \tag{12}\\
0 & 0 & v_{2}^{*} \\
v_{3}^{*} & 0 & 0
\end{array}\right)
$$

Additional Yukawa terms for the neutrinos

Two more invariant Yukawa terms:

$$
\begin{equation*}
\chi^{\dagger} \nu_{R}^{T} C^{-1} \nu_{R} \text { and } \eta^{\dagger} \nu_{R}^{T} C^{-1} \nu_{R} \tag{13}
\end{equation*}
$$

and their hermitian conjugates

$$
\begin{equation*}
\nu_{R}^{\dagger} C \nu_{R}^{*} \chi \text { and } \nu_{R}^{\dagger} C \nu_{R}^{*} \eta \tag{14}
\end{equation*}
$$

\Rightarrow heavy Majorana mass matrix $M_{h}=M_{\chi}+M_{\eta}$
$B-L$ quantum number crucial here: guarantees that χ and η are independent fields

Majorana mass matrix for the neutrinos, part 1

$$
M_{\chi}=h\left(\begin{array}{ccc}
u_{2}^{*} & 0 & 0 \tag{15}\\
0 & u_{3}^{*} & 0 \\
0 & 0 & u_{1}^{*}
\end{array}\right)
$$

$u_{i} \ldots$ VEV of $\chi_{i}, h \ldots$ coupling constant of $\nu_{R, i}$ (all equal!)

Hermitian conjugate:

$$
M_{\chi}^{\dagger}=h^{*}\left(\begin{array}{ccc}
u_{2} & 0 & 0 \tag{16}\\
0 & u_{3} & 0 \\
0 & 0 & u_{1}
\end{array}\right)
$$

Majorana mass matrix for the neutrinos, part 2

$$
M_{\eta}=h^{\prime}\left(\begin{array}{ccc}
0 & u_{3}^{\prime *} & u_{2}^{\prime *} \tag{17}\\
u_{3}^{\prime *} & 0 & u_{1}^{\prime *} \\
u_{2}^{\prime *} & u_{1}^{\prime *} & 0
\end{array}\right)
$$

Hermitian conjugate:

$$
M_{\eta}^{\dagger}=h^{\prime *}\left(\begin{array}{ccc}
0 & u^{\prime}{ }_{3} & u^{\prime}{ }_{2} \tag{18}\\
u^{\prime}{ }_{3} & 0 & u_{1}^{\prime} \\
u^{\prime}{ }_{2} & u^{\prime} & 0
\end{array}\right)
$$

$u^{\prime}{ }_{i} \ldots$ VEV of η_{i}
Assumption: $u_{i} \sim u_{i}^{\prime}$.
Note: M_{χ} and M_{η} are symmetric

Heavy Majorana mass matrix for the neutrinos

$$
M_{h}=M_{\chi}+M_{\eta}=h\left(\begin{array}{ccc}
u_{2}^{*} & 0 & 0 \tag{19}\\
0 & u_{3}^{*} & 0 \\
0 & 0 & u_{1}^{*}
\end{array}\right)+h^{\prime}\left(\begin{array}{ccc}
0 & u^{\prime *} & u_{2}^{\prime *} \\
u_{3}^{\prime *} & 0 & u_{1}^{\prime *} \\
u_{2}^{\prime *} & u_{1}^{\prime *} & 0
\end{array}\right)
$$

Hermitian conjugate:

$$
M_{h}^{\dagger}=M_{\chi}^{\dagger}+M_{\eta}^{\dagger}=h^{*}\left(\begin{array}{ccc}
u_{2} & 0 & 0 \tag{20}\\
0 & u_{3} & 0 \\
0 & 0 & u_{1}
\end{array}\right)+h^{\prime *}\left(\begin{array}{ccc}
0 & u^{\prime} 3_{3} & u^{\prime}{ }_{2} \\
u_{3}^{\prime} & 0 & u_{1}^{\prime} \\
u_{2}^{\prime} & u^{\prime} 1 & 0
\end{array}\right)
$$

Assumptions on the seesaw mass matrix

$$
\begin{equation*}
M_{\text {light }}=-M_{D}^{T}\left(M_{h}^{*}\right)^{-1} M_{D} \tag{21}
\end{equation*}
$$

- $u:=u_{1}=u_{2}=u_{3} \neq 0 \rightarrow \chi$ breaks in the $(1,1,1)$ direction
- $u_{1}^{\prime}=u_{2}^{\prime}=0$ but $u_{3}^{\prime} \neq 0 \rightarrow \eta$ breaks in the $(0,0,1)$ direction
- $v_{1}=v_{2}=v_{3}=: v$
$\Rightarrow Z_{3}-Z_{2}$ misalignment

The seesaw mass matrix

Simplifying the seesaw mass matrix

Define $A:=h^{*} u$ and $B:=h^{\prime *} u_{3}^{\prime}$

$$
M_{h}=\left(\begin{array}{ccc}
h^{*} u & h^{\prime *} u_{3}^{\prime} & 0 \tag{22}\\
h^{\prime *} u_{3}^{\prime} & h^{*} u & 0 \\
0 & 0 & h^{*} u
\end{array}\right)=\left(\begin{array}{ccc}
A & B & 0 \\
B & A & 0 \\
0 & 0 & A
\end{array}\right)
$$

Inverse:

$$
M_{h}^{-1}=\frac{1}{A^{3}-A B^{2}}\left(\begin{array}{ccc}
A^{2} & -A B & 0 \tag{23}\\
-A B & A^{2} & 0 \\
0 & 0 & A^{2}-B^{2}
\end{array}\right)
$$

Light neutrino mass matrix

$$
M_{\text {light }}=-M_{D}^{T} M_{h}^{-1} M_{D}=-\frac{\left(f_{D}^{*}\right)^{2} v^{2}}{A^{3}-A B^{2}}\left(\begin{array}{ccc}
A^{2} & 0 & -A B \\
0 & A^{2}-B^{2} & 0 \\
-A B & 0 & A^{2}
\end{array}\right)
$$

Assumption on scales already made in the context of $B-L$ gauging:

$$
\begin{aligned}
& M_{D} \sim v \text { and } M_{h} \sim u \sim u_{3}^{\prime} \\
& v \ll u \rightarrow M_{D} \ll M_{h}
\end{aligned}
$$

The seesaw mass matrix in terms of three independent parameters

Define $C:=f_{D}^{* 2} v^{2}, p_{1}^{2}:=\frac{C A^{2}}{A^{3}-A B^{2}}$ and $p_{2}^{2}:=\frac{C B^{2}}{A^{3}-A B^{2}}$, absorb overall phase: $p_{1}=e^{i \alpha_{1}}\left|p_{1}\right|$

$$
M_{\text {light }}=e^{2 i \alpha_{1}}\left(\begin{array}{ccc}
-\left|p_{1}\right|^{2} & 0 & e^{-i \alpha_{1}}\left|p_{1}\right| p_{2} \tag{25}\\
0 & -\left|p_{1}\right|^{2}+e^{-2 i \alpha_{1}} p_{2}^{2} & 0 \\
e^{-i \alpha_{1}}\left|p_{1}\right| p_{2} & 0 & -\left|p_{1}\right|^{2}
\end{array}\right)
$$

Three real parameters $\left|p_{1}\right|, \Im\left(e^{-i \alpha_{1}} p_{2}\right)$ and $\Re\left(e^{-i \alpha_{1}} p_{2}\right)$

PMNS neutrino mixing matrix

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix: $V=U_{L}^{\ell \dagger} U_{\nu}$

Diagonalize mass matrices:

$$
\begin{equation*}
U_{L}^{\ell \dagger} M_{\ell} U_{R}^{\ell}=\hat{M}_{\ell} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{\nu}^{T} M_{\text {light }} U_{\nu}=\hat{M}_{\text {light }} \tag{27}
\end{equation*}
$$

Bidiagonalization of the charged lepton mass matrix

U_{L}^{ℓ} : bidiagonalize the charged lepton mass matrix:

$$
M_{\ell}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{28}\\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right) \sqrt{3} v\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & 0 \\
0 & 0 & f_{3}
\end{array}\right)
$$

so

$$
U_{L}^{\ell}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{29}\\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right)
$$

and

$$
U_{L}^{\ell \dagger}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \tag{30}\\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

Diagonalization of the neutrino mass matrix

Neutrino sector:

$$
\tilde{U}_{\nu}=\left(\begin{array}{ccc}
r & 0 & -r \tag{31}\\
0 & 1 & 0 \\
r & 0 & r
\end{array}\right)
$$

where $r:=\frac{1}{\sqrt{2}}$
Diagonalizes $M_{\text {light }}$:

$$
\begin{align*}
& \hat{M}_{\text {light }}=\tilde{U}_{\nu}^{T} M_{\text {light }} \tilde{U}_{\nu}= \\
& -\frac{\left(f_{D}^{*}\right)^{2} v^{2}}{A^{3}-A B^{2}}\left(\begin{array}{ccc}
A^{2}-A B & 0 & 0 \\
0 & A^{2}-B^{2} & 0 \\
0 & 0 & A^{2}+A B
\end{array}\right) \tag{32}\\
& U_{\nu}=\tilde{U}_{\nu} e^{i \hat{\beta}} \tag{33}
\end{align*}
$$

The tribimaximal neutrino mixing matrix

$$
\begin{align*}
& V=U_{L}^{\ell \dagger} U_{\nu}= \tag{34}\\
& \frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\sqrt{2} & 1 & 0 \\
\frac{1+\omega^{2}}{\sqrt{2}} & \omega & \frac{-1+\omega^{2}}{\sqrt{2}} \\
\frac{1+\omega}{\sqrt{2}} & \omega^{2} & \frac{-1+\omega}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
e^{i \beta_{1}} & 0 & 0 \\
0 & e^{i \beta_{2}} & 0 \\
0 & 0 & e^{i \beta_{3}}
\end{array}\right)= \tag{35}\\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & -\omega^{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
e^{i \beta_{1}} & 0 & 0 \\
0 & e^{i \beta_{2}} & 0 \\
0 & 0 & e^{i \beta_{3}}
\end{array}\right) \tag{36}
\end{align*}
$$

The tribimaximal neutrino mixing matrix

Phases on both sides irrelevant for mixing \Rightarrow tribimaximal mixing!
(Harrison, Perkins, Scott $(1999,2002)$)
Define

$$
\tilde{V}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \tag{37}\\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

the mixing matrix without the phases.

The tribimaximal neutrino mixing matrix

General form:

$$
\tilde{V}=\left(\begin{array}{ccc}
c_{13} c_{12} & c_{13} s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-s_{23} s_{13} c_{12} e^{i \delta} & c_{23} c_{12}-s_{23} s_{13} s_{12} e^{i \delta} & s_{23} c_{13} \\
s_{23} s_{12}-c_{23} s_{13} c_{12} e^{i \delta} & -s_{23} c_{12}-c_{23} s_{13} s_{12} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

$s_{i j}=\sin \left(\theta_{i j}\right), c_{i j}=\cos \left(\theta_{i j}\right)$
Only parameters: the three mixing angles $\theta_{i j}$ and one phase δ

Summary of best fits from experimental data

parameter	$\pm 1 \sigma$	$\pm 2 \sigma$	$\pm 3 \sigma$
$\sin ^{2}\left(\theta_{12}\right)$	$0.296-0.329$	$0.280-0.347$	$0.265-0.364$
$\sin ^{2}\left(\theta_{23}\right)$	$0.39-0.50$	$0.36-0.60$	$0.34-0.64$
$\sin ^{2}\left(\theta_{13}\right)$	$0.018-0.032$	$0.012-0.041$	$0.005-0.050$

Data from Fogli, Lisi, Marrone, Palazzo, Rotunno (2011)

Tribimaximal still possible, but not realized exactly (radiative corrections)

New decays of $\tau^{ \pm}$implied by the Z_{3} symmetry

$$
\begin{equation*}
\tau^{-} \rightarrow \mu^{-} \mu^{-} e^{+} \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
& \tau^{-} \rightarrow e^{-} e^{-} \mu^{+} \tag{40}\\
& \tau^{+} \rightarrow \mu^{+} \mu^{+} e^{-} \tag{41}
\end{align*}
$$

and

$$
\begin{equation*}
\tau^{+} \rightarrow e^{+} e^{+} \mu^{-} \tag{42}
\end{equation*}
$$

Diagrams of the new τ^{-}decays

1.a First τ^{-}decay via Ψ_{1}^{0} 1.b Second τ^{-}decay via Ψ_{1}^{0}

1.c First τ^{-}decay via Ψ_{2}^{0} 1.d Second τ^{-}decay via Ψ_{2}^{0}

Experimental mass limits

Experimental upper limit:

$$
\begin{gather*}
B\left(\tau^{+} \rightarrow \mu^{+} \mu^{+} e^{-}\right) \leq 2.3 \times 10^{-8} \tag{43}\\
B\left(\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}\right)=0.1736 \tag{44}
\end{gather*}
$$

$$
\begin{equation*}
B\left(\tau^{+} \rightarrow \mu^{+} \mu^{+} e^{-}\right)=\frac{9 m_{\tau}^{2} m_{\mu}^{2}\left(m_{1}^{2}+m_{2}^{2}\right)^{2}}{m_{1}^{4} m_{2}^{4}} B\left(\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}\right) \tag{45}
\end{equation*}
$$

Lower limit:

$$
\begin{equation*}
\frac{m_{1}^{2} m_{2}^{2}}{\sqrt{m_{1}^{2}+m_{2}^{2}}} \geq 39 \mathrm{GeV} \tag{46}
\end{equation*}
$$

Principles of an experimental test of this theory

Principle: observation of decay products of $B-L$ gauge boson Z^{\prime}

$$
\begin{equation*}
Z^{\prime} \rightarrow \Psi_{1,2}^{0} \bar{\Psi}_{1,2}^{0} \tag{47}
\end{equation*}
$$

Final states:
(1) $\tau^{+} \tau^{-} \mu^{-} \mu^{+}$
(2) $\tau^{+} \tau^{+} \mu^{-} e^{-}$
(3) $\tau^{-} \tau^{-} \mu^{+} e^{+}$
(9) $\tau^{-} \tau^{+} e^{+} e^{-}$

The scalar potential of Φ

Only Φ_{i}-terms (possible if supersymmetrised)
Note: supersymmetrisation not consistent with Yukawa terms $\left(\bar{L}_{L} \Phi \ell_{R}\right.$ and $\left.-\bar{\nu}_{R} \tilde{\Phi}^{\dagger} L_{L}\right)$
\Rightarrow consider all quadratic and quartic terms

Quadratic terms:

$$
\begin{equation*}
\sum_{i=1}^{3} \Phi_{i}^{\dagger} \Phi_{i} \tag{48}
\end{equation*}
$$

Quartic terms of the scalar potential of ϕ

Tensor product

$$
\left(\underline{3} \otimes \underline{3}^{*}\right) \otimes\left(\underline{3} \otimes \underline{3}^{*}\right)=\left(\underline{1}_{1} \oplus \underline{1}_{2} \oplus \underline{1}_{3} \oplus \underline{3} \oplus \underline{3}^{*}\right) \otimes\left(\underline{1}_{1} \oplus \underline{1}_{2} \oplus \underline{1}_{3} \oplus \underline{3} \oplus \underline{3}^{*}\right)
$$

Singlets:
(1) $\underline{1}_{1} \otimes \underline{1}_{1}$
(2) $\underline{1}_{2} \otimes \underline{1}_{3}=\underline{1}_{3} \otimes \underline{1}_{2}$
(3) $\underline{3} \otimes \underline{3}^{*}=\underline{3}^{*} \otimes \underline{3}$

Quartic terms of the scalar potential of Φ

$\underline{1}_{1} \otimes \underline{1}_{1}$ corresponds to

$$
\begin{equation*}
\left(\sum_{i=1}^{3} \Phi_{i}^{\dagger} \Phi_{i}\right)^{2} \tag{50}
\end{equation*}
$$

\rightarrow sum of terms of the form

$$
\begin{equation*}
\Phi_{i}^{\dagger} \Phi_{i} \Phi_{j}^{\dagger} \Phi_{j} \tag{51}
\end{equation*}
$$

Quartic terms of the scalar potential of ϕ

$\underline{1}_{2} \otimes \underline{1}_{3}$ corresponds to

$$
\begin{equation*}
\left(\Phi_{1}^{\dagger} \Phi_{1}+\omega \Phi_{2}^{\dagger} \Phi_{2}+\omega^{2} \Phi_{3}^{\dagger} \Phi_{3}\right) \cdot\left(\Phi_{1}^{\dagger} \Phi_{1}+\omega^{2} \Phi_{2}^{\dagger} \Phi_{2}+\omega \Phi_{3}^{\dagger} \Phi_{3}\right) \tag{52}
\end{equation*}
$$

\rightarrow sum of terms of the form

$$
\begin{equation*}
\Phi_{i}^{\dagger} \Phi_{i} \Phi_{j}^{\dagger} \phi_{j} \tag{53}
\end{equation*}
$$

terms with $i=j$ have +1 as factor, $i \neq j$ have factor $-\frac{1}{2}$

The complete scalar potential of ϕ

$\underline{3} \otimes \underline{3}^{*}$ corresponds to

$$
\begin{equation*}
\Phi_{i}^{\dagger} \Phi_{j} \Phi_{j}^{\dagger} \Phi_{i} \tag{54}
\end{equation*}
$$

with $i \neq j$
Potential:

$$
\begin{align*}
V_{\Phi} & =\mu^{2} \sum_{i=1}^{3} \Phi_{i}^{\dagger} \Phi_{i} \\
& +\left(\lambda_{1}+\lambda_{2}\right) \sum_{i=1}^{3}\left(\Phi_{i}^{\dagger} \Phi_{i}\right)^{2} \tag{55}\\
& +\left(\lambda_{1}-\frac{\lambda_{2}}{2}\right) \sum_{i, j=1, i \neq j}^{3} \Phi_{i}^{\dagger} \Phi_{i} \Phi_{j}^{\dagger} \Phi_{j} \\
& +\lambda_{3} \sum_{i, j=1, i \neq j}^{3} \Phi_{i}^{\dagger} \Phi_{j} \Phi_{j}^{\dagger} \Phi_{i}
\end{align*}
$$

Minimum of the scalar potential of ϕ

VEV: $v_{1}=v_{2}=v_{3}=v$
Minimum of potential:

$$
\begin{equation*}
V_{\Phi, \min }=3 \mu^{2} v^{2}+3\left(3 \lambda_{1}+2 \lambda_{3}\right) v^{4} \tag{56}
\end{equation*}
$$

Minimization condition on v :

$$
\begin{equation*}
v=\sqrt{\frac{-\mu^{2}}{6 \lambda_{1}+4 \lambda_{3}}} \tag{57}
\end{equation*}
$$

Constraints on the parameters

- μ^{2} real and negative (condition for spontaneous symmetry breaking)
- λ_{1}, λ_{2} and λ_{3} real (potential hermitian, each term individually hermitian)
- lower bound on each λ_{i} (physical requirement that potential is bounded from below)
- lower bounds \rightarrow expression under the square in (57) positive
- $\rightarrow v$ real and positive

General formalism to find mass matrices for the charged and the neutral scalars

General potential (Grimus, Lavoura (2002)):

$$
\begin{equation*}
V=\sum_{i, j=1}^{n_{H}} \mu_{i j}^{2} \phi_{i}^{\dagger} \phi_{j}+\sum_{i, j, k, l=1}^{n_{H}} \lambda_{i j k l}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{l}\right) \tag{58}
\end{equation*}
$$

In our case: $n_{H}=3$, nonvanishing coefficients:

- $\mu_{i i}^{2}=\mu^{2}$
- $\lambda_{\text {iiii }}=\left(\lambda_{1}+\lambda_{2}\right)$
- $\lambda_{i i k k}=\left(\lambda_{1}-\frac{\lambda_{2}}{2}\right)$
- $\lambda_{i j j i}=\lambda_{3}$

Mass matrix of the charged scalars $\phi_{i}^{ \pm}$

$$
\begin{equation*}
M_{+i j}^{2}=\mu_{i j}^{2}+\Lambda_{i j} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{i j}=\sum_{k, l=1}^{n_{H}} \lambda_{i j k l} v_{k}^{*} v_{l} \tag{60}
\end{equation*}
$$

Here:

$$
M_{+i j}^{2}=\frac{\mu^{2} \lambda_{3}}{3 \lambda_{1}+2 \lambda_{3}}\left(\begin{array}{ccc}
2 & -1 & -1 \tag{61}\\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

Mass matrix of the neutral scalars $\phi_{i}^{ \pm}$

$$
M_{0}^{2}=\left(\begin{array}{cc}
A & C \tag{62}\\
C^{T} & B
\end{array}\right),
$$

where

$$
\begin{align*}
& A_{i j}=\Re\left(\mu_{i j}^{2}+\Lambda_{i j}+K_{i j}^{\prime}\right)+\Re\left(K_{i j}\right), \tag{63}\\
& B_{i j}=\Re\left(\mu_{i j}^{2}+\Lambda_{i j}+K_{i j}^{\prime}\right)-\Re\left(K_{i j}\right) \tag{64}\\
& C_{i j}=-\Im\left(\mu_{i j}^{2}+\Lambda_{i j}+K_{i j}^{\prime}\right)-\Im\left(K_{i j}\right) \tag{65}
\end{align*}
$$

and

$$
\begin{align*}
K_{i k} & =\sum_{j, l=1}^{n_{H}} \lambda_{i j k l} v_{j} v_{l} \tag{66}\\
K_{i l}^{\prime} & =\sum_{j, k=1}^{n_{H}} \lambda_{i j k l} v_{j} v_{k}^{*} \tag{67}
\end{align*}
$$

Mass matrix of the neutral scalars $\phi_{i}^{ \pm}$for our model

Here:
$C=0$ as λ_{i}, μ^{2} and v are real
$A=\frac{\mu^{2}}{3 \lambda_{1}+2 \lambda_{3}}\left(\begin{array}{ccc}-2 \lambda_{1}-2 \lambda_{2} & -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} & -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} \\ -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} & -2 \lambda_{1}-2 \lambda_{2} & -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} \\ -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} & -2 \lambda_{1}+\lambda_{2}-4 \lambda_{3} & -2 \lambda_{1}-2 \lambda_{2}\end{array}\right)$
$B=0$

Eigenvalue equations

$$
\begin{equation*}
M_{+}^{2} a=m_{a}^{2} a \tag{68}
\end{equation*}
$$

and

$$
M_{0}^{2}\binom{\Re(b)}{\Im(b)}=\left(\begin{array}{cc}
A & C \tag{69}\\
C^{T} & B
\end{array}\right)\binom{\Re(b)}{\Im(b)}=m_{b}^{2}\binom{\Re(b)}{\Im(b)}
$$

Rewrite (69) as

$$
\begin{equation*}
\left(\mu_{i j}^{2}+\Lambda_{i j}+K_{i j}^{\prime}\right) b_{j}+K_{i j} b_{j}^{*}=m_{b}^{2} b_{i} \tag{70}
\end{equation*}
$$

The existence of massless Goldstone bosons in this model

Potential (55) is invariant under $O(4)$:

$$
\begin{equation*}
\Phi_{i}=\frac{1}{\sqrt{2}}\binom{\Re\left(\Phi_{i}^{+}\right)+i \Im\left(\Phi_{i}^{+}\right)}{\Re\left(\Phi_{i}^{0}\right)+i \Im\left(\Phi_{i}^{0}\right)} \tag{71}
\end{equation*}
$$

four real parameters

$$
\begin{equation*}
\Phi_{i}^{\dagger} \phi_{i}=\frac{1}{2}\left(\Re\left(\Phi_{i}^{+}\right)^{2}+\Im\left(\Phi_{i}^{+}\right)^{2}+\Re\left(\Phi_{i}^{0}\right)^{2}+\Im\left(\phi_{i}^{0}\right)^{2}\right) \tag{72}
\end{equation*}
$$

Invariant $\Rightarrow S O(4)$ sufficient, six parameters

The existence of massless Goldstone bosons in this model

Additionally: Invariance under all phase transformations:

$$
\begin{equation*}
\Phi_{i} \rightarrow e^{i \alpha_{i}} \Phi_{i} \tag{73}
\end{equation*}
$$

\Rightarrow Invariance under three independent $U(1)$ transformations
One transformation is weak hypercharge, already contained in SO(4) symmetry
Independent parameters (group generators): 8
Three symmetry generators spontaneously broken \Rightarrow Goldstone theorem \Rightarrow number of massless Goldstone bosons: $8-3=5$

Schematic visualization of a simplified potential

Simplifications:

- neutral part of the potential only
- Φ_{3}^{0} set to a fixed value (real but otherwise arbitrary)
- imaginary parts of Φ_{1}^{0} and Φ_{2}^{0} set to zero
- coefficients μ^{2} and λ_{i} set to arbitrary real values

Pseudo Goldstone bosons

Goldstone bosons corresponding to longitudinal modes of the W and Z vector bosons:

$$
\begin{equation*}
a_{w}=\frac{1}{\sqrt{3} v}(v, v, v)^{T} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{Z}=\frac{i}{\sqrt{3} v}(v, v, v)^{T} \tag{75}
\end{equation*}
$$

Masses are zero!

Pseudo Goldstone bosons

General expressions for physical charged and neutral scalars:

$$
\begin{equation*}
S_{a}^{+}=\sum_{i=1}^{n_{H}} a_{i}^{*} \varphi_{i}^{+} \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{b}^{0}=\sqrt{2} \sum_{i=1}^{n_{H}} \Re\left(b_{i}^{*}\left(\varphi_{i}^{0}\right)^{\prime}\right), \tag{77}
\end{equation*}
$$

where $\left(\varphi_{i}^{0}\right)^{\prime}=\left(\varphi_{i}^{0}\right)-v$ such that VEV of $\left(\varphi_{i}^{0}\right)^{\prime}$ is zero.

Pseudo Goldstone bosons

In our case,

$$
\begin{equation*}
S_{a_{W}}^{+}=\frac{1}{\sqrt{3}} \sum_{i=1}^{3} \Phi_{i}^{+} \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{b_{z}}^{0}=\frac{\sqrt{2}}{\sqrt{3}} \sum_{i=1}^{3} \Im\left(\left(\Phi_{i}^{0}\right)^{\prime}\right) \tag{79}
\end{equation*}
$$

Two pseudo Goldstone bosons used to create the masses of the W and Z bosons

Two additional massless Goldstone bosons in this model

M_{+}^{2} : no other Goldstone boson fields exist
M_{0}^{2} :

$$
M_{0}^{2}=\left(\begin{array}{cc}
A & 0 \tag{80}\\
0 & 0
\end{array}\right)
$$

Choose the vectors

$$
\begin{equation*}
b_{1}=\frac{i}{\sqrt{2} v}(-v, v, 0)^{T} \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=\frac{i}{\sqrt{6} v}(v, v,-2 v)^{T} \tag{82}
\end{equation*}
$$

Physical neutral and charged scalars

$$
\begin{equation*}
S_{b_{1}}^{0}=-\Im\left(\left(\Phi_{1}^{0}\right)^{\prime}\right)+\Im\left(\left(\Phi_{2}^{0}\right)^{\prime}\right) \tag{83}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{b_{2}}^{0}=\frac{1}{\sqrt{3}}\left(\Im\left(\left(\Phi_{1}^{0}\right)^{\prime}\right)+\Im\left(\left(\Phi_{2}^{0}\right)^{\prime}\right)-2 \Im\left(\left(\Phi_{3}^{0}\right)^{\prime}\right)\right) \tag{84}
\end{equation*}
$$

Found two additional massless Goldstone bosons!
A is in general non singular, eigenvalues are

$$
\begin{align*}
m_{a_{1}}^{2} & =\left(4 \lambda_{3}-3 \lambda_{2}\right) \frac{\mu^{2}}{3 \lambda_{1}+2 \lambda_{3}} \tag{85}\\
m_{a_{2}}^{2} & =\left(4 \lambda_{3}-3 \lambda_{2}\right) \frac{\mu^{2}}{3 \lambda_{1}+2 \lambda_{3}} \tag{86}\\
m_{a_{3}}^{2} & =-2\left(4 \lambda_{3}+3 \lambda_{1}\right) \frac{\mu^{2}}{3 \lambda_{1}+2 \lambda_{3}} \tag{87}
\end{align*}
$$

Summary of massless Goldstone bosons

Charged sector: one charged complex massless Goldstone boson, remaining two charged complex particles are massive Higgs bosons.

Neutral sector: three massless real Goldstone bosons and three massive real Higgs bosons.
a_{W} and b_{Z} : used to create the masses of the W and the Z bosons b_{1} and b_{2} remain massless particles that exist in this model
\Rightarrow forces with infinite range

The existence of forces with infinite range?

Investigated experimentally: Mostepanenko, Sokolov (1993)

- measurements of the Casimir force
- gravitation experiments of both the Eotvos and the Cavendish type
- several other experiments

Upper limit for λ_{n} is (for $n=1$) 10^{-47} in

$$
\begin{equation*}
\lambda_{n}(2 z)^{2} \frac{1}{r}\left(\frac{r_{0}}{r}\right)^{n-1} \tag{88}
\end{equation*}
$$

($z \ldots$ number of protons in the atom, $r_{0}=1 \mathrm{~F}=10^{-15} \mathrm{~m}, r \ldots$ distance, $\lambda_{n} \ldots$ dimensionless coupling constant)
\Rightarrow existence of the predicted forces can be excluded!

The existence of forces with infinite range?

Relevant coupling constants f_{i} :
v is almost exactly $100 \mathrm{GeV}, f_{i}$ fixed by the value of v and charged lepton masses:

$$
\begin{align*}
& f_{1} \sim 10^{-6} \tag{89}\\
& f_{2} \sim 10^{-4} \tag{90}\\
& f_{3} \sim 10^{-2} \tag{91}
\end{align*}
$$

\Rightarrow coupling constants many orders of magnitude larger than values in the experimentally allowed region! (only tree-level approximation)

T_{7} looks promising at first...

- has a set of irreps that can accommodate the multiplets, i.e. the particle content
- Yukawa terms lead to suitable mass matrix for the charged leptons
- Yukawa terms lead to suitable Dirac and Majorana mass matrices for the neutrinos
- plausible assumptions (some of which are made in the context of $B-L$ gauging) lead to a suitable seesaw neutrino mass matrix

T_{7} looks promising at first...

- both mass hierarchy scenarios can be realized
- most importantly: the tribimaximal neutrino mixing matrix can be explained!
- new decays are predicted
- experimental test is possible by observing the decay of the new $B-L$ gauge boson Z^{\prime}

But then...

- necessary supersymmetrization is in contradiction with the Yukawa terms
- scalar potential of only Φ leads to two massless Goldstone bosons that remain new massless particles
- these massless bosonic particles correspond to forces with infinite range
- such forces are experimentally excluded if the couplings are of the order of magnitude of the couplings in this model

By these arguments, it is excluded that this model describes the physical reality. This T_{7} symmetry model is therefore ruled out as explanation of the symmetry in the lepton sector.

