Precision Flavour Physics as a Probe beyond the Standard Model

Thomas Mannel

Theoretische Physik I

Universität Siegen

▲ □ ► < □ ►</p>

Vienna, Jan. 19th, 2012

Contents

Introduction: Why Study Flavour Physics?

- Why do we believe in TeV Physics?
- What can Flavour tell us?

Theory Tools for Precision Flavour Physics

- Effective Weak Hamiltonian
- Heavy Quark Expansions
- Approximate Flavour Symmetries

Achivements

3

- Semileptonic Decays
- Nonleptonic Decays
- Rare Decays

Why do we believe in TeV Physics? What can Flavour tell us?

ヘロト 人間 とくほとくほとう

3

Why Study Flavour Physics?

T. Mannel, Siegen University Precision Flavour Physics

Why do we believe in TeV Physics? What can Flavour tell us?

- The Standard Model passed all tests up to the 100 GeV Scale:
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

T. Mannel, Siegen University

Precision Flavour Physics

Why do we believe in TeV Physics? What can Flavour tell us?

No significant deviation has been found (yet)!

... only a few "tensions" (= Observables off by 2σ or even less)

LHC will perform a direct test of the TeV Scale

Why do we believe in TeV Physics? What can Flavour tell us?

ヘロン 人間 とくほ とくほ とう

Why do we believe in TeV Physics?

- Theoretical argument:
- Stabilization of the electroweak scale:

Quadratic Dependence on the cut-off

$$\Delta m_{H}^2 = -rac{\lambda_f^2}{8\pi^2}\Lambda_{
m UV}^2$$

• Drives the Higgs mass up to the UV cut off $\Lambda_{\rm UV} \sim \textit{M}_{\rm PL}$

Why do we believe in TeV Physics? What can Flavour tell us?

< □ > < 三 >

• Stabilization at the TeV scale: e.g. through SUSY:

Only logarithmic divergence

$$\Delta m_{H}^{2} = m_{\mathrm{soft}}^{2} \frac{\lambda}{16\pi^{2}} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_{\mathrm{soft}}} \right)$$

*m*_{soft} ~ O(TeV): Splitting between particles and particles

ヘロト ヘアト ヘビト ヘビト

æ

- How strong are these arguments?
- Could there something be wrong with our understanding of
 - electroweak symmetry breaking?
 - scale and conformal invariance? (c.f. Lee Wick Model)
 - ...
- Does flavour tell us something about this? and what?

Why do we believe in TeV Physics? What can Flavour tell us?

・ロト ・同ト ・ヨト ・ヨト

What can Flavour tell us?

- Flavour Physics ↔ No new physics at the TeV scale with a generic flavour structure
- Parametrization of new physics: Higher Dimensional Operators:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}^{(5)} + \frac{1}{\Lambda^2} \mathcal{L}^{(6)} + \cdots \qquad \mathcal{L}^{(n)} = \sum_j C_j O_j^{(n)}$$

- Λ: New Physics scale
- $O_j^{(n)}$: Local Operators of dimension *n*

・ロト ・聞 ト ・ヨト ・ヨト

• Some of the $O_j^{(n)}$ may mediate flavour transitions: e.g.

- $$\begin{split} &O_1^{(6)} = (\bar{s}_L \gamma_\mu d) (\bar{s}_L \gamma^\mu d) & (\text{Kaon Mixing}) \\ &O_2^{(6)} = (\bar{b}_L \gamma_\mu d) (\bar{b}_L \gamma^\mu d) & (B_d \text{ Mixing}) \\ &O_3^{(6)} = (\bar{b}_L \gamma_\mu 2) (\bar{b}_L \gamma^\mu s) & (B_s \text{ Mixing}) \\ &O_4^{(6)} = (\bar{c}_L \gamma_\mu u) (\bar{c}_L \gamma^\mu u) & (D \text{ Mixing}) \end{split}$$
- $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
- $\Lambda \sim 1000$ TeV from D mixing
- $\Lambda \sim 400$ TeV from B_d mixing
- $\Lambda \sim 70$ TeV from B_s mixing

Why do we believe in TeV Physics? What can Flavour tell us?

News from Charm: CP Violation?

• Recent LHCb result on CP violation in D decays :

$$egin{aligned} \Delta A_{
m CP} &= A_{
m CP}(D^0 o K^+ K^-) - A_{
m CP}(D^0 o \pi^+ p i^-) \ &= egin{cases} -(0.82 \pm 0.21 \pm 0.11)\% & {
m LHCb} \ -(0.68 \pm 0.18)\% & {
m world average} \end{aligned}$$

• "Old" or "New" Physics?

T. Mannel, Siegen University

イロト イポト イヨト イヨト

- "New physics" is around the corner??
- Are the flavour data a hint at a new physics scale well above the TeV scale?
- ... there are a few corners where O(1) flavour effects are still possible, c.f. Charm CPV
- Are there lessons from history?

Why do we believe in TeV Physics? What can Flavour tell us?

The Top Quark Story

- First indirect hint to a heavy top quark:
 B B Oscillation of ARGUS (1987)
- The world in 1987 ("PETRA Days"): The top was believed to be at ~ 25 GeV ... based on good theoretical arguments
- ARGUS could not have seen anything with a 25 GeV Top (within SM)

イロト イポト イヨト イヨト

- The consequences:
 - (-) No Toponium
 - (-) No Top quark discovery at LEP and SLC
 - (-) No "New Physcis $\mathcal{O}(30 \text{ GeV})$ " just around the corner
 - (+) CP violation in the *B* sector may become observable
 - (+) GIM is weak for bottom quarks
- This was actually good for Flavour Physics ...
- GIM suppressed decays as a probe for large scales
- From current data: TeV "New Physics" must have a flavour structure close to the one of the SM
- $\bullet \rightarrow$ Concept of "Minimal Flavour Violation" (MFV)

Why do we believe in TeV Physics? What can Flavour tell us?

・ロト ・回ト ・ヨト ・ヨト

Peculiarities of SM Flavour Parametrization

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden:
 e.g electric dipole moments:
 For quarks at least three loops (Shabalin)

イロト イポト イヨト イヨト

- Pattern of mixing and mixing induced CP violation determined by GIM: Tiny effects in the up quark sector
 - $\Delta C = 2$ is very small
 - Mixing with third generation is small: charm physics basically "two family"
 - $\bullet \ \to \mathsf{CP}$ violation in charm should be small in the SM
- Fully consistent with particle physics observations
- ... but inconsistent with matter-antimatter asymmetry

Why do we believe in TeV Physics? What can Flavour tell us?

??? Many Open Questions ???

- Our Understanding of Flavour is unsatisfactory:
 - 22 (out of 27) free Parameters of the SM originate from the Yukawa Sector (including Lepton Mixing)
 - Why is the CKM Matrix hierarchical?
 - Why is CKM so different from the PMNS?
 - Why are the quark masses (except the top mass) so small compared with the electroweak VEV?
 - Why do we have three families?
- Why is CP Violation in Flavour-diagonal Processes not observed? (e.g. z.B. electric dipolmoments of electron and neutron)
- Where is the CP violation needed to explain the matter-antimatter asymmetry of the Universe?

Introduction: Why Study Flavour Physics? Effective Weak Hamiltonian Theory Tools for Precision Flavour Physics Achivements Approximate Flavour Symmetries

Theory Tools for Precision Flavour Physics

T. Mannel, Siegen University Precision Flavour Physics

イロト イポト イヨト イヨト

ъ

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

Tools I: Effective Weak Hamiltonian

Integrate out the weak bosons and the top:

$$\begin{split} \mathcal{H}_{eff} &= \frac{4G_F}{\sqrt{2}} \lambda_{CKM} \sum_k \hat{C}_k(\mu) \mathcal{O}_k(\mu) \\ \mathcal{O}_1 &= \left(\bar{c}_{L,i\gamma\mu} s_{L,j} \right) \left(\bar{d}_{L,j\gamma\mu} u_{L,i} \right) , \quad \mathcal{O}_2 = \left(\bar{c}_{L,i\gamma\mu} s_{L,i} \right) \left(\bar{d}_{L,j\gamma\mu} u_{L,j} \right) , \\ \mathcal{O}_3 &= \left(\bar{s}_{L,i\gamma\mu} b_{L,i} \right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{L,j\gamma^{\mu}} q_{L,j} \right) , \quad \mathcal{O}_4 = \left(\bar{s}_{L,i\gamma\mu} b_{L,j} \right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{L,j\gamma^{\mu}} q_{L,i} \right) , \\ \mathcal{O}_5 &= \left(\bar{s}_{L,i\gamma\mu} b_{L,i} \right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{R,j\gamma^{\mu}} q_{R,j} \right) , \quad \mathcal{O}_6 = \left(\bar{s}_{L,i\gamma\mu} b_{L,j} \right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{R,j\gamma^{\mu}} q_{R,i} \right) . \\ \mathcal{O}_7 &= \frac{e}{16\pi^2} m_b (\bar{s}_{L,\alpha} \sigma_{\mu\nu} b_{R,\alpha}) F^{\mu\nu} , \quad \mathcal{O}_8 = \frac{g}{16\pi^2} m_b (\bar{s}_{L,\alpha} T^a_{\alpha\beta} \sigma_{\mu\nu} b_{R,\alpha}) G^{a\mu\nu} , \\ \mathcal{O}_9 &= \frac{1}{2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell}\gamma^{\mu} \ell) , \quad \mathcal{O}_{10} = \frac{1}{2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell) \end{split}$$

Coefficients in the SM are known to NLO!

< 🗇 🕨 🔸

Tools II: Heavy Quark Expansions

- Main development for precision flavour physics of heavy quarks: Heavy Mass Expansion Methods: HQET, HQE, SCET ...
- Remarkable Progress:
 In many cases this has pushed hadronic uncertainties back to the 1/mb corrections
- Systematic calculatons of radiative corrections is possible in these effective theories
- Works well for leptonics and semi-leptonics Exclusive as well as Inclusive
- Still a few problems with non-leptonics ... in particular for exclusive non-leptonics

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

ヘロト ヘ戸ト ヘヨト ヘヨト

Heavy Quark Symmetries: Exclusive Decays

- Kinematic variable for a heavy quark: Four Velovity v
- Differential Rates

$$\begin{split} & \frac{d\Gamma}{d\omega} (B \to D^* \ell \bar{\nu}_{\ell}) \!\!\!= \!\!\! \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2 \\ & \frac{d\Gamma}{d\omega} (B \to D \ell \bar{\nu}_{\ell}) \!\!\!= \!\!\! \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2 \end{split}$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

Heavy Quark Symmetries

- Normalization of the Form Factors is known at vv' = 1: (both initial and final meson at rest)
- Corrections can be calculated / estimated

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A \left[1 + \delta_{1/\mu^2} + \cdots \right] + (\omega - 1)\rho^2 + \mathcal{O}((\omega - 1)^2)$$
$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D}\right) \right]$$

• Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$ • $\eta_A = 0.960 \pm 0.007, \ \eta_V = 1.022 \pm 0.004, \ \delta_{1/\mu^2} = -(8 \pm 4)\%, \ \eta_{\text{QED}} = 1.007$

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

・ 同 ト ・ ヨ ト ・ ヨ ト

$B \rightarrow \overline{D^{(*)}}$ Form Factors from the Lattice

- Unquenched Calculations become available!
- Heavy Mass Limit is not used
- Lattice Calculations of the deviation from unity

$${\cal F}(1) = 0.908 \pm 0.016$$

 ${\cal G}(1)=1.074\pm0.018\pm0.016$

F(1): upd. from CKM2010 , G(1): A. Kronfeld et al. 2005

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

 $B \rightarrow D^{(*)}$ Form Factors: Non-Lattice Results

- $B \rightarrow D^*$ Form Factor:
 - Based on Zero Recoil Sum Rules (Uraltsev, also Ligeti et al.)
 - Including full α_s and up to $1/m_b^5$

$$\mathcal{F}(1)=0.86\pm0.04$$

(Gambino, Uraltsev, M (2010))

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• $B \rightarrow D$ Form Factor:

• Based on the "BPS limit" $\mu_{\pi}^2 = \mu_G^2$

$$\mathcal{G}(1)=1.04\pm0.02$$
 (U

Jraltsev)

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

Heavy Quark Expansion in Inclusive Decays

Heavy Quark Expansion = Operator Product Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4}x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, \langle B(v) | T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \} | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4}x \, e^{-im_{b}v \cdot x} \langle B(v) | T \{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \} | B(v) \rangle \end{split}$$

• Last step: $b(x) = b_v(x) \exp(-im_b vx)$, corresponding to $p_b = m_b v + k$ Expansion in the residual momentum k Introduction: Why Study Flavour Physics? Effective Weak Hamiltonia Theory Tools for Precision Flavour Physics Achivements Approximate Flavour Sym

• Perform an "OPE": *m_b* is much larger than any scale appearing in the matrix element

$$\int d^4x e^{-im_b vx} T\{\widetilde{\mathcal{H}}_{eff}(x)\widetilde{\mathcal{H}}_{eff}^{\dagger}(0)\} = \sum_{n=0}^{\infty} \left(\frac{1}{2m_Q}\right)^n C_{n+3}(\mu) \mathcal{O}_{n+3}(\mu)$$

ightarrow The rate for $B
ightarrow X_c \ell ar
u_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q}\Gamma_1 + \frac{1}{m_Q^2}\Gamma_2 + \frac{1}{m_Q^3}\Gamma_3 + \cdots$$

- The Γ_i are power series in $\alpha_s(m_Q)$: \rightarrow Perturbation theory!
- Works also for differential rates!

•

< 🗇 > < 🖻 > .

- Γ_0 is the decay of a free quark ("Parton Model")
- Γ₁ vanishes due to Heavy Quark Symmetries
- Γ₂ is expressed in terms of two parameters

$$2M_{H}\mu_{\pi}^{2} = -\langle H(v) | \bar{Q}_{v}(iD)^{2}Q_{v} | H(v) \rangle$$

$$2M_{H}\mu_{G}^{2} = \langle H(v) | \bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v} | H(v) \rangle$$

 $\mu_{\pi} \text{:}$ Kinetic energy and $\mu_{\textit{G}} \text{:}$ Chromomagnetic moment

Γ₃ two more parameters

 $2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$ $2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$

 ρ_D : Darwin Term and ρ_{LS} : Spin-Orbit Term

• Γ_4 and Γ_5 have been computed Bigi, Uraltsev, Turczyk, TM, ...

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

ヘロン ヘアン ヘビン ヘビン

Structure of the HQE

• Structure of the expansion (@ tree):

$$d\Gamma = d\Gamma_{0} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{2} d\Gamma_{2} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} d\Gamma_{3} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{4} d\Gamma_{4}$$
$$+ d\Gamma_{5} \left(a_{0} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{5} + a_{2} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{2}\right)$$
$$+ \dots + d\Gamma_{7} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{4}$$

- $d\Gamma_3 \propto \ln(m_c^2/m_b^2)$
- Power counting $m_c^2 \sim \Lambda_{\rm QCD} m_b$

Present state of the $b \rightarrow c$ semileptonic Calculations

- Tree level terms up to and including $1/m_b^5$ known Bigi, Zwicky, Uraltsev, Turczyk, TM, ...
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known Melnikov, Czarnecki, Pak
- Proper mass definitions for *m_b* and *m_c* and precise input values have been given

Hoang, Gambino, Kühn Steinhauser

- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known Becher, Boos, Lunghi, Gambino
- In the pipeline:
 - Complete α_s/m_b^2 , including the μ_G terms
 - More on the "Intrinsic charm" and "weak annihilation" contributions

ヘロン 人間 とくほど くほとう

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

・ 同 ト ・ 三 ト ・

Tools III: Flavour Symmetries and Diagramm Topologies

- Avoid to deal with QCD dynamics: Use symmetries of QCD
- I-spin, V-Spin, U-Spin or full Flavour SU(3)
- Discuss breaking of SU(3)
- Supplement group theory by "diagrammatic considerations" such as "Penguins are smaller than trees"
- Improvement by more data possible

Effective Weak Hamiltonian Heavy Quark Expansions Approximate Flavour Symmetries

イロト 不得 とくほ とくほとう

3

Tools IV: Lattice QCD

... ask the lattice experts ...

Semileptonic Decays Nonleptonic Decays Rare Decays

Semileptonic Decays

• The $1/m_b$ Expansion: an enormous progress

$$V_{\textit{cb,incl}} = (41.54 \pm 0.72) imes 10^{-3}$$
 (HQE)

A theo. uncertainty of 1% in $V_{cb,incl}$ looks plausible!

$$V_{cb,excl} = (38.7 \pm 1.1) imes 10^{-3}$$
 (Lattice, 2008)

 $V_{cb,excl} = (39.7 \pm 1.1) \times 10^{-3}$ (Lattice, 2010)

 $V_{cb,excl} = (41.0 \pm 1.5) \times 10^{-3}$ (ZR Sum Rules. prelim.)

Tension between $V_{cb,incl}$ and $V_{cb,excl}$ is about to disappear!

イロト イポト イヨト イヨト

Semileptonic Decays Nonleptonic Decays Rare Decays

Nonleptonic Decays

- The golden modes $B \rightarrow J/\psi K_s$ and $B_s \rightarrow J/\psi \phi$:
- How golden are these golden modes?
- Look at a decay $B \rightarrow f$, (f: Some CP eigentstate)

$$A(B^0
ightarrow f) = \mathcal{A}\left[1 + r_f \, e^{i\delta_f} \, e^{i\theta_f}
ight]$$

- δ_f : Weak Phase and θ_f : Strong phase
- Penguin-over-Tree ratio:

$$r_f = \lambda_{\text{CKM},f} a_f$$

- *a_f*: Modulus of a ratio of hadronic matrix elements
- $\lambda_{\text{CKM,f}}$: Modulus of a ratio of CKM matrix elements

Introduction: Why Study Flavour Physics? Semileptonic Decays Theory Tools for Precision Flavour Physics Nonleptonic Decays Achivements Rare Decays

• Key Observable: Time-Dependent CP Asymmetries

$$A_{\rm CP}(t;f) \equiv \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to f)}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to f)}$$

General Expression

$$\mathcal{A}_{\rm CP}(t; f) = \frac{\mathcal{A}_{\rm D}^f \cos(\Delta M_q t) + \mathcal{A}_{\rm M}^f \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma}^f \sinh(\Delta \Gamma_q t/2)}$$

• Neglecting the lifetime difference (for the B_d)

$$A_{\rm CP}(t; f) = A^f_{\rm D} \cos(\Delta M_q t) + A^f_{\rm M} \sin(\Delta M_q t)$$

ヘロト 人間 とくほとくほとう

3

Introduction: Why Study Flavour Physics? Semileptonic Decays Theory Tools for Precision Flavour Physics Nonleptonic Decays Achivements Rare Decays

 In terms of the parameters of the amplitude an the mixing phase φ_s

$$\begin{aligned} A_{\rm D}^{f} &= -2r_{f}\sin\theta_{f}\sin\delta_{f} \\ A_{\rm M}^{f} &= \left[\sin\phi_{s} + 2r_{f}\cos\theta_{f}\sin(\phi_{s} + \delta_{f}) + r_{f}^{2}\sin(\phi_{s} + 2\delta_{f})\right] \\ A_{\Delta\Gamma}^{f} &= \dots \text{ not needed here} \end{aligned}$$

• Golden Modes: For $B_d \rightarrow J/\psi K_s$ and $B_s \rightarrow J/\psi \phi$:

$$\lambda_{\rm CKM,f} = \left| \frac{V_{ub} V_{us}^*}{V_{cb} V_{cs}^*} \right| \sim 5\%$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

(Bigi, Sanda)

Semileptonic Decays Nonleptonic Decays Rare Decays

• Thus: In the Standard Model $r_{J/\Psi K} \leq 5\%$:

 $C(J/\psi K_{\mathrm{S,L}}) pprox \mathbf{0}, \quad S(J/\psi K_{\mathrm{S,L}}) pprox -\eta_{\mathrm{S,L}} \sin 2\beta$

- Penguin contamination small, suppressed by λ_{CKM}
- Is it really small ?
- If not, what can be the sensitivity to a new physics contribution?

Semileptonic Decays Nonleptonic Decays Rare Decays

- Use of data: Employ Flavour Symmetries (M. Ciuchini, M. Pierini and L. Silvestrini, Phys. Rev. Lett. 95, 221804 (2005), S. Faller, R. Fleischer, M. Jung and T. M., Phys. Rev. D79:014030,2009.)
- Problem: Flavour SU(3) is severely broken
- Two Strategies:
 - Assume SU(3), allow for generous uncertainties
 - Try to get a hand on SU(3) breaking
- In the case at hand:

Compare $b \rightarrow s\bar{c}c$ with its SU(3) friend $b \rightarrow d\bar{c}c$

• Parametrize ($\phi_d = B - \overline{B}$ Mixing phase)

$$S(J/\Psi K_S) = \sin(\phi_d + \Delta \phi_d)$$

$$\tan \Delta \phi_{d} = \frac{2\lambda_{\rm CKM} a\cos\theta\sin\gamma + \lambda_{\rm CKM}^2 a^2\sin2\gamma}{1 + 2\lambda_{\rm CKM} a\cos\theta\cos\gamma + \lambda_{\rm CKM}^2 a^2\cos2\gamma}$$

Semileptonic Decays Nonleptonic Decays Rare Decays

- Using SU(3) for *a* and θ : $\Delta \phi_d \in [-3.9, -0.8]^{\circ}$
- Allowing 50% *SU*(3) breaking in *a* and $\theta, \theta' \in [90, 270]^{\circ}$ indepedently: $\Delta \phi_d \in [-6.7, 0.0]^{\circ}$
- Hints at negative $\Delta \phi_d$
- Softens the tension with the SM fit
- However, still quite debatable SU(3) assumptions
- This is likely much larger then the perturbative estimate! (Ala Boos, Reuter, TM.)
- Also significantly larger than other estimates (e.g. Gronau Rosner 2008)

イロト イポト イヨト イヨト

Semileptonic Decays Nonleptonic Decays Rare Decays

Rare $(b \rightarrow s)$ Semileptonics

- Theory of B → K^(*)ℓ⁺ℓ⁻ is substantially different from the one for B → Dℓν̄:
- Effective Interaction:

$$egin{aligned} {\mathcal H}_{e\! f\! f} = -rac{4G_{\!F}}{\sqrt{2}} \, V_{t\!b} \, V_{t\!s}^* \! \sum_{i=1}^{10} \! C_i(\mu) O_i(\mu) \, , \end{aligned}$$

- Dominant $b \rightarrow s$ effective operators: $O_{7,9,10}$ $C_7(m_b) \simeq -0.3$, $C_9(m_b) \simeq 4.4$, $C_{10}(m_b) \simeq -4.7$
- ... can be expressed in terms of form factors

$$O_{7,9,10} \propto \langle K^{(*)}({m p}) | ar{f s} ar{m b} | B({m p}+{m q})
angle$$

イロト 不得 とくほ とくほとう

Semileptonic Decays Nonleptonic Decays Rare Decays

Charm Loops

Buchalla, Isidori, Feldmann, Khodjamirin, TM, Pivovarov, Wang

Charm-loop effect: a combination of the (sc)(cb) weak interaction (O_{1,2}) and e.m.interaction (cc)(ll)

new hadronic matrix elements, not a form factor

< 17 ▶

Introduction: Why Study Flavour Physics? Semileptonic Decays Theory Tools for Precision Flavour Physics Achivements Rare Decays

- Light cone expansion of the charm loop
- Expansion parameter $\frac{\Lambda_{QCD}^2}{(4m_p^2 q^2)}$
- Leads to a non-local operator ("shape-function-like" operator)

$$\widetilde{\mathcal{O}}_{\mu}(\boldsymbol{q}) = \int \boldsymbol{d}\omega \ \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}, \boldsymbol{m_{c}}, \omega) \bar{\boldsymbol{s}}_{L} \gamma^{
ho} \left(\delta[\omega - rac{(in_{+}\mathcal{D})}{2}] \widetilde{\boldsymbol{G}}_{lphaeta}\right) \boldsymbol{b}_{L} \; ,$$

• Matrix element can be calculated in a LCSR for $q^2 \leq 0$

・ロト ・四ト ・ヨト ・ヨト

Semileptonic Decays Nonleptonic Decays Rare Decays

Results on $B \to K^{(*)} \ell^+ \ell^-$

ヘロト ヘワト ヘビト ヘビト

э

Problem to compute above the charm threshold? Problem also below charm theshold: $B \to K\phi \to K\ell^+\ell^-$... currently under consideration Khodjamirian, Wang, TM

Semileptonic Decays Nonleptonic Decays Rare Decays

Concluding Remarks

In 1993 we did not know f_B nor the top mass

Enormous Progress over the past twenty years!

... experimentally as well as theoretically

 Introduction: Why Study Flavour Physics?
 Semileptonic Decays

 Theory Tools for Precision Flavour Physics
 Nonleptonic Decays

 Achivements
 Rare Decays

Introduction: Why Study Flavour Physics? Semileptonic Decays Theory Tools for Precision Flavour Physics Achivements Rare Decays

- Yet there are a few tensions in *B* decays
- ... and an interesting hint in charm decays
- ... which may be the first glimpse of the BSM era
- Flavour Physics turns out to be a sensitive indirect probe of "new physics" if
 - we have appropriate theoretical tools at least for some interesting processes
 - we have sufficient data on all types of heavy hadrons

ヘロト ヘワト ヘビト ヘビト

• ... in particular also for charm

The discovery of the Higgs may be a triumph, but not discovering the Higgs will be a revolution

Introduction: Why Study Flavour Physics? Semileptonic Decays Theory Tools for Precision Flavour Physics Achivements Rare Decays

- Yet there are a few tensions in *B* decays
- ... and an interesting hint in charm decays
- ... which may be the first glimpse of the BSM era
- Flavour Physics turns out to be a sensitive indirect probe of "new physics" if
 - we have appropriate theoretical tools at least for some interesting processes
 - we have sufficient data on all types of heavy hadrons

ヘロト ヘワト ヘビト ヘビト

• ... in particular also for charm

The discovery of the Higgs may be a triumph, but Flavour Physics may initiate a revolution