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Chiral Perturbation Theory

ny
Locp = Y _ligrPqr + iqeBPar — my(Grqe + 41qr))
q=1
(n; =number of flavours)

If my = 0 then SU(ns)r x SU(ny)g (chiral symmetry)=> parity doublets in the
spectrum.

They do not exist! = SU(ns)r, x SU(ng)g — SU(ny)y
@ ny = 2 — 3 Goldstone bosons
@ ny = 3 — 8 Goldstone bosons

my # 0 (but small) = chiral symmetry is also explicitly broken, Goldstone
bosons are not massless
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Construction as Effective Field Theory

Degrees of freedom pseudo-Goldstone bosons (lightest mesons in the spectrum)

o n=2—nt, 7,70

@ ny=3—=>mK,n

10, 1 + +
i v t\/gﬁ 1 7(T) I "
u=e Vo QS: ™ _%7('7;‘ %7’] I<20

Expected breakdown scale Resonances (n1,)

Lagrangian All operators allowed by QCD symmetries
Ly = e () + (x4)), u, = ’{“T(au —irp)u—u(0, — ’lu)“T} )
Xt = ubxul +uxu,  x =2Bo(s +ip)

$,P, Ty, 1, =external fields, s = M + ... (quark masses)
Fo, By = Low Energy Constants (LECs)
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Power counting

@ ChPT at low energies — small momenta (p) and masses

@ In £, operators with either two derivatives (p?) or masses (m?)
[)'2 (1'2)2 (1//[)2)2[)4 _ [)-1

1/p?
/P 2 /22 .4 4
() (L/p7)p*=p
[dip pt

@ observables depend on p?(/(47Fy)?) and m*(/(47wFy)?) which are small
parameters ((47Fy)? > p*, m*)— use them for perturbative expansion

@ so power counting is a dimensional counting!

© 0=0,+0,+0(p°
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Chiral Logarithms as main prediction of ChPT

Expansion of ChPT is not Taylor expansion: logarithms of masses (and energies)

appear

~ 00 + m? log ('S—z) +
m = mass of meson in loop, p =arbitrary scale

E.g. for the masses

4

m,

M~ i+ 0
~—

(4nFo)? ©

LO

2 r
my  Li 4 6
g 2 + FT%mO +O(mg)

NLO

L’ =~ 10~2 = chiral logarithm log % is leading contribution at O (p*) (NLO).

The chiral logs encode mass dependence of the observables
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© Motivation for Hard Pion ChPT
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@ Decays of a heavy meson into light mesons

Bt W+

@ mp ~ 3000 MeV, mp = 2000 MeV, m, ~ 140 MeV
® ¢" = (p/p — P=)" = momentum transfer to leptons
0<q* < (M—my)?*= g%, withM = mg, mp
@ two different kinematical regimes
Q ¢ ~ ¢, = Ex < 1GeV soft pion (ChPT ok)

~

@ ¢ ~0= E, > 1GeV hard pion (ChPT 2?7)
PROBLEM

@ lattice calculates the decay at any ¢> but simulations done with HEAVY pions
(m, > 300 MeV) = need extrapolation formulas to achieve m, ~ 140 MeV
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Argument for Hard Pion Chiral Perturbation Theory

Flynn and Sachrajda (2009), Bijnens and Celis (2009), Bijnens and 1J (2010)

N\ N\ /

= = =

N\

In the Feynman diagrams appear both hard and soft lines.

The soft lines can be separated from the hard/short-distance structure of the rest of
the diagram.

They are the only responsible of the non analyticities arising for m, — 0 (e.g. the
chiral logarithms)

The hard part is describable by an effective Lagrangian consistent with all the
symmetries and with couplings that depend on hard kinematical quantities.

Assumption: this Lagrangian is sufficiently complete to describe the neighbourhood
of the hard process.
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Example

(o

consider a diagram with soft (thin) and hard (thick) lines

o
@ identify the soft lines and cut them = remove the soft singularities
o

the resulting diagram is analytic in the soft part and thus should be describable
by a vertex of an effective Lagrangian. The coupling contains information on
the hard quantities

© insert back the loops with the soft lines: this last diagram should reproduce the
soft singularities of the first one

However only arguments not proof!!!
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Sketch of the proofs

o for hard pions m2 /(47Fy)? < 1, while p2 /(47Fp)? is not

@ operators with an arbitrary numbers of derivatives on the external 7 are not
negligible

@ look at (7 |O| B) O =operator in £ with more derivatives

@ keep only: O(1), O(m,) and O(m2 logm?2). NO: O(m?) without logarithms
@ different cases depending on which particle the extra derivative hits

@ use partial integration and dimensional analysis

@ it must turn out that (7 |O| B) are all proportional to the lowest order up to terms
O(m?2) (and without logarithms) which are of higher order

@ constants of proportionality are absorbed in the couplings of £
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What has been done so far

0(Q*, m*) = E(Q*,0) x (1 + am?log (’Zj) + (’)(mz))

« is what we calculate. E(Q?,0) depends on the hard quantities (¢*, mg, . . .).
Hard pion ChPT applied so far to

@ K — mly, (two-flavour) Flynn and Sachrajda (2009)
@ K — mm (two-flavour) Bijnens and Celis (2009)

@ results agree with three-flavour standard ChPT

@ Bijnens and IJ (2010)-(2011)

@ B(D) — M vector transitions with (M = 7, K, n) — agree with a
relativistic formalism,

e B — Dgl/g

@ m and K scalar and vector formfactors(two-flavours)

© checked including two-loop diagrams for scalar and vector formfactors of
the pion— extension to any order Colangelo et al. (201?)

9 Xc0y Xe2 = MM decays
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Beware

@ The proof that it all reduces to a single type of lowest order term can be
tricky

e E.g. for SU(3) scalar form factor there are two types of LO terms

Oce) and - () ()

e In SU(2) case these two types are the same

o for vector form factors the second type does not contribute
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@ Results for B(D) — M vector transitions
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B — M vector transitions: tree level result

(1) (2
e HMChPT
fTree(V p ) — C\/E fTree(V p ) — C\/E 8
v T F ) p a F v DPr +A
@ relativistic theory
1E 1E; m
Tree( 2\ __ 771 Tree (2 773 B
0 ( )_4F7 + (q) 4Fq2—m12;g

@ near ¢2,,, the propagators become respectively 1/m, and 1/(2m,mg) (factor of
2mpg due to the different normalizations)

o for q2 ~ qﬁmx see Falk et al. (1993), Becirevic et al.(2003)

e for ¢* < ¢, coupling constants differ at different ¢>, can even be complex
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One-loop diagrams
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The chiral logarithms

@ HMCHPT: expand the one-loop calculation Becirevic et al.(2003) for
V- Pr —>m3,m727 —0

@ relativistic theory: calculate the formfactors and then expand the loop integrals

for m2 < m%, (m% — g?) (tricky part of the calculations)

@ the coefficients of the leading logarithms coincide in the two theories (both at
7" < Gy and at ¢ = g7,

Do 7" < Gmax
fnvpe) = A6 o |1+ (34 5¢) A
1) ()
DK 7" < G
Favm = o [14 020
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A confirmation

@ the chiral logarithms are the same for the scalar formfactor fy and for £
@ same prediction obtained in Large Energy Effective Theory
@ Charles et al.(1998) — only one form factor for B — M transitions

@ also confirmed in Soft Collinear Effective Theory Bauer et al. (2001)
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Comparison with data

@ use SU(3) results and compare f; . (¢?) with £, x(¢%) CLEO coll. (2009)

@ the chiral logs are responsible of the differences between the two decays

fDJraw ~ fD+~>K
lL+logy .. 1+logy ok

1.05 7 T T T T T 0.75 T T T T T T
1 —fD—Hc E 07 + fD—»n/(1+|095) i
I I 5 /(1+logs) = =
0.95 FD—>K J . ,g 0.65 I D—-K i
09 I - o . |
T ossf . i 3 005E % X
T o8 o X } - o { X %
x o ° i 05} o3 E
075 % - ﬁ { X
07k { i 045 % .
065 1 1 1 1 1 1 04 1 1 1 1 1 1
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2
q° (GeV?) q° (GeV?)
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e Application to charmonium decays
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Charmonium decays to pseudoscalars

@ charmonium decays to pseudoscalar mesons again same issue —
outgoing mesons are hard — hard pion ChPT

@ charmonium (c¢) singlet under SU(3); x SU(3)r

Q J/¢ — 7w vs J /¢ — KK difficult to compare different channels:

o J/1¢ — mm violates isospin
e J/¢¥ — KK U-spin or V-spin
e similar for x,;
Q X\, — AW VS Xc = T
o tipically more involved (more operators might arise)
o mrm channel: not all the 3 pions are hard = need to decide where hard
pion ChPT is ok
o KKK — Hard Pion ChPT ?

Q@ Yo — MM and ., — MM are ok!
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@ .0 — scalar field xo
® X2 — spin-2 field 4" (symmetric, traceless etc)

e remember . = chiral singlet — £, ~ X X Lcnpr

Most general Lagrangian satisfying chiral symmetry
Ly, = E1Fdxo{uuu”) + ExFgx5" (u,u,,)
Extra operators for checks

LY = EsFgxg(upu) + EaFgxo(V"u,V u”)
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) (2«)& )

(4)

@ to these add wave-function renormalization

@ loop diagrams with derivatives hitting a pseudoscalar propagator are
soppressed e.g. (3)

@ (4)— no chiral logs from diagrams with heavy particle propagators
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Tree-level amplitudes

iA(xco — MM) = —(m} —2my) x (2Ey + Es(m’, — 2my))
iA(XcZ — MM) = _4E2p¢p5Tx,uy
p = momentum of outgoing M T ., =polarization tensor of 2

@ FE4-term gives contribution proportional to LO one (up to order m%,,)
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One-loop amplitudes

iA(xco = MM) = —(mi — 2my;) x (2E; + E4(m§< — 2my;))
iA(XcZ — MM) = _4E2p¢p5Txyu
p = momentum of outgoing M T .., =polarization tensor of 2

@ at one-loop we found zero corrections!
o the logarithms from diagram (2) exactly cancels with wf renormalization

@ result valid for any chiral singlet hence for T*” (energy-momentum
tensor) — compare with expansion of ChPT calculation Donoghue and
Leutwyler (1991): this gives zero as well

o there are no enhanced chiral corrections = no strong conclusions from
comparison with data ®
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Comparison with experiments

@ nevertheless no chiral corrections should lead to somewhat smaller
SU(3)y breaking effects compared to the “usual” 20% (as in e.g. Fx/Fy)

@ at least check how much this statement agrees with data

o compute the amplitudes from the measured BR PDG (2011)

@ Xc0
Go = \/BR/|p1]/(p1-p2)

P1-pP2= (mi —2m3,)/2 — always in Ag

phase space = |pi| = |/m2 — 4mg/2

G2 = V/BR/|p|/ 151

P ’2 X Zpol T;éypmpzyT;aﬁplapzﬁ — always in A,

@ Xc2
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Comparison with experiments

Go = /BR/|p\|/(p1-p2)

Gy, = /BR/|p|/|p1 I

Xc0 Xc2
Mass 3414.75+ 0.31 MeV 3556.20 £ 0.09 MeV
Width 10.4 +0.6 MeV 1.97 £0.11 MeV
Final state 10° BR 1010 Gy[MeV /7] 10° BR 109G, [MeV /2]
T 8.5+04 3.15+£0.07 2.42+0.13 3.04 £0.08
KtK~ | 6.06+0.35 3.45+0.10 1.09 +0.08 2.74+0.10
KK? 3.154+0.18 3.52+0.10 0.58 +0.05 2.83+0.12
m 3.03+0.21 2.48 £0.09 0.59 +0.05 2.06 +0.09
n'n’ 2.02 +£0.22 2.434+0.13 <0.11 <12

@ 77 vs KK about 10% difference for x.o and x.»

@ 77 borderline

@ corrections are indeed reasonably small
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Conclusions and outlook

@ extensions of the arguments adopted in Flynn and Sachrajda (2009), Bijnens and
Celis (2009)

o still ONLY arguments. Proven for the single processes but they sound
very general — formalize the approach (with SCET?)

@ what discussed here can be found in J. Bijnens, 1.J. Nucl Phys B 840 (2010), J.
Bijnens, I.J. Nucl Phys B 846 (2011), J. Bijnens, I.J. Eur. Phys. J A 47 (2011)

e extendable for PQChPT (useful on the lattice)
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