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OUTLINE
• Introduction 

•Drell-Yan process

• Soft-Collinear Effective Theory 

• Factorization at low transverse momentum qT

• The collinear anomaly and the definition of transverse 
position dependent PDFs

• Resummation of large log’s, relation to CSS formalism

• Analytic regularization

• Expansions from hell and non-perturbative short-distance 
physics at low qT. Numerical results.



DRELL-YAN PROCESSES
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lepton pair

X (arbitrary hadron state)

hadron H1

hadron H2

γ*, Z0 or W±

q = p�1 + p�2

q2 = M2

�1

�2

The production of a lepton pair with large invariant mass is 
the most basic hard-scattering process at a hadron collider. 
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DRELL-YAN PROCESSES
The production of a single electroweak boson γ*, Z,W±, H is of 
great interest for

•W mass and width measurements,

• PDF determinations, luminosity monitoring, 

•New physics searches at high q2

Low transverse momentum qT is particularly relevant

• to extract W mass

• to reduce background for Higgs search
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TRANSVERSE MOMENTUM SPECTRUM

New experimental results both from Tevatron and LHC. LHC 
results still based on tiny fraction the ~5 fb-1 of data .
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Figure 9: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
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In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
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pp→ Z + X → �+�− + X



PERTURBATIVE EXPANSION
The perturbative expansion of the qT spectrum contains singular 
terms of the form (M is the invariant mass of the lepton pair)

which ruin the perturbative expansion at qT ≪ M and must be 
resummed to all orders.

Classic example of an observable which needs resummation! 
Achieved by Collins, Soper and Sterman (CSS) ’84.
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dσ

dq2
T

=
1

q2
T

[

A(1)
1 αs ln

M2

q2
T

+ αsA
(1)
0 + A(2)

3 α2
s ln3 M2

q2
T

+ . . . (1)

+A(n)
2n−1α

n
s ln2n−1 M2

q2
T

+ . . .
]

+ . . . (2)

ψ̄γµψ → CV (M2, µ) χ̄hc S†
n̄ γµ Sn χhc (3)

CV , anti-coll. soft coll.

p p̄ M2 = (p − p̄)2 Jµ
V

n n̄

(−gµν) 〈N1(p) N2(p̄)| Jµ†
V (x) Jν

V (0) |N1(p) N2(p̄)〉 →
1

2Nc
|CV (M2, µ)|2

× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉

ŴDY(x) =
1

Nc
〈0|Tr

[

S†
n(x) Sn̄(x) S†

n̄(0) Sn(0)
]

|0〉 (4)

Sn(x) = P exp

[

i

∫ 0

−∞

ds n · As(x + sn)

]

(5)

(n · k, n̄ · k, k⊥)

x ∼ M−1(1, 1, λ−1)

phc ∼ M (λ2, 1, λ) , phc ∼ M (1, λ2, λ) , (6)

ps ∼ M (λ2, λ2, λ2) . (7)

ŴDY(0) 〈N1(p)| χ̄hc(x+ + x⊥)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x− + x⊥) |N2(p̄)〉

ŴDY(0) = 1 (8)

ŴDY(x0) 〈N1(p)| χ̄hc(x+)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x−) |N2(p̄)〉

1



PARTY LIKE IT’S 1984
A lot of recent work on transverse momentum resummation
• Higher accuracy. 
• Computation of all singular terms at O(αs2) accuracy. Catani 

and Grazzini ’09, ’11

•New NNLL codes (in addition to RESBOS) Bozzi, Catani 
Ferrera, de Florian, Grazzini ’10; TB, Neubert, Wilhelm, in preparation

• derivation of missing NNLL coefficient A(3) TB, Neubert ’10 

•NNLL threshold resummation at large qT TB, Lorentzen, Schwartz ’11

• Factorization of the cross section, definition of transverse 
PDFs
• using Soft-Collinear Effective Theory Mantry Petriello ’09, ’10;  TB 

Neubert ’10

• traditional framework Collins ’11
9



SOFT-COLLINEAR EFFECTIVE THEORY

CSS used diagrammatic methods to factorize contributions with 
different scales, we will instead use effective field theory.

SCET has been used to perform soft gluon resummation for many 
processes:

• DIS at large x, Drell-Yan rapidity spectrum, inclusive Higgs production, 
top production, direct photon production, single top production, e+e− 
event shapes, ...

Would like to use framework to resum higher logs in multi-jet 
processes at hadron colliders. To do so, we first need to 
understand “initial state showering”. 

• The qT-spectrum in DY provides simple setting to study issue

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002; ...

10



FACTORIZATION ANOMALY



Factorization at low qT proceeds in two steps

1.) Use qT ≪ MZ to factorize cross section

2.) Use ΛQCD ≪ qT  to factorize

FACTORIZATION

12

H(Q2
, µ)

〈N1(p)| χ̄hc(x+ + x⊥)/̄n χhc(0) |N1(p)〉

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

2

〈N1(p)| χ̄hc(x+ + x⊥)/̄n χhc(0) |N1(p)〉

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

2

“hard function”   x  “transverse PDF”   x  “transverse PDF” 

It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)

dσ

dM2

∣

∣

∣

∣

qT ≤QT

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥M2/s

dz1

z1

dz2

z2
(26)

×
[

min(Q2
T , z1z2s−M2)
∫

0

dq2
T Cqq̄→ij(z1, z2, q

2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always

10

  “transverse PDF”  = “matching coefficient” x  “standard PDF” 



REGULARIZATION
Well known that transverse PDF 

is not defined without additional regulators.

Different possibilites

• Use non-light-like gauge CSS ’84

• Keep power suppressed small light-cone component, (i.e. use “fully 
unintegrated PDF”) Mantry Petriello ’09

• Following Smirnov ’97, we use analytic regulator TB, Neubert ’10; TB, 
Bell ’11

• Multiply with with strategically chosen combination of light-like and 
time-like Wilson lines. Collins ’11

13

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

2

n̄2 = 0



FACTORIZATION ANOMALY

Regularization of individual PDFs is delicate, but the product of PDFs 
is well defined and the regulator can be removed.

However, regulator induces dependence on the the hard scale M, 
which remains even when the regulator is sent to zero. We prove that 
this anomalous M dependence exponentiates in the form

Anomaly: Classically,                                                is invariant 
under a rescaling of the momentum of the other nucleon N2. 
Quantum theory needs regularization. Symmetry cannot be 
recovered after removing regulator. Not an anomaly of QCD, but of 
the low energy theory (the factorization theorem).
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What God has joined together, let no man separate...
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∣
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∣
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×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
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τ ey , ξ2 =
√
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⊥
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=
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FACTORIZATION ANOMALY
• RG invariance of the cross section implies presence M 

dependence of product of transverse PDFs. Anomaly 
exponent must fulfill

• Anomaly also affects other observables

• Processes with small masses, e.g. EW Sudakov resummation 
Chiu, Golf, Kelley and Manohar ’07

• Jet-broadening. Have derived all-order form of anomaly for 
small broadening. TB, Bell, Neubert ’11
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The hard-scattering kernel is

• Two sources of M dependence: hard function and anomaly

• Fourier transform can be evaluated numerically or 
analytically, if higher-log terms are expanded out.

RESUMMED RESULT FOR CROSS SECTION

Iq←q(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

(16)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq̄←q̄(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

−
2

α
+ 2 ln

M2

ν2
1

)

δ(1 − z)

+
1 + z2

(1 − z)+

]

− (1 − z)

}

(17)

1/α

Fqq̄(L⊥, αs) =
CFαs

π
L⊥ + O(α2

s)

Iq←q(z, L⊥, αs) = Iq̄←q̄(z, L⊥, αs) = δ(1 − z)

[

1 +
CFαs

4π

(

L2
⊥ + 3L⊥ −

π2

6

)]

−
CFαs

2π

[

L⊥Pq←q(z) − (1 − z)
]

+ O(α2
s)

Iq←g(z, L⊥, αs) = Iq̄←g(z, L⊥, αs) = −
TF αs

2π

[

L⊥Pq←g(z) − 2z(1 − z)
]

+ O(α2
s)

(18)

For the first two expansion coefficients, we obtain

Fqq̄(L⊥, αs) =
αs

4π
ΓF

0 L⊥ +
(αs

4π

)2
[

ΓF
0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
2

]

(19)

dq
2 = CF

[

CA

(

808

27
− 28ζ3

)

−
224

27
TF nf

]

(20)

Fqq̄(L⊥, αs)

CF
=

Fgg(L⊥, αs)

CA
(21)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(22)

3
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For the first two expansion coefficients, we obtain

Fqq̄(L⊥, αs) =
αs

4π
ΓF

0 L⊥ +
(αs

4π

)2
[

ΓF
0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
2

]

(22)

dq
2 = CF

[
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(

808

27
− 28ζ3

)

−
224

27
TF nf

]

(23)

Fqq̄(L⊥, αs)

CF
=

Fgg(L⊥, αs)

CA
(24)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
M

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(25)

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(26)

Cqq̄→ij(z1, z2, q
2
T , M2, µ) = H(M2, µ)

1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(27)

µ = µb = 2e−γE x−1
⊥

µ = qT

(28)

µ = µb = 2e−γE/x⊥

A(3) = ΓF
2 + 2β0d

q
2 = 239.2 − 652.9 $= ΓF

2 (29)

A(3) = ΓF
2 + β0 g′′

1(0) = 239.2 − 652.9 $= ΓF
2 (30)

exp
(

−αscL
2
⊥

)

(31)

η =
CFαs

π
ln

M2

µ2
= O(1) (32)
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If adopt the choice                               in our result reduces to CSS 
formula, provided we identity (see backup slide for definition of A,B,C) 

Use these relations to derive unknown three-loop coefficient, necessary 
for NNLL resummation

Not equal to the cusp anom. dim. as was usually assumed!

RELATION TO CSS

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(23)

µ = µb = 2e−γE x−1
⊥

µ = qT

(24)

µ = µb = 2e−γE/x⊥

4

anomaly contribution

find

A
(

αs

)

= ΓF
cusp(αs) −

β(αs)

2

dg1(αs)

dαs
,

B
(

αs

)

= 2γq(αs) + g1(αs) −
β(αs)

2

dg2(αs)

dαs
,

Cij

(

z, αs(µb)
)

=
∣

∣CV

(

− µ2
b , µb

)
∣

∣ Ii←j

(

z, 0, αs(µb)
)

,

(72)

where

g1(αs) = F (0, αs) =
∞

∑

n=1

dq
n

(αs

4π

)n
,

g2(αs) = ln
∣

∣CV (−µ2, µ)
∣

∣

2
=

∞
∑

n=1

eq
n

(αs

4π

)n
.

(73)

The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(

7π2

3
− 16

)

. (74)

The two-loop coefficient dq
2 has been given in (49), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.2 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (49). Inserting the coefficients
dq,g

2 into (75), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.

2The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4]. For reasons
that are not known to us, the fact that A "= ΓF

cusp is nevertheless largely ignored in the literature.
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For the first two expansion coefficients, we obtain

Fqq̄(L⊥, αs) =
αs

4π
ΓF

0 L⊥ +
(αs

4π

)2
[

ΓF
0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
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(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(25)

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥
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exp
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)
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η =
CFαs

π
ln

M2
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= O(1) (31)

qT

L⊥

〈x−1
T 〉 = q∗ = M exp

(

−
π

2CF αs(q∗)

)

= 1.75 GeV for M = MZ (32)

4

a = αs(×O(1) (39)

η =
CFαs

π
ln

M2

µ2
= O(1) (40)

K(η, a, r) =

[

1 −
a

4
∂2

η +
1

2!

(a

4

)2
∂4

η + . . .

]

K(η, 0, r) (41)

L⊥ = ln
x2

T µ2
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T µ2
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µ ≈ qT

η = 1
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∣

∣
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∼

∞
∑

n=1
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√
a
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q2
∗
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ΓF
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−M2

µ2
+ 2γq(αs)

]

CV (−M2, µ)

dσ

dqT
∝ |CV (−M2, µ)|2 M(qT , M, µ) ⊗ φq(µ) ⊗ φq̄(µ)

d

d lnµ
ln

[

M(qT , M, µ) ⊗ φq(µ) ⊗ φq̄(µ)
]

= −2ΓF
cusp(αs) ln

M2

µ2
− 4γq(αs)

M(qT , M, µ) =

∫

d2x⊥e−ix⊥·p⊥e−F (x2

⊥
,µ) ln M2x2
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⊥, µ) In̄(z2, x
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⊥, µ)

A
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)

= ΓF
cusp(αs) −

β(αs)

2

dg1(αs)

dαs
,

B
(
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)
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2
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Cij
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=
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H(µ2
b , µb)

]1/2
Ii←j

(
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,
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6

where

g1(αs) = F (0, αs) =
∞

∑

n=1

dq
n

(αs

4π

)n
,

g2(αs) = ln H(µ2, µ) =
∞

∑

n=1

eq
n

(αs

4π

)n
.

(43)
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ANALYTIC REGULARIZATION 
IN SCET



ANALYTIC REGULARIZATION

• Large amount of freedom...

•which propagators are regularized?

• one or several regulators?

• ... but in general bad properties

• destroys gauge invariance

• destroys eikonal structure of soft radiation: problems 
in factorization proofs 

19

1 Analytic regularization

Soft-Collinear Effective Theory (SCET) [1, 2, 3], the effective theory for processes involving
energetic particles, incorporates the structure of soft and collinear interactions in QCD into
an effective-theory framework. It is based on an expansion of QCD diagrams in regions
where particle momenta become soft or collinear. The underlying mathematical framework
is the strategy of region technique [4]. While the original QCD diagrams are regularized by
dimensional regularization both in the ultraviolet and in the infrared, it is well known that
dimensional regularization is not always sufficient to regularize also the expanded diagrams. In
such cases it is necessary to introduce additional regulators at intermediate stages, which can
only be removed after the contributions from different momentum regions are combined. A
simple example where this problem occurs is the massive Sudakov form factor. The expansion
of the corresponding scalar integrals at two-loop order was performed in [5], and it was shown
that one can use analytic regulators to make the contributions of the individual momentum
regions well-defined.

In analytic regularization one typically raises some propagator denominators to a fractional
power

1

k2 + iε
−→

(ν2)α

(k2 + iε)1+α , (1)

and chooses the regulator α in such a way that the divergences of a given diagram are soft-
ened. The scale ν is the analogue of the renormalization scale µ introduced in dimensional
regularization. It is clear that there is a huge amount of freedom how this regularization is
performed. One may raise one or several propagators, and for each regularized propagator
one can in principle use a different regulator. In fact, one can even introduce propagators
not present in the original diagram to regularize it. When expanding individual integrals, the
choice of these additional regulators is largely arbitrary. In the context of SCET, analytical
regularization has been used in [6, 7, 8, 9, 10, 11]. However, in an effective field theory analytic
regularization is problematic since the additional regulators can break the symmetries of the
theory. In particular, raising propagators to fractional powers will in general destroy gauge in-
variance, which will then only be recovered after the contributions from the individual sectors
of the theory will be added and the regulator is sent to zero. Even worse, introducing such
regulators may destroy some of the properties necessary to establish factorization theorems.
A crucial element of many factorization proofs, for example, is the eikonal structure of soft
emissions. The property that such emissions rearrange themselves into Wilson lines will in
general be broken in the presence of analytic regulators, which makes it difficult to establish
factorization properties to all orders.

In this letter, we consider observables such as the spectrum of transverse momentum qT of
electroweak bosons in hadron collisions, or jet broadening, an event-shape in e+e− collisions.
These are sensitive to small transverse momenta and suffer from the problem discussed above.
The main point of our paper is that in massless theories the additional divergences only arise in
the phase-space integrations. In general, the (d−2)-dimensional integration over the transverse
momentum also regularizes the light-cone propagators which arise in the effective theory.
However, this regularization is absent when phase-space constraints restrict the transverse
momentum. This explains why the problems with unregularized light-cone singularities occur

1



REGULARIZATION IN SCET
Original QCD diagrams are regularized dimensionally, problem 
only arises, when splitting the QCD result into left- and right-
collinear pieces.

Need additional regulator to make both pieces separately well-
defined. Can be removed in the sum.
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Figure 2: Matching of an analytically-regularized QCD graph onto SCET diagrams.

of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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QCD SCET



PHASE-SPACE REGULARIZATION

Have presented strong arguments that regularization problems 
only affect real-emissions:

• In massless loop diagrams regularization dim. reg. 
regularization of transverse directions regularizes also light-
cone integrations.

• In phase-space integrals constraints on the transverse 
momentum can lead to unregularized integrals over light-
cone directions.
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for example for jet broadening, which measures the transverse momentum relative to the
thrust axis, but are absent for the event-shape variable thrust, which only depends on the
longitudinal momentum.

Instead of regularizing individual diagrams, it is therefore sufficient to introduce the addi-
tional regularization in the phase-space integrals. To do so, we write the phase-space integrals
as integrations over light cone components (n2 = n̄2=0, n · n̄ = 2)

kµ = k+
n̄µ

2
+ k−

nµ

2
+ kµ

⊥ , (2)

where we choose the light-cone reference vectors in the directions of large momentum flow, i.e.
along the beam direction for the qT spectrum and along the thrust axis for the jet broadening.
We then define a regularized version of the usual phase-space integral as

∫

dµ(k) =

∫

ddk

(

ν+
k+

)α

δ(k2)θ(k0) . (3)

The factor (ν+/k+)α regularizes the light-cone denominators which arise in SCET after ex-
panding the QCD propagators. To see that also the k− integration is regularized by the above
prescription, we can perform the k+ integration using the delta-function constraint to get

∫

dµ(k) =
(ν+)α

2

∫

dk−

∫

dd−2$k⊥ ($k2
⊥)

−α (k−)
α−1 θ(k−) . (4)

Note that the momentum component k− is regularized with (k−)
+α, while the regulator appears

with a (k+)
−α for the plus component. Other choices for the regulator are possible. In

particular, one could use the energy k0 instead of k+. The above choice is optimal since light-
cone denominators are present in the effective-theory diagrams, so that the regulator (3) does
not unnecessarily complicate higher-order computations. We can rewrite (3) in the form of an
analytically regularized propagator

(Qν+)α

[(p + k)2]α
δ(k2) =

(

ν+
k+

)α

δ(k2) , (5)

for pµ = Qnµ

2 , which makes it clear that at O(αs) our regularization reduces to the prescription
adopted in [9, 11].

Let us stress that the regularization (3) is introduced in the QCD phase-space integrals.
Since these do not require the additional regularization, it is clear that QCD is recovered in
the limit α → 0, as long as the dimensional regulator stays in place. The regulator becomes
necessary once the QCD diagrams are expanded in the different momentum regions relevant in
the effective theory. In these regions the momentum components (k+, k−, k⊥) scale as follows

collinear: kc ∼ Q (λ2, 1,λ) ,

anti-collinear: kc̄ ∼ Q (1,λ2,λ) ,

soft: ks ∼ Q (λ,λ,λ) ,

2

TB, Bell 1112.3907

n2 = n̄2 = 0 n · n̄ = 2



Have shown that the following prescription regularizes these 
singularities: 

Since the amplitudes themselves do not need additional 
regularization, 

• gauge invariance is maintained

• structure of the effective is unchanged

Divergences in α cancel when the contributions from the 
different sectors of SCET are combined.

PHASE-SPACE REGULARIZATION

22

Analytic regularization in SCET

Regularization of individual propagators is largely arbitrary

� has to make EFT diagrams well-defined

� should respect double role of propagator/Wilson line regularization

� but breaks gauge-invariance and eikonal structure of soft emissions

In a massless theory it is sufficient to regularize phase space integrals [Becher, GB 11]

�
�

dd k δ(k2) θ(k0) ⇒
�

dd k
�
ν+
k+

�α

δ(k2) θ(k0)

� does not modify SCET at all

� keeps gauge-invariance and eikonal structure

� provides elegant definition of transverse PDFs
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RESULT FOR MATCHING
Taking first            , then           , one finds (               )

In the product the        divergences vanish, but anomalous M2 
dependence remains.

〈N1(p)| χ̄hc(x+ + x⊥)/̄n χhc(0) |N1(p)〉

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2

T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (13)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (14)

q2
T ' ΛQCD (15)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2

T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

2

Iq←q(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

(16)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq̄←q̄(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

−
2

α
+ 2 ln

M2

ν2
1

)

δ(1 − z)

+
1 + z2

(1 − z)+

]

− (1 − z)

}

(17)

1/α

3
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×
[

Cqi

(

z1, αs(µb)
)

Cq̄j

(

z2, αs(µb)
)

φi/N1
(ξ1/z1, µb) φj/N2

(ξ2/z2, µb) + (q, i ↔ q̄, j)

]

,

µb = b0/xT , and we adopt the standard choice b0 = 2e−γE

L⊥ = ln
x2

T µ2

4e−2γE

5

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (16)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (17)

d

d lnµ
H(M2, µ) =

[

2ΓF
cusp(αs) ln

M2

µ2
+ 4γq(αs)

]

H(M2, µ) . (18)

q2
T " ΛQCD (19)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

Iq←q(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
+ 2 ln

ν+M

µ2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

(20)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq̄←q̄(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

−
2

α
− 2 ln

ν+

M

)

δ(1 − z)

+
1 + z2

(1 − z)+

]

− (1 − z)

}

(21)

1/α

Fqq̄(L⊥, αs) =
CFαs

π
L⊥ + O(α2

s)

Iq←q(z, L⊥, αs) = Iq̄←q̄(z, L⊥, αs) = δ(1 − z)

[

1 +
CFαs

4π

(

L2
⊥ + 3L⊥ −

π2

6

)]

−
CFαs

2π

[

L⊥Pq←q(z) − (1 − z)
]

+ O(α2
s)

Iq←g(z, L⊥, αs) = Iq̄←g(z, L⊥, αs) = −
TF αs

2π

[

L⊥Pq←g(z) − 2z(1 − z)
]

+ O(α2
s)

(22)

3

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) (16)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (17)

d

d lnµ
H(M2, µ) =

[

2ΓF
cusp(αs) ln

M2

µ2
+ 4γq(αs)

]

H(M2, µ) . (18)

q2
T " ΛQCD (19)

Text p, (p̄) to the power α → 0, β → 0 p → λp

[

Iq←i(z1, x
2
T , µ)Iq̄←j(z2, x

2
T , µ)

]

M2
=

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) ,

Iq←q(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
+ 2 ln

ν+M

µ2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

(20)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq̄←q̄(z, x
2
T , µ) = δ(1 − z) −

CFαs

2π

{(

1

ε
+ L⊥

) [(

−
2

α
− 2 ln

ν+

M

)

δ(1 − z)

+
1 + z2

(1 − z)+

]

− (1 − z)

}

(21)

1/α

Fqq̄(L⊥, αs) =
CFαs

π
L⊥ + O(α2

s)

Iq←q(z, L⊥, αs) = Iq̄←q̄(z, L⊥, αs) = δ(1 − z)

[

1 +
CFαs

4π

(

L2
⊥ + 3L⊥ −

π2

6

)]

−
CFαs

2π

[

L⊥Pq←q(z) − (1 − z)
]

+ O(α2
s)

Iq←g(z, L⊥, αs) = Iq̄←g(z, L⊥, αs) = −
TF αs

2π

[

L⊥Pq←g(z) − 2z(1 − z)
]

+ O(α2
s)

(22)

3

�→ 0



DIVERGENT EXPANSIONS,
AND OTHER SURPRISES
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TRANSVERSE MOMENTUM SPECTRUM

The spectrum has a number of quite remarkable features which 
we now discuss in turn:

• Expansion in αs : strong factorial divergence

• qT-spectrum: 

• calculable, even near qT = 0

• expansion around qT = 0 : extremely divergent

• Long-distance effects associated with ΛQCD  

• small, but OPE breaks down

25



LEADING MOMENTUM DEPENDENCE

Up to corrections suppressed by powers of αs, the qT-
dependence of our formula result has the form

with                      , and the two quantities

Since a is suppressed one can try to expand K in it.

26

×
[

Cqi

(

z1, αs(µb)
)

Cq̄j

(

z2, αs(µb)
)

φi/N1
(ξ1/z1, µb) φj/N2

(ξ2/z2, µb) + (q, i ↔ q̄, j)

]

,

µb = b0/xT , and we adopt the standard choice b0 = 2e−γE

L⊥ = ln
x2

T µ2

4e−2γE

1

4π

∫

d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4
aL2

⊥ =
e−2γE

µ2

∫ ∞

−∞

d% J0

(

e#/2 b0
qT

µ

)

e(1−η)#− 1

4
a#2 ≡

e−2γE

µ2
K

(

η, a,
q2
T

µ2

)

,

(30)

1

4π

∫

d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4
aL2

⊥ ≡
e−2γE

µ2
K

(

η, a,
q2
T

µ2

)

, (31)

where b0 = 2e−γE , and in the case at hand

a =
αs(µ)

2π

[

ΓF
0 + ηF (M2, µ) β0

]

. (32)

K(η, 0, r) = rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
. (33)

5

×
[

Cqi

(

z1, αs(µb)
)

Cq̄j

(

z2, αs(µb)
)

φi/N1
(ξ1/z1, µb) φj/N2

(ξ2/z2, µb) + (q, i ↔ q̄, j)

]

,

µb = b0/xT , and we adopt the standard choice b0 = 2e−γE

L⊥ = ln
x2

T µ2

4e−2γE

1

4π

∫

d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4
aL2

⊥ =
e−2γE

µ2

∫ ∞

−∞

d% J0

(

e#/2 b0
qT

µ

)

e(1−η)#− 1

4
a#2 ≡

e−2γE

µ2
K

(

η, a,
q2
T

µ2

)

,

(30)

1

4π

∫

d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4
aL2

⊥ ≡
e−2γE

µ2
K

(

η, a,
q2
T

µ2

)

, (31)

where b0 = 2e−γE , and in the case at hand

a =
αs(µ)

2π

[

ΓF
0 + ηF (M2, µ) β0

]

. (32)

K(η, 0, r) = rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
. (33)

a = αs(µ) ×O(1) (34)
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FACTORIAL DIVERGENCE
Unfortunately, the series in a is strongly factorially divergent:

Can Borel resum it, which makes the nonperturbative and highly 
nontrivial a dependence explicit

In practice, it is simplest, to use the exact expression and 
evaluate K-function numerically.

27

where b0 = 2e−γE , and in the case at hand
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αs(µ)
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ΓF

0 + ηF (M2, µ) β0

]
. (63)

Some useful properties of the function K(η, a, r) are summarized in Appendix C. The above
definition is such that for a = 0 we recover, up to a trivial factor, the result (59) with n = 0:

K(η, 0, r) = rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
. (64)

Keeping the quadratic term in the exponent vastly improves the convergence behavior of
the Fourier integral. For a = 0 (i.e., without the quadratic term) the integral on the left-hand
side of (62) converges in the ultraviolet (for xT → 0) only if η < 1, and for η < 1

4 its value
must be defined by analytic continuation. For a > 0, on the other hand, the integral converges
for all values of η. It is then perhaps not surprising that any attempt to expand the Gaussian
weight factor in a perturbative series leads to a badly behaved expansion. Indeed, writing the
formal series

K(η, a, r)
∣∣
exp

=
∞∑

n=0

1

n!

(
−

a

4

)n
∂2n

η K(η, 0, r) =
∞∑
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1

n!

(
−

a

4

)n
∂2n

η rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
, (65)

it is not difficult to see that the series is factorially divergent. To illustrate this point, we
consider the special case where r = 1 (corresponding to the default scale choice µ = qT ) and
η is close to the critical value 1. One then has

Γ(1 − η)

e2(η−1)γE Γ(η)
=

1

1 − η
−

2ζ3

3
(1 − η)2 −

2ζ5

5
(1 − η)4 + . . . , (66)

and taking 2n derivatives of the leading term generates (2n)!/(1 − η)2n+1. A more careful
analysis reveals that

K(η, a, 1)
∣∣
exp

=
∞∑

n=0

(2n)!

n!

(
−

a

4

)n
[

1

(1 − η)2n+1
− e−2γE

]
+

∞∑

n=0

kn an + O(1 − η) , (67)

where the coefficients kn do not exhibit the strong factorial growth of the terms in the first
sum. While this series is badly divergent, the fact that it has alternating sign implies that it
can be Borel-summed. We obtain

K(η, a, 1)
∣∣
Borel

=

√
π

a

{
e

(1−η)2

a

[
1 − Erf

(
1 − η√

a
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− e−2γE+ 1

a

[
1 − Erf

(
1√
a

)]}

+
∞∑

n=0

kn an + O(1 − η) ,

(68)

where Erf(x) is the error function. Note that the singularity at η = 1 has disappeared after
Borel summation. Expressions for the first few kn coefficients can be readily derived in terms of
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exp
(

−αscL
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M2
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(27)
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〈x−1
T 〉 = q∗ = M exp

(

−
π

2CF αs(q∗)

)

= 1.75 GeV for M = MZ (28)

µ = max (q∗, qT )

λ =
pT

M
(29)

nµ ∼
pµ

p0

n̄µ ∼
p̄µ

p̄0

4

VERY LOW QT     .
For moderate qT, the natural scale choice is μ = qT. 
However, detailed analysis shows that near qT ≈ 0 the 
Fourier integral is dominated by 

which corresponds to η=1.

→ Spectrum can be computed with short-distance 
methods down to qT =0!
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bands from 
scale-variation 

by factor 2

INTERCEPT AT QT=0

•Dedicated analysis of              limit yields:

• Essential singularity at αs=0 ! We have computed the 
normalization      and NLO coefficient     . 

dσ

dq2
T

∼ N
√

αs
e−#/αs (1 + c1αs + . . . )

qT → 0

N c1

Parisi, Petronzio 1979; 
Collins, Soper, Sterman 1985; Ellis, Veseli 1998
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SLOPE AT QT=0?
Given our result for the intercept, we can also try to obtain 
derivatives with respect to qT2. Leading term is obtained by 
expanding

Yields violently divergent series
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NON-PERTURBATIVE EFFECTS

• Blue curves: Gaussian cutoff, red dashed lines: dipole cutoff. 

• Slight shift of the peak, largely independent of the form of the cutoff
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Figure 5: Long-distance effects in the spectrum. The solid blue lines were obtained from
modeling with a Gaussian, while the dashed red lines correspond to a dipole form.

order result for the qT spectrum. To avoid double counting of the logarithmic terms, we need
to subtract the fixed-order expansion of our resummed result from the full fixed-order result.
We denote the matched result by NNLL+LO:

dσNNLL+LO

dqT
=

dσNNLL

dqT
+

dσLO

dqT
− dσNNLL

dqT

∣

∣

∣

∣

expanded to LO

. (39)

The qT -spectrum is known to NLO [20, 21, 22], but since the matching corrections are tiny
in the peak region, LO matching is sufficient for our purposes. To obtain the fixed-order
expansion of the resummed result, one evaluates the hard matching coefficient |CV (−M2

Z , µ)|2

in fixed-order perturbation theory, setting µh = µ in relations (B1) and (B2) of Appendix B,
and expands the exponent gF in powers of αs. After this expansion, the integrals over the
Bessel function in (10) can be computed analytically. A convenient way to do this is to first
keep the term ηL⊥ term in the exponent, and then use 18 to obtain the Fourier integral. The
Fourier transform of the higher-log terms can be obtained by taking derivatives with regards
to η of the relation 18. The resulting expression was given explicitly in equation (60) of [5].
The final result for the NLO expansion of our result is given in Appendix D.
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Figure 2: NLL (light blue) versus NNLL (dark red) result for the spectrum, using the standard
expansion which breaks down at very small qT . The left plot is for µ2

h = −M2
Z , the right plot

for µ2
h = +M2

Z .

use an ansatz of the form

Bq/N (ξ, x2
T , µ) = fhadr(xT ΛNP) Bpert

q/N (ξ, x2
T , µ) , (36)

where the perturbative functions Bpert
i/N carry all the scale dependence and are given by (4),

whereas the hadronic form factor fhadr(r) with fhadr(0) = 1 describes the fall-off at large
transverse distances and is parameterized in terms of a hadronic scale ΛNP. This inserts a
factor fhadr(xT ΛNP) under the integral over xT in (10), which suppresses the region of very
large xT values. We will adopt the models

f gauss
hadr (xT ΛNP) = exp

(

−Λ2
NP x2

T

)

, fpole
hadr(xT ΛNP) =

1
(

1 + 1
2Λ

2
NP x2

T

) (37)

for the form factor, which agree in their first-order term but have quite different behavior for
large separation. Fortunately, we will find that while the results are rather sensitive to the
value of the hadronic scale ΛNP, the precise shape of the form factor appears to be of minor
importance.

5 Numerical analysis

[At the moment we use nf = 5, but it may be more reasonable to switch to nf = 4 at
low qT !]

Having discussed the structure of the cross section in detail, we now proceed to evaluate
it numerically. In Figure 2, we plot dσ/dqT at LO and NLO in RG-improved perturbation
theory, which correspond to NLL and NNLL accuracy. Since we will later match to fixed-
order calculations, we will refer in the following to the resummed results by their logarithmic
accuracy rather than their order in RG-improved perturbation theory so as to avoid confusion.
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TEVATRON, RUN I

• Scale variation by factor of 2 from default                     . 
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Figure 8: Comparison with Tevatron Run I data from CDF, with and without long-distance
corrections (right). The lower panels show the deviation from the default theoretical predic-
tion.

by a factor of two to obtain the uncertainty bands in the various plots. We do not show the
small uncertainty of +0.1%

−1% associated with varying the hard scale. It is qT -independent and can
be found in Table 1. We use sin2 θW = 0.2312 for the Weinberg angle, α(MZ) = 1/128.89, and
MSTW2008NNLO PDFs [28] to obtain our predictions. The PDF uncertainties are shown in
Figure 7 and are of similar size at the Tevatron and the LHC. At low qT , they are of order 5%
and then decrease linearly to roughly 2% near qT = 30 GeV.

The overall agreement of the data [25, 24] with our result is very good, but the D0 data is
consistently lower than the CDF result and our theoretical prediction. Summing the data bins
to the total cross section pp̄ → Z + X → #+#− + X, one finds that the result of CDF amounts
to σtot = 247.4 pb, while D0 obtains σtot = 221.3 pb. The theoretical prediction for the total
cross section at O(α2

s) is σtot = 229.7 pb, in between the two values.1 On the right hand side,
we show the result obtained by normalizing the data to their respective total cross section.
One observes that the shape agrees well between the two experiments. We have normalized
the theoretical curve to the O(α2) fixed order result. Note that this does not guarantee that
the theoretical prediction for the spectrum is normalized to one, since the resummed result
one the one hand contains terms beyond O(α2) at low qT , and on the other hand not all terms
present in the O(α2) result at higher qT , since we only matched to O(α) in the spectrum.

In the plots in Figure 6 the observed peak is slightly (by about 0.5 GeV) to the right of
the prediction, which was obtained setting the non-perturbative parameter ΛNP = 0 to zero.
We have discussed in the previous section that long-distance corrections will shift the peak to

1We have used the code VRAP [30], based on the paper [31], to obtain the total cross section.
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Figure 9: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
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Figure 9: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
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• Include NP corrections. Scales are varied by a factor 

•Do not exponentiate anomalous log’s: NLL in amplitude, LL in 
exponent. 

33
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D0, RUN II

• Correction from matching to O(αs) fixed order result at has been 
multiplied by 5; is negligible in peak region.
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Figure 9: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

the right and Figure 5 shows that a shift of 0.5 GeV corresponds to a value of ΛNP = 0.9 GeV.
In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental
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BOZZI ET AL.

• Nice agreement with our result within uncertainties (same peak 
position, our peak is 6% higher, tail about 4% lower).

• Do not use non-perturbative parameter.
35

we see that, at NNLL+NLO accuracy, the resummation scale dependence is larger than (though,
comparable to) the µF and µR dependence.

The integral over qT of the resummed NNLL+NLO (NLL+LO) spectrum is in agreement (for
any values of µR, µF and Q) with the value of the corresponding NNLO (NLO) total cross section
to better than 1%, thus checking the numerical accuracy of our code. We also note that the
large-qT region gives a little contribution to the total cross section (see some numerical results in
Sect. 3.2 of Ref. [24]); therefore, the total cross section constraint mainly acts as a perturbative
constraint on the resummed spectrum in the region from intermediate to small values of qT .

Figure 3: The normalized qT spectrum of Z bosons at the Tevatron Run II. The NNLL+NLO
result is compared with the D0 data of Refs. [30, 31]. The bands are obtained as described in the
text.

The D0 Collaboration has measured the normalized qT distribution, 1
σ

dσ
dqT

, from data at the
Tevatron Run II in the e+e− [30] and µ+µ− [31] channels. In the left panel of Fig. 3 we report the D0
data and our corresponding results at NNLL+NLO accuracy. The NNLL+NLO band represents
our estimate of the perturbative uncertainty, and it is obtained by performing scale variations
as follows. We independently vary µF , µR and Q in the ranges mZ/2 ≤ {µF , µR} ≤ 2mZ and
mZ/4 ≤ Q ≤ mZ , with the constraints 0.5 ≤ µF/µR ≤ 2 and 0.5 ≤ Q/µR ≤ 2. The constraint
on the ratio µF/µR is the same as used in the left panel of Fig. 2; it has the purpose of avoiding
large logarithmic contributions (powers of ln(µ2

F/µ
2
R)) that arise from the evolution of the parton

densities. Analogously, the constraint on the ratio Q/µR avoids large logarithmic contributions
(powers of ln(Q2/µ2

R)) in the perturbative expansion of the resummed form factor‖ exp{GN} (see
Eq. (6)). We recall (see e.g. Eq. (19) of Ref. [21]) that the exponent GN of the form factor is
obtained by q2 integration of perturbative functions of αS(q2) over the range b20/b

2 ≤ q2 ≤ Q2.
To perform the integration with systematic logarithmic accuracy, the running coupling αS(q2) is
then expressed in terms of αS(µR) (and ln(q2/µ2

R)). As a consequence, the renormalization scale
µR should not be too different from the resummation scale Q, which controls the upper bound of
the q2 integration.

The D0 data and the NNLL+NLO band are presented in the left panel of Fig. 3. The inset

‖We do not apply additional constraints on the ratio Q/µF , since the form factor does not depend on µF .

8

Bozzi, Catani, Ferrera, de Florian, Grazzini ’10
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Figure 9: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

the right and Figure 5 shows that a shift of 0.5 GeV corresponds to a value of ΛNP = 0.9 GeV.
In Figure 8, we compare again to the CDF data [25] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.9 GeV. In the lower panels, we give the ratio of the experimental

23

• Same non-perturbative parameter as at the Tevatron. Need finer binning for 
clear evidence for non-perturbative effects.

• ATLAS data (and thus also our results) agree well with RESBOS. 

• Preliminary CMS result is available as well, but only with lepton cuts.
36
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PDF UNCERTAINTIES

• 90% C.L. for MSTW; 1σ band for NNPDF
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Figure 6: Comparison to Run I data from CDF [25] and D0 [24].
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Figure 7: PDF uncertainties. For MSTW, the band amouns to 90% C.L. while the NNPDF
region shows the average with its standard deviation.

6 Comparison to experimental data

We now compare our results to the available experimental data. The most detailed picture of
the low-qT region is provided by the results by CDF [25] and D0 [24] obtained during Run
I of the Tevatron, which are quite finely binned at small transverse momentum. In Figure 6,
we plot the the experimental data, together with our prediction, obtained using the modified
expansion at NLO, matched to the LO fixed order result. For the hard scale we choose the
time-like value µ2

h = −M2
Z , and we use µ = qT + q∗ for the factorization scale, which is varied

by a factor of two to obtain the uncertainty bands in the various plots. We do not show the

21



• Focussed here on low qT , but one can also perform threshold 
resummation for qT spectrum [or joint - threshold and qT - 
see Kulesza et al. ’02].

•Mostly relevant at large qT: due to the fall-off of the PDFs, very 
high-qT W’s and Z’s are mostly produced near threshold.

• Factorization theorem:

LARGE QT
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Resummation for W and Z production at large pT

Thomas Becher a, Christian Lorentzen a and Matthew D. Schwartz b

a Institut für Theoretische Physik, Universität Bern
Sidlerstrasse 5, CH–3012 Bern, Switzerland
b Department of Physics, Harvard University,

Cambridge, Massachusetts 02138, USA

Soft-Collinear Effective theory is used to perform threshold resummation for W and Z production
at large transverse momentum to next-to-next-to-leading logarithmic accuracy including matching
to next-to-leading fixed-order results. The results agree very well with data from the Tevatron,
and predictions are made for the high-pT spectra at the LHC. While the higher-log terms are of
moderate size, their inclusion leads to a substantial reduction of the perturbative uncertainty. With
these improvements, the PDF uncertainties now dominate the error on the predicted cross section.

The production of an electroweak boson at large
transverse momentum is arguably the most basic hard-
scattering process at hadron colliders. In fact, it was one
of the first for which the next-to-leading order (NLO)
perturbative corrections were computed [1–3]. By now
the complete α2

s corrections to vector boson production
are known, but since the pT -spectrum starts at O(αs)
its theoretical accuracy has not been improved since the
nineteen eighties. Given that Z’s and W ’s at high trans-
verse momentum provide an important background to
new physics searches and a standard way to calibrate jet
energy scales, it is important to have good theoretical
control of their cross sections.
In the absence of a full NNLO computation, a way to

improve predictions is to compute the contributions to
the cross section which arise near the partonic threshold
from the emission of soft and collinear gluons. For very
large pT , these corrections become dominant and must be
resummed to all orders in perturbation theory. However,
even away from this region, the corresponding terms yield
in many cases a good approximation to the full cross
section. For vector boson production, this resummation
has been performed to next-to-leading logarithmic (NLL)
accuracy in [4–6].
In the present paper, we use Soft-Collinear Effective

Theory (SCET) [7–9] to perform the resummation of the
threshold terms to NNLL accuracy. A detailed deriva-
tion of the factorization theorem and phenomenological
analysis of the closely related process of direct photon
production were presented by the authors in [10]. This
paper is a generalization of those results to include vector
boson masses which significantly complicates the calcu-
lations.
In the partonic threshold region, where the final state

has an invariant mass much lower than the transverse
momentum, the cross section for a given partonic initial
state I to produce an electroweak boson V factorizes as

dσ̂I

dŝ dt̂
= σ̂B

I (ŝ, t̂)HI(ŝ, t̂,MV , µ)

×
∫

dk JI(m
2
X − 2EJk)SI(k, µ) , (1)

where the partonic Mandelstam variables are ŝ = (p1 +
p2)2 and t̂ = (p1 − q)2, with q the vector boson momen-
tum, with q2 = M2

V . We have factored out the Born
level cross section σ̂B

I (ŝ, t̂). The parton momenta pµ1 and
pµ2 carry momentum fractions x1 and x2 and are related
to the hadron momenta via pµ1 = x1P

µ
1 and pµ2 = x2P

µ
2 .

The hadronic cross section is obtained after convoluting
with parton distribution functions (PDFs) and summing
over all partonic channels.
At the partonic threshold the mass of the final-state

jet m2
X = (p1 + p2 − q)2 vanishes. Since the full final

state also involves the remnants of the scattered hadrons,
this condition does not imply that the hadronic invariant
massM2

X = (P1+P2−q)2 vanishes, unless the momentum
fractions x1 and x2 are close to unity. Because there is
no phase space for additional hard emissions near the
threshold, the only corrections to the cross section arise
from virtual corrections, encoded in the hard function
HI(ŝ, t̂,MV , µ), and soft and collinear emissions given
by SI(k, µ) and JI(p2J). The convolution over the soft
momentum in (1) arises because the partonic jet mass is

m2
X = (pJ + kS)

2 ≈ p2J + 2EJk , (2)

where pµJ and kµS are the collinear and soft momenta in
the jet, EJ is the jet energy and k = pJ ·kS/EJ . Since the
reaction in the threshold region proceeds via Born-level
kinematics, only two partonic channels are relevant: the
Compton channel qg → qV and the annihilation channel
qq̄ → gV .
A detailed derivation of the factorization formula (1)

was given in [10]. That paper focused on photon pro-
duction, but exactly the same jet and soft functions are
relevant also for W and Z production. Explicit expres-
sions for these functions in both the Compton and an-
nihilation channel can be found in [10], together with
the relevant anomalous dimensions. The non-zero boson
mass only enters the hard function HI(ŝ, t̂,MV , µ) and
modifies the kinematics. The hard function is given by
the virtual corrections to the corresponding hard scatter-
ing channel. To obtain the function at NLO, one needs
the interference of the one-loop amplitude with the tree-
level result, which is given in equations (A.7) to (A.9) of



RESUMMATION TO NNLL
• Have all the necessary input for NNLL resummation and 

• almost of the input for N3LL

• All necessary anomalous dimensions Becher, Schwartz ’09. 

• Hard anomalous dimension follows from general results of 
Magnea, Gardi ’09 and TB, Neubert ’09

• Two-loop quark TB, Neubert ’06 and gluon TB, Bell ’10 jet 
functions

• Logarithmic part of two-loop hard and soft functions

39



Moderate shift of the central value, but much reduced scale 
dependence, below PDF uncertainty.

40

TB, Lorentzen, Schwartz, 1106.4310

qT

3

the partonic cross section is convoluted with the PDFs,
the average jet mass must be calculated numerically.
To obtain the proper scale for each ingredient of the

factorization formula (1), we use the numerical procedure
advocated in [12]. We evaluate the factorization theorem
(1) numerically at a fixed scale µ and study individually
the impact of the NLO corrections from the hard, jet
and soft functions. The scale variations are shown on
the top panel in Figure 2. Note that the jet and hard
function variations have natural extrema. These extrema
are shown as the points in the lower panel for the jet scale.
The solid curves are a reasonable approximation to these
points, given by

µh =
13pT + 2MV

12
−

p2T√
s
,

µj =
7pT + 2MV

12

(

1−
2pT√
s

)

,

(6)

which we use instead of the exact extrema for simplicity.
We also set µs = µ2

j/µh, as dictated by the factorization
theorem. By choosing scales close to these extrema, we
minimize the scale uncertainty.
The scale setting procedure beautifully illustrates the

power of the effective field theory approach. In a fixed-
order computation, the hard, jet and soft corrections can-
not be separated and are included at a common value
of the renormalization scale. This is shown in the NLO
curves in the top of Figure 2. In this case the scale depen-
dence is monotonous. Because there are multiple relevant
scales in the problem, there is no natural scale choice at
fixed order. But there are natural choices when µ is split
into hard, jet and soft. For illustration, we also show
in the bottom panel of Figure 2 the popular scale choice
µj =

√

p2T +M2
V , which is a bad fit to the jet scale.

The most natural choice for the factorization scale µf

would be at or below µs, since this scale defines the
boundary between the perturbative and non-perturbative
part of the process. However, since all PDF fits were per-
formed with µf set equal to the hardest scale in the pro-
cess, we will follow this convention and use µf = µh as
our default value. Note that this implies that we use the
RG to run the jet and soft functions from lower to higher
values, in contrast to the situation depicted in Figure 1.
In order for our results to contain the full NLO cross

section we match the resummed result to fixed order.
The matching is straightforward since the resummation
switches itself off when we set all scales equal, µh = µj =
µs = µf . Doing so in the NNLL result yields all loga-
rithmically enhanced terms at one loop level, which we
denote by NLOsing. The matched result is obtained by
adding the difference between the full NLO result and the
singular terms NLOsing to the NNLL resummed result.
We denote the matched result by NNLL+NLO. To com-
pute the NLO fixed-order result, we use the code qt [13],
and have verified that it agrees with mcfm [14].
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FIG. 3: Comparison to DZero results [18].
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FIG. 4: Prediction for the combined W+ and W− cross sec-
tions the LHC (7 TeV).

Most of the ingredients necessary to go to N3LL ac-
curacy are already known. The 3-loop anomalous di-
mensions are all known. We use these, along with the
two-loop jet function constants [15, 16] and the Padé ap-
proximant for the 4-loop cusp anomalous dimension, to
get our most accurate prediction, which we denote by
N3LLpartial.

For fixed order, we set the renormalization and factor-
ization scales equal to µh. Uncertainties are estimated
by varying by a factor of 2 around the defaults values
(6) and extracting the maximum and minimum values.
For the final scale variation error bands on the resummed
distributions, we add the jet, hard, soft and factorization
scale uncertainties in quadrature. All numerical predic-
tions are computed using MSTW2008NNLO PDFs [17],
with αs(MZ) = 0.1171. For the electroweak parameters,
we use α = 1/127.92, sin θW = 0.2263,MW = 80.40GeV,
MZ = 91.19GeV.

In Figure 3, we show the pT spectrum of the Z-boson
at the Tevatron in comparison to results of the D0 exper-
iment [18]. Our results agree well with the experimental
results but have significantly smaller uncertainties, in the
region of high transverse momentum.



SUMMARY
• Renewed interest in transverse momentum spectrum. Many surprising 

features 

• soft-collinear factorization broken by an anomaly, 

• product of two transverse PDFs can be defined without additional 
regulator, but has anomalous dependence on hard momentum 
transfer

• emergence of nonperturbative scale q*~2GeV: spectrum is short-
distance dominated, even at very low qT 

• strongly divergent expansions in αs, qT/q*, ΛQCD/q*.

• Three-loop coefficient A(3), the last missing piece needed for NNLL 
accuracy.

• NNLL results compare well with LHC data. It would be nice to have 
finer binning in the peak region to study non-perturbative effects.
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COLLINS SOPER STERMAN FORMULA

• The low scale is                   , and we set                 . 

• Landau-pole singularity in the Fourier transform. To use the 
formula, one needs additional prescription to deal with this.
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• 80% of all events have qT <16 GeV, where resummation is 
necessary.
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tematic uncertainties. We note that, due to the smooth-
ing introduced by the regularization condition imposed
during the second step of the data corrections, statistical
fluctuations in the measured cross section in each pZT bin
have been suppressed; however the statistical uncertain-
ties still accurately reflect the possible spread in each bin
which could be caused by such fluctuations. As a result,
care must be taken when using the data in any fits as this
suppression of fluctuations may lead to an artificially low
χ2 for any fit which describes the central values of the
data well. Table I also lists four multiplicative correction
factors for each bin, which can be applied to compare this
result to previous measurements: the factor labeled pµT
corrects for the effect of the muon pT> 15 GeV require-
ment; the factor labeled FSR corrects for QED FSR; the
factor labeled A then corrects from the measured lepton
acceptance to full 4π acceptance; and finally the factor
labeled M corrects from the measured mass window to
the larger mass window used in the D0 electron channel
measurement [13] (40–200 GeV). Applying only the pµT
factor results in the same dimuon definition as previous
Z/γ∗+jets measurements [15, 20]; unlike pZT , the vari-
ables studied in these previous measurements had mini-
mal dependence on the muon pT requirement, so a cor-
rection was applied by default. All factors are derived
using resbos interfaced to photos [33], as described in
the following text, and we provide only the central val-
ues without assessing possible systematic uncertainties.
However, deriving the same factors from the different the-
oretical calculations described in the following text indi-
cates that model dependence limits the accuracy of these
factors, particularly A for pZT > 20 GeV, to the level of
a few percent. Applying all factors to the data allows a
comparison to the D0 electron channel measurement, as
shown in Fig. 2. Within the limitations of this compari-
son, the agreement is reasonable. For direct comparisons
with theory, these correction factors are not applied to
the dimuon data.
To compare to the data, predictions for the pZT dis-

tribution are obtained from several theoretical calcula-
tions. Predictions from pQCD are obtained with mcfm,
by evaluating both the differential distribution and to-
tal cross section at either leading order (LO) or next-to-
leading order (NLO):

f(pT ) ≡
1

σZ/γ∗

∣

∣

∣

∣

(N)LO

×
dσZ/γ∗

dpT

∣

∣

∣

∣

(N)LO

where the first term is of order O(α0
s) at LO and O(α1

s)
at NLO, while the second term is O(α1

s) at LO and
O(α2

s) at NLO. This approach differs from the treat-
ment of the pQCD calculation in the D0 electron chan-
nel measurement. There, both the total cross section
and differential distribution were calculated to the same
power of the strong coupling constant, O(α2

S), yield-
ing a NNLO total Z/γ∗ cross section (and was labeled
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FIG. 2: Measurements of the normalized differential cross
section in bins of pZT for the dielectron [13] and dimuon chan-
nels. Both results are shown with combined statistical and
systematic uncertainties.

“NNLO”), but a NLO differential distribution. The pre-
scription used here, calculating both the total and differ-
ential cross section to the same number of contributing
terms in the perturbative expansion, results in a reduced
scale dependence and improved convergence of the per-
turbative series [37]. The total cross section is evalu-
ated using the inclusive pp̄ → Z/γ∗ + X process at LO
and NLO, and the differential distribution evaluated us-
ing the pp̄ → Z/γ∗+ jet+X process again at LO and
NLO, with no limit on the jet rapidity but requiring jet
pT > 2.5 GeV to remove the divergence as pT → 0. The
same requirements are placed on the muons as for the
data analysis, and the differential Z/γ∗ pT distribution
close to the jet pT cutoff is excluded. The MSTW2008
LO and NLO PDFs [38] are used throughout in calcu-
lating the LO and NLO processes respectively. In all
cases, renormalization and factorization scales are set to
the sum in quadrature of the mass and pT of the Z/γ∗ in
each event, and the dependence on this choice is assessed
by varying both scales simultaneously up and down by a
factor of 2, both for the differential distribution and the
inclusive Z/γ∗ cross section used in normalization. PDF
uncertainties are assessed using the MSTW2008 68% er-
ror sets, again taking into account the effect on the dif-
ferential distribution and the inclusive Z/γ∗ cross section
used in normalization. These are found to be approxi-
mately a factor of two smaller than the scale uncertainties
at NLO, and negligible compared to the scale uncertain-
ties at LO. The prediction from mcfm must then be cor-
rected for the effects of QED FSR from the muons. These
corrections are derived from the resbos+photos sample
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Figure 3: The combined normalized differential cross section as a function of pZT for (a) the range pZT < 30 GeV and (b) the full range
compared to the predictions of Resbos, Pythia, and Fewz at O(α2

S). The error bars shown include statistical and systematic uncertainties.

For the combination, the ee (µµ) channel contributes with an integrated luminosity of 35 pb−1 (40 pb−1). At low pZT the Fewz prediction
diverges and is omitted.
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Figure 4: Ratios of the combined data and various predictions over the Resbos prediction for the normalized differential cross section as
a function of pZT : (a) Fewz predictions at O(αS) and O(α2

S); (b) predictions from the generators Pythia, Mc@nlo, Powheg, Alpgen and
Sherpa. The Fewz predictions are shown with combined scale, αS, and PDF uncertainties. The data points are shown with combined
statistical and systematic uncertainty. At low pZT the O(αS) and O(α2

S) predictions of Fewz diverge and are omitted.
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