Soft and Hard Mesons in Chiral Perturbation Theory

Ilaria Jemos in collaboration with Johan Bijnens

Department of Astronomy and Theoretical Physics Lund University

9th of June 2011, Vienna

- D Chiral Perturbation Theory
- 2 Relations at order p^6 in Chiral Perturbation Theory
- 3 A new global fit of the L_i^r at next-to-next-to-leading order
- 4 Hard pion Chiral Perturbation Theory

D Chiral Perturbation Theory

2 Relations at order p^6 in Chiral Perturbation Theory

- 3 A new global fit of the L_i^r at next-to-next-to-leading order
- 4 Hard pion Chiral Perturbation Theory

Chiral Perturbation Theory

$$\mathcal{L} = \sum_{q=1}^{n_f} [i\bar{q}_L \mathcal{D}q_L + i\bar{q}_R \mathcal{D}q_R - m_q(\bar{q}_R q_L + \bar{q}_L q_R)]$$

 $(n_f = \text{number of flavours})$

If $m_q = 0$ then $SU(n_f)_L \times SU(n_f)_R$ (chiral symmetry) \Rightarrow parity doublets in the spectrum.

They do not exist! $\Rightarrow SU(n_f)_L \times SU(n_f)_R \rightarrow SU(n_f)_V$

- $n_f = 2 \rightarrow 3$ Goldstone bosons
- $n_f = 3 \rightarrow 8$ Goldstone bosons

 $m_q \neq 0$ (but small) \Rightarrow chiral symmetry is also explicitly broken, Goldstone bosons are not massless

Construction as Effective Field Theory

Degrees of freedom pseudo-Goldstone bosons (lightest mesons in the spectrum)

•
$$n_f = 2 \rightarrow \pi^+, \pi^-, \pi^0$$

• $n_f = 3 \rightarrow \pi, K, \eta$

$$U = e^{i\frac{\sqrt{2}\phi}{F_0}} \qquad \phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

Expected breakdown scale Resonances (m_{ρ})

Lagrangian All operators allowed by QCD symmetries

$$\mathcal{L}_2 = \frac{F_0^2}{4} (\langle D_\mu U^\dagger D^\mu U \rangle + \langle \chi^\dagger U + U^\dagger \chi \rangle), \\ \chi = 2B_0(s + ip) \qquad D_\mu U = \partial_\mu U - ir_\mu U + iUl_\mu,$$

 s, p, r_{μ}, l_{μ} =external fields, $s = \mathcal{M} + \dots$ (quark masses) F_0, B_0 = Low Energy Constants (LECs)

Power counting

- ChPT at low energies \rightarrow small momenta (p) and masses
- In \mathcal{L}_2 operators with either two derivatives (p^2) or masses (m^2)

- observables depend on $p^2(/(4\pi F_0)^2)$ and $m^2(/(4\pi F_0)^2)$ which are small parameters $((4\pi F_0)^2 \gg p^2, m^2) \rightarrow$ use them for perturbative expansion
- so power counting is a dimensional counting!
- $O = O_{p^2} + O_{p^4} + O(p^6)$

Higher Order

- Loop diagrams are divergent ⇒ need counterterms to cancel the infinities arising (RENORMALIZATION)
- From \mathcal{L}_2 only terms $\sim p^2$, but we need to renormalize diagrams $\sim p^4$
- Operators $\sim p^4$ also allowed by symmetries $\rightarrow \mathcal{L}_4$

$$\mathcal{L}_{4} = L_{1} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle^{2} + L_{2} \langle D_{\mu} U^{\dagger} D_{\nu} U \rangle \langle D^{\mu} U^{\dagger} D^{\nu} U \rangle$$

$$+ L_{3} \langle D^{\mu} U^{\dagger} D_{\mu} U D^{\nu} U^{\dagger} D_{\nu} U \rangle + L_{4} \langle D^{\mu} U^{\dagger} D_{\mu} U \rangle \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle$$

$$+ L_{5} \langle D^{\mu} U^{\dagger} D_{\mu} U (\chi^{\dagger} U + U^{\dagger} \chi) \rangle + L_{6} \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle^{2}$$

$$+ L_{7} \langle \chi^{\dagger} U - \chi U^{\dagger} \rangle^{2} + L_{8} \langle \chi^{\dagger} U \chi^{\dagger} U + \chi U^{\dagger} \chi U^{\dagger} \rangle$$

$$- iL_{9} \langle F_{\mu\nu}^{R} D^{\mu} U D^{\nu} U^{\dagger} + F_{\mu\nu}^{L} D^{\mu} U^{\dagger} D^{\nu} U \rangle$$

$$+ L_{10} \langle U^{\dagger} F_{\mu\nu}^{R} U F^{L\mu\nu} \rangle + H_{1} \langle F_{\mu\nu}^{R} F^{R\mu\nu} F_{\mu\nu}^{L\mu\nu} \rangle + H_{2} \langle \chi \chi^{\dagger} \rangle$$

- solve problem of divergencies, but more couplings arising!
- at two loops? same procedure: L₆ couplings (C_i) used to cancel divergencies of loop diagrams of order p⁶.

I. Jemos (Lund University)

Higher Orders (an example)

Low Energy Constants

	3 flavour (u,d,s) ChPT				
p^2	F_0, B_0	2			
p^4	L_i^r, H_i^r	10+2			
p^6	C_i^r	90+4			

Determination of LECs is important:

- to have precise predictions of ChPT
- to check convergence of perturbative expansion
- to study the underlying QCD

Low Energy Constants

	3 flavour (u,d,s) ChPT				
p^2	F_0, B_0	2			
p^4	L_i^r, H_i^r	10+2			
p^6	C_i^r	90+4			

Determination of LECs is important:

- to have precise predictions of ChPT
- to check convergence of perturbative expansion
- to study the underlying QCD

PROBLEMS:

- Iarge number of phenomenological constants
- strong correlations among them
- many of the observables calculated in ChPT have not been measured yet. (But dispersion relations and lattice results can be used)

2 Relations at order p^6 in Chiral Perturbation Theory

3 A new global fit of the L_i^r at next-to-next-to-leading order

4 Hard pion Chiral Perturbation Theory

Chiral Perturbation Theory \rightarrow every observable can be written as a sum of terms of decreasing importance in the Chiral expansion.

$$O = O_{p^2} + O_{p^4} + O_{p^6}$$

The p^6 part can be split in as

$$O_{p^6} = O_{C_i(\text{tree level})} + O_{L_i(\text{one loop})} + O_{F_0(\text{two loops})}$$

If we have a relation such that the first contribution cancels out

- we can check how large is the loop contribution and test ChPT convergence in a *C_i* independent way
- in this way we isolated combinations of the C_i

If we have a set of observables $\{O_i\}$ calculated at NNLO and such that:

$$-5[O_1]_{C_i} + 2[O_2]_{C_i} =$$
 some combination of the $C_i = 21[O_3]_{C_i}$

where $[A]_{C_i} \equiv C_i$ -part of the observable A

then

- $[LHS]_{C_i} = [RHS]_{C_i}$ as far as regards the C_i part
- but for the other contributions to the $\{O_i\}$ (e.g. loop diagrams) $\Rightarrow LHS_{(rest)} \neq RHS_{(rest)}(!!!)$
- for all measured observables $O_{i(exp)} = O_{i(rest)} + [O_i]_{C_i}$ $\Rightarrow LHS_{(exp)} - RHS_{(exp)} \sim LHS_{(rest)} - RHS_{(rest)}$
- the C_i cancel in the relations \Rightarrow this is a C_i -independent way to test ChPT

Overview of the processes considered and relations found

process	# observables	# relations
$\pi\pi$ scattering	11	5
πK scattering	14	5
πK and $\pi \pi$ scattering	no extra observables	2
$K_{\ell 4}$ (with πK scattering)	10	1
$\eta \rightarrow 3\pi \text{ (with } \pi K)$	6	2
scalar form factors $F_S^{\pi/K}(t)$	18	6
$F_S^{\pi/K}(t), \pi\pi$ and πK scattering	no extra observables	2
$F_S^{\pi/K}(t), K_{\ell 4}, \pi \pi \text{ and } \pi K \text{ scattering}$	no extra observables	1
$F_{S}^{\pi/K}(t)$, masses and decay constants	6	4
Vector form factors $F_V^{\pi/K}$	11	7
Total	76	35

Numerical results

I. Jemos (Lund University)

Vienna, 09/06/2011 14 / 3

- found several relations between observables such that dependence on many couplings drops out
- useful to study validity of ChPT perturbative expansion
- 13 relations studied numerically
- overall picture quite ok, but still a few trouble cases
- probably with the new values of L_i^r (see next) the results will change

- Chiral Perturbation Theory
- 2 Relations at order p^6 in Chiral Perturbation Theory
- 3 A new global fit of the L_i^r at next-to-next-to-leading order
- 4 Hard pion Chiral Perturbation Theory

Fit 10: input

• Existing fit of the *L_i* at NNLO: fit 10 Amoros, Bijnens, Talavera, Nucl. Phys. B 602 (2001) 87 [hep-ph/0101127]

• INPUT:

o masses:
$$m_{\pi^0}^2$$
, m_{η}^2 , $m_{K^+}^2$, $m_{K^0}^2$ PDG-00
o $F_{\pi} = 92.4 \text{ MeV}$
o $K_{\ell 4}$: f_s , f_s' , g_s , g_s' (linear fit E865)
c L_1^r , L_2^r , L_3^r
o $F_K/F_{\pi} = 1.22 \pm 0.01$
o K_r^r , $F_{\pi} = 1.22 \pm 0.01$
o L_1^r , L_2^r , L_7^r , L_7^r
o $L_4^r \equiv L_6^r \equiv 0$
o $L_9^r \equiv 6.9 \times 10^{-3} (\langle r^2 \rangle_V^{\pi})$
(~no contributions in quantities involved)
o $L_{10}^r \equiv 0$

• C_i^r from resonance saturation: Vector, Axial-Vector, Scalar, η' . Scale of saturation $\mu \equiv 0.77$ Gev. $\mu = 0.5$, 1 Gev within errors.

New fits: input

- Since 2001 many two-loop calculations+quantities better known phenomenologically ⇒ new global fit of the L^r_i at NNLO: Bijnens,IJ (2011)
- INPUT (fit 10)
 - masses: $m_{\pi^0}^2$, m_{η}^2 , $m_{K^+}^2$, $m_{K^0}^2$ PDG-00 • $F_{\pi} = 92.4 \text{ MeV}$ • $K_{\ell4}$: f_s , f_s' , g_s , g_s' (linear fit E865) • $F_K/F_{\pi} = 1.22 \pm 0.01$ • $m_s/\hat{m} = 24$ • $L_4^r \equiv L_6^r \equiv 0$ • $L_9^r \equiv 6.9 \times 10^{-3} (\langle r^2 \rangle_V^{\pi})$ • $L_{10}^r \equiv 0$ • $\pi \pi$ scattering threshold parameters • πK scattering threshold parameters
 - $(1) \quad \langle r^2 \rangle_{\rm S}^{\pi} \text{ pion scalar radius}$
- C_i^r from resonance saturation: Vector, Scalar, η' .

• C_i^r from Jiang et al.(2010)) and with random values (simulated annealing algorithm) also tested

 \rightarrow (new fits)

- \rightarrow PDG-10
 - $\rightarrow F_{\pi} = 92.2 \text{ PDG-10}$
 - \rightarrow (quadratic fit NA48/2)
 - $\rightarrow F_K/F_{\pi} = 1.197 \pm 0.007$
 - $\rightarrow m_s/\hat{m} = 27.8$
 - \rightarrow constraint released
 - $\rightarrow L_9^r \equiv 5.93 \times 10^{-3}$

I. Jemos (Lund University)

Vienna, 09/06/2011 18 / 37

Fit 10 and new fit: output

fit10 iso: as fit 10 but no isospin breaking corrections

fit All: new best fit

	fit 10 iso	fit All
$10^{3}L_{1}^{r}$	0.39 ± 0.12	0.88 ± 0.09
$10^{3}L_{2}^{r}$	0.73 ± 0.12	0.61 ± 0.20
$10^{3}L_{3}^{r}$	-2.34 ± 0.37	-3.04 ± 0.43
$10^{3}L_{4}^{r}$	$\equiv 0$	0.75 ± 0.75
$10^{3}L_{5}^{r}$	0.97 ± 0.11	0.58 ± 0.13
$10^{3}L_{6}^{r}$	$\equiv 0$	0.29 ± 0.85
$10^{3}L_{7}^{r}$	-0.30 ± 0.15	-0.11 ± 0.15
$10^{3}L_{8}^{r}$	0.60 ± 0.20	0.18 ± 0.18
χ^2 (dof)	0.26(1)	1.28 (4)

- new info on $K_{\ell 4}$ form factors \Rightarrow large N_c relation $2L_1 \sim L_2$ unsatisfied
- $L_4^r, L_6^r, L_7^r, L_8^r$ related to masses (not well constrained)
- change in values of $F_K/F_\pi \Rightarrow$ very different L_5^r
- better convergence for fit All (see after)

	fit 10 iso			fit All		
	p^2	p^4	p^6	p^2	p^4	p^6
m_{π}^2	0.753	0.006	0.241	1.035	-0.084	0.049
m_K^2	0.702	0.007	0.291	1.106	-0.181	0.075
m_{η}^2	0.747	-0.047	0.291	1.186	-0.224	0.038
F_{π}	1	0.136	-0.075	1	0.311	0.108
F_K	1	0.308	-0.003	1	0.441	0.216
F_K/F_{π}	1	0.171	0.049	1	0.129	0.068

- expansion for masses improved for fit All (but a bit suspicious)
- C_i^r appearing in the masses are zero in resonance estimate
- F_K/F_{π} convergence is quite good for both fits

• $K_{\ell 4}$ data analysis: two possible fits of F_s formfactor

$$F_s(q^2) \sim f_s + f'_s q^2 + f''_s q^4 \rightarrow \text{fit All}$$

 $F_s(q^2) \sim f_s + f'_s q^2 \rightarrow \text{fit 10/fit 10 iso}$

ChPT does not predict the value for f''_s ! Using f'_s we obtain $L^r_2 > L^r_1$ but L^r_7 , L^r_8 small. Convergence for masses worse.

• Matching between two- and three-flavour ChPT Gasser *et al.* (2007,2009) Expand three-flavour results for $m_{u,d} \rightarrow 0$, keeping m_s fixed $\Rightarrow \bar{\ell}_i$ can be written in terms of L_i^r , C_i^r .

	fit 10 iso	All	All linear	lattice/disp
ℓ_1	-0.6	-0.1	-1.9	-0.4 ± 0.6
$\bar{\ell_2}$	5.7	5.3	5.7	4.3 ± 0.1
$\bar{\ell_3}$	1.3	4.2	4.1	3.3 ± 0.7
$\bar{\ell_4}$	4.0	4.8	4.5	4.4 ± 0.4

 $\bar{\ell_2}$ always wrong. It depends on L_2^r and on two N_c suppressed C_i^r (see after).

C_i^r with random values

Can we find a set of C_i^r of expected size (i.e. $1/(16\pi^2)^2$) producing good L_i^r fits?

- started with different $C_i^{r(in)}$
- $C_i^{r(step)} \propto 10^{-2}/(16\pi^2)^2$ and chosen so to respect large N_c suppressions
- need to add convergence constraints for masses and decay constants
- $\bar{\ell}_i$ included as input
- obtain several good fits (with good convergence) and ok C_i^r

An example: L_1^r

I. Jemos (Lund University)

Vienna, 09/06/2011 23

23 / 37

Our best fits for random C_i

C_i^r	best reso	best random
$10^{3}L_{1}^{r}$	0.75 ± 0.09	0.85 ± 0.09
$10^{3}L_{2}^{r}$	0.81 ± 0.45	0.54 ± 0.05
$10^{3}L_{3}^{r}$	-3.91 ± 0.28	-3.51 ± 0.28
$10^{3}L_{4}^{r}$	0.16 ± 0.10	0.20 ± 0.10
$10^{3}L_{5}^{r}$	1.40 ± 0.09	1.40 ± 0.09
$10^{3}L_{6}^{r}$	0.10 ± 0.14	0.12 ± 0.14
$10^{3}L_{7}^{r}$	-0.32 ± 0.13	-0.32 ± 0.13
$10^{3}L_{8}^{r}$	0.64 ± 0.16	0.63 ± 0.16
χ^2	0.30	0.36

C_i^r	best reso			best random		
	p^2	p^4	p^6	p^2	p^4	p^6
m_{π}^2	0.987	0.021	-0.008	0.993	0.021	-0.012
m_K^2	1.057	-0.054	-0.003	1.060	-0.058	-0.002
m_{η}^2	1.132	-0.133	0.001	1.136	-0.135	-0.001
F_{π}/F_0	1	0.178	-0.010	1	0.187	-0.010
F_K/F_0	1	0.395	0.009	1	0.404	0.011
F_K/F_{π}	1	0.217	-0.020	1	0.217	-0.020

A D > A A P >
 A

æ

A correlation plot

- By varying the C_i^r we can study correlations between different LECs
- Here strong correlation between L_2^r and C_{13}^r , C_{11}^r due to $\bar{\ell}_2$

I. Jemos (Lund University)

Comparison with a fit to lattice data **PRELIMINARY**

- Ecker *et al.*(2010) use symplified NNLO expression to fit lattice data points on F_K/F_{π} .
- LECs fitted: L_5^r , $C_{14}^r + C_{15}^r$, $C_{15}^r + 2C_{17}^r$
- Other L_i^r as in fit 10

	Ecker <i>et al.</i> (2010)	fit All	best reso	best rand
$10^{3}L_{5}^{r}$	0.76 ± 0.008	0.58 ± 0.13	1.40 ± 0.009	1.40 ± 0.009
$10^5 (C_{14}^r + C_{15}^r)$	0.31 ± 0.007	0	-0.987	-1.061
$10^5 \left(C_{15}^r + 2C_{17}^r \right)$	1.1 ± 0.14	0	0.22	2.009

- Setting C_{14}^r and C_{17}^r as in Ecker *et al.*(2010), $(C_{15}^r=0)$ we find a fit with $\chi^2 \approx 3$ and $10^3 L_5^r \approx 0.59 \Rightarrow L_7^r$ and L_8^r very small
- However very bad convergence for mass expansions.

- a new global fit of the \mathcal{L}_4 couplings at NNLO from phenomenology has been performed
- the new data/dispersive analysis available give results very different from the previous fit 10
- results show disagreement with large N_c estimates of the couplings
- however many quantities better predicted and convergence of masses improved
- better treatments of some observables ($K_{\ell 4}$, inclusion of lattice data) might improve a lot this fit
- the study with random sets of C_i^r shows that ChPT has a chance to work well once the C_i^r are better estimated

- Chiral Perturbation Theory
- 2 Relations at order p^6 in Chiral Perturbation Theory
- 3 A new global fit of the L_i^r at next-to-next-to-leading order
- 4 Hard pion Chiral Perturbation Theory

Chiral Logarithms as main prediction of ChPT

Expansion of ChPT is not Taylor expansion: logarithms of masses (and energies) arise

$$\approx \infty + m^2 \log\left(\frac{m^2}{\mu^2}\right) + \cdots$$

m = mass of meson in loop, $\mu =$ arbitrary scale **E.g. for the masses**

$$M^{2} \approx \underbrace{m_{0}^{2}}_{\text{LO}} + \underbrace{\frac{m_{0}^{4}}{(4\pi F_{0})^{2}}\log\frac{m_{0}^{2}}{\mu^{2}} + \frac{L_{i}^{r}}{F_{0}^{2}}m_{0}^{4}}_{\text{NLO}} + \mathcal{O}(m_{0}^{6})$$

 $L_i^r \approx 10^{-2} \Rightarrow$ chiral logarithm $\log \frac{m_0^2}{\mu^2}$ is leading contribution at $\mathcal{O}(p^4)$ (NLO). The chiral logs encode mass dependence of the observables

Motivation

• Consider decays of a heavy meson into light mesons

- $m_B \approx 3000$ MeV, $m_D \approx 2000$ MeV, $m_\pi \approx 140$ MeV
- $q^{\mu} = (p_{B/D} p_{\pi})^{\mu}$ = momentum transfer to leptons $0 \le q^2 \le (M - m_{\pi})^2 = q_{\text{max}}^2$ with $M = m_B, m_D$
- two different kinematical regimes
 - q² ≈ q²_{max} ⇒ E_π ≤ 1 GeV soft pion (ChPT ok)
 q² ≈ 0 ⇒ E_π > 1 GeV hard pion (ChPT ???)

PROBLEM

• lattice calculates the decay at any q^2 but simulations done with HEAVY pions $(m_{\pi} > 300 \text{ MeV}) \Rightarrow$ need extrapolation formulas to achieve $m_{\pi} \sim 140 \text{ MeV}$

30/37

Argument for Hard Pion Chiral Perturbation Theory

Flynn and Sachrajda (2009), Bijnens and Celis (2009), Bijnens and IJ (2010)

In the Feynman diagrams appear both hard and soft lines.

The *soft* lines can be separated from the **hard/short-distance** structure of the rest of the diagram.

They are the only responsible of the non analyticities arising for $m_{\pi} \rightarrow 0$ (e.g. the chiral logarithms)

The **hard** part is describable by an effective Lagrangian consistent with all the symmetries and with <u>couplings that depend on hard kinematical quantities</u>. Assumption: this Lagrangian is sufficiently complete to describe the neighbourhood of the hard process.

Example

- **(**) consider a diagram with *soft (thin)* and **hard (thick)** lines
- 2) identify the *soft* lines and cut them \Rightarrow remove the soft singularities
- the resulting diagram is analytic in the soft part and thus should be describable by a vertex of an effective Lagrangian. The coupling contains information on the hard quantities
- insert back the loops with the *soft* lines: this last diagram should reproduce the soft singularities of the first one

However only arguments not proof!!!

Results

$$O(q^2, m^2) = L(q^2, 0) \times \left(1 + \alpha m^2 \log\left(\frac{m^2}{\mu^2}\right) + \mathcal{O}(m^2)\right)$$

 α is what we calculate. $L(q^2, 0)$ depends on the hard quantities (q^2, m_B) . Hard pion ChPT applied so far to

- $K \rightarrow \pi \ell \nu_{\ell}$ (two-flavour) Flynn and Sachrajda (2009)
- $K \rightarrow \pi \pi$ (two-flavour) Bijnens and Celis (2009)
- results agree with three-flavour standard ChPT
- $B(D) \rightarrow \pi \ell \nu_{\ell}$ (two-flavour) Bijnens and IJ (2010) \rightarrow agree with a relativistic formalism
- Bijnens and IJ (2011)
 - **()** $B(D) \rightarrow M\ell\nu_{\ell}$ with $(M = \pi, K, \eta)$ (three-flavour),
 - **2** $B \rightarrow D\ell \nu_{\ell}$ (three-flavour)
 - **(3)** π and *K* scalar and vector formfactors (three-flavour)
 - checked including two-loop diagrams for scalar and vector formfactors of the pion (two-flavour)

Comparison with data

- use three-flavour results and compare $f_{D\to\pi}^+(q^2)$ with $f_{D\to K}^+(q^2)$ CLEO coll. (2009)
- the chiral logs are responsible of the differences between the two decays

Vector and scalar formfactors of the pion

$$\langle \pi^+(p_2) \left| j_{\mu}^{\text{elm}} \right| \pi^+(p_1) \rangle = (p_2 + p_1)_{\mu} F_V^{\pi}(s)$$

- similar for scalar formfactor
- hard pion ChPT can be applied here. It predicts for $s \gg m_{\pi}^2, m_{\pi}^2 \to 0$

$$F_V^{\pi}(s) = F_V^{\pi\chi}(s) \left(1 - \frac{1}{F^2} \frac{m_{\pi}^2}{16\pi^2} \log\left(\frac{m_{\pi}^2}{\mu^2}\right) + \mathcal{O}(m_{\pi}^2) \right)$$

where $F_V^{\pi\chi}(s)$ unknown (contains only hard quantities, no m_{π}) $\alpha = -1/(16\pi^2 F^2)$

- same result obtained taking ChPT prediction Bijnens *et al.* (1998) and expand it for $s \gg m_{\pi}^2, m_{\pi}^2 \to 0$
- standard ChPT also predicts

$$F_V^{\pi\chi}(s) = 1 + \frac{s}{16\pi^2 F^2} \left(\frac{5}{18} - 16\pi^2 l_6^r + \frac{i\pi}{6} - \frac{1}{6}\ln\frac{s}{\mu^2}\right)$$

A two-loop check (two-flavour hard pion ChPT)

- so far including only one-loop diagrams
- what happens if two-loop diagrams are added? If hard pion ChPT is valid α must not change and we must obtain the same chiral logarithm:

$$F_V^{\pi}(s) = F_V^{\pi\chi}(s) \left(1 - \frac{1}{F^2} \frac{m_{\pi}^2}{16\pi^2} \log\left(\frac{m_{\pi}^2}{\mu^2}\right) + \mathcal{O}(m_{\pi}^2) \right)$$

- take ChPT two-loop result and expand it for $s \gg m_\pi^2, m_\pi^2 \to 0$
- terms like $sm_{\pi}^2 \log^2(m_{\pi}^2)$ exactly cancel as hard pion ChPT predicts
- furthermore $F_V^{\pi}(s)$ is the same as before, coefficient α of the chiral log not affected

$$F_V^{\pi\chi}(s) = 1 + \frac{s}{16\pi^2 F^2} \left(\frac{5}{18} - 16\pi^2 l_6^r + \frac{i\pi}{6} - \frac{1}{6}\ln\frac{s}{\mu^2}\right)$$

• this is a test of validity of hard pion ChPT

- ChPT valid only for soft mesons (at low energies), but sometimes needed at higher energies to perfom chiral extrapolations
- chiral logarithms can still be predicted with hard pion ChPT
- we applied (two-flavour) hard pion ChPT to semileptonic decays of *B* and *D* mesons
- we extended results to three-flavour hard pion ChPT: more $B(D) \rightarrow M$ transitions ($M = \pi, K, \eta$) and first comparison with experiments
- $B \rightarrow D\ell \nu_{\ell}$ decay also better understood
- we checked hard pion ChPT arguments for scalar and vector pion form factors including two-loop diagrams

Numerical analysis explanation

- Evaluation of each side of the relation using experimental data and/or dispersive analysis:
 [CGL] G. Colangelo, J. Gasser and H. Leutwyler (2001) (ππ scattering)
 [BDM] Büttiker, Descotes-Genon, Moussallam (2004) (πK scattering)
 [NA48/2] NA48/2 coll. (2008) (K_{ℓ4})
 [E865] S. Pislak *et al.* (2003) (K_{ℓ4})
- Evaluation using NNLO ChPT results; L_i =fit10 Amoros *et al.* (2001).
 J. Bijnens (2007)
- We quote the difference of the two evaluations ⇒ it contains only the p⁶ piece coming from the C_i and higher order terms.
- Errors obtained adding in quadrature the uncertainties from experiments/dispersive results. No theoretical uncertainty due to higher orders. Theoretical uncertainty due to L^r_i (probably under-)estimated.

Results for 5 relations involving $\pi\pi$ scattering observables

	[CGL]	NLO	NLO	NNLO	NNLO	remainder
		1-loop	LECs	2-loop	1-loop	
LHS (1)	0.009 ± 0.039	0.054	-0.044	-0.041	-0.002(3)	0.041 ± 0.039
RHS (1)	-0.102 ± 0.002	-0.009	-0.044	-0.060	-0.008(6)	0.018 ± 0.002
10 LHS (2)	0.334 ± 0.019	0.209	0.097	0.103	0.029(11)	-0.105 ± 0.019
10 RHS (2)	0.322 ± 0.008	0.177	0.097	0.120	0.034(13)	-0.107 ± 0.008
LHS (3)	0.216 ± 0.010	0.166	0.029	0.053	0.016(6)	-0.047 ± 0.010
RHS (3)	0.189 ± 0.003	0.145	0.029	0.049	0.020(7)	-0.054 ± 0.003
10 LHS (4)	0.213 ± 0.005	0.137	0.032	0.053	0.035(12)	-0.043 ± 0.005
10 RHS (4)	0.175 ± 0.003	0.121	0.032	0.050	0.029(10)	-0.057 ± 0.003
10^3 LHS (5)	0.92 ± 0.07	0.36	0.00	0.56	-0.01(13)	0.00 ± 0.07
10^3 RHS (5)	1.18 ± 0.04	0.42	0.00	0.57	0.03(13)	0.15 ± 0.04

A D > A A P >

Heavy Meson ChPT for semileptonic B(D) decays

Need to include heavy mesons: $m_b \rightarrow \infty \Rightarrow$ Heavy Quark Effective Theory combined with ChPT.

$$H^{a}(v) = \frac{1+\psi}{2} \left[B^{*a}_{\mu}(v) \gamma^{\mu} - B^{a}(v) \gamma_{5} \right]$$

v: four-velocity of the heavy meson *a*: light quark flavour index, $B^1 = B^+$ and $B^2 = B^0$ (similarly for B^*_{μ})

$$D^{\mu}_{ab}H_b(v) = \delta_{ab}\partial^{\mu}H_b(v) + \Gamma^{\mu}_{ab}H_b(v) \quad \Gamma^{\mu}_{ab} = \frac{1}{2} \left[u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger} \right]_{ab}$$

$$\mathcal{L}_{\text{heavy}} = -i \operatorname{Tr} \left[\overline{H}_a i v \cdot D_{ab} H_b \right] + g \operatorname{Tr} \left[\overline{H}_a u^{\mu}_{ab} H_b \gamma_{\mu} \gamma_5 \right]$$

g: coupling of the heavy meson doublet to the Goldstone boson $(BB^*\pi, B^*B^*\pi)$ Tr is over the γ -matrix indices

Extra Check: the relativistic Lagrangian

- $q^2 \neq q_{\text{max}}^2 \Rightarrow$ in the loops may appear very off-shell *B* and *B*^{*}
- do different treatments of the off-shell behavior lead to different nonanalyticities?
- according to our argument it should not be the case
- to test this, we calculate also in a relativistic formulation

The relativistic Lagrangian still respects the spin-flavour symmetries:

$$\mathcal{L}_{\mathrm{kin}} = \nabla^{\mu} B^{\dagger} \nabla_{\mu} B - m_{B}^{2} B^{\dagger} B - \frac{1}{2} B_{\mu\nu}^{*\dagger} B^{*\mu\nu} + m_{B}^{2} B_{\mu}^{*\dagger} B^{*\mu}$$

$$\mathcal{L}_{\mathrm{int}} = g M_{0} \left(B^{\dagger} u^{\mu} B_{\mu}^{*} + B_{\mu}^{*\dagger} u^{\mu} B \right) + \frac{g}{2} \epsilon^{\mu\nu\alpha\beta} \left(-B_{\mu}^{*\dagger} u_{\alpha} \nabla_{\mu} B_{\beta}^{*} + \nabla_{\mu} B_{\nu}^{*\dagger} u_{\alpha} B_{\beta}^{*} \right)$$

$$B_{\mu\nu}^{*} = \nabla_{\mu} B_{\nu}^{*} - \nabla_{\nu} B_{\mu}^{*}, \qquad \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu}$$

 B, B^* now in the relativistic form and column-vectors in light flavour space

From \mathcal{L}_{kin} we find the propagators of the *B* and B^* respectively:

$$\frac{i}{p^2 - m_B^2} \qquad \frac{-i\left(g_{\mu\nu} - \frac{p_\mu p_\nu}{m_B^2}\right)}{p^2 - m_B^2}$$

in contrast with the propagators in HMChPT formalism

$$rac{i}{v \cdot p} \qquad rac{-i\left(g_{\mu
u} - v_{\mu}v_{
u}
ight)}{v \cdot p}$$

This showes the different off-shell behavior.

Correctly we find the same coefficients in the two formalisms!

Sketch of the proof for heavy mesons semileptonic decay

- $q^2 \ll q_{\text{max}}^2 \Rightarrow$ operators with an arbitrary numbers of derivatives on the external π are not negligible since its momentum is large
- look at $\langle \pi(p_{\pi}) | O | B(v) \rangle$ $O = operator in J^{V}_{\mu}$ with more derivatives
- keep only: $\mathcal{O}(1)$, $\mathcal{O}(m_{\pi})$ and $\mathcal{O}(m_{\pi}^2 \log m_{\pi}^2)$. NO: $\mathcal{O}(m_{\pi}^2)$ without logarithms
- partial integration and dimensional analysis on $\langle \pi(p_{\pi}) | O | B(v) \rangle$
- $\langle \pi(p_{\pi}) | O | B(v) \rangle$ are all proportional to the lowest order ones up to terms $O(m_{\pi}^2)$ (and without logarithms) which are of higher order
- constants of proportionality can be absorbed in the couplings ⇒ they change with the q²!
- NOTE: kaon loops do not affect the discussion⇒ two- and three- flavour hard pion ChPT both OK