

Top-Antitop Threshold - Electroweak corrections

Pedro Ruiz-Femenía

University of Vienna

A. Hoang, C. Reisser, PRF arXiv:1002.3223 [hep-ph]M. Beneke, B. Jantzen, PRF arXiv:1004.2188 [hep-ph]

Outline

I Top-pair production at linear colliders near threshold

- II Non-resonant electroweak NLO contributions
- **III** Phase space matching
- IV Results & comparisons
- V Conclusions

I. Top-pair production near threshold

Future linear colliders (ILC/CLIC) with $\sqrt{s} \gtrsim 2m_t \simeq 350 \text{ GeV}$ will produce lots of $t\bar{t}$ pairs, allowing for a threshold scan of the top cross section

 \hookrightarrow Precise determination of the top mass m_t , the width Γ_t and the Yukawa coupling λ_t without the uncertainties/ ambiguities of hadron colliders $\rightarrow \delta m_t^{e\times p} \simeq 30 \text{ MeV}$

 $\rightarrow m_t$ is a crucial input for electroweak precision observables!

Requires also precise theoretical prediction

 $\Rightarrow \delta\sigma/\sigma \sim 2 - 3\% (\delta\sigma \sim 5 \text{ fb below threshold})$

QCD corrections are known (almost) up to NNLL/NNNLO, but electroweak (NLO) contributions due to top decay were missing!

Note: once EW effects are turned on, the physical final state is $W^+W^-b\bar{b}$

 $\Rightarrow \quad \sigma(e^+e^- \to W^+W^-b\bar{b}) \text{ in the } t\bar{t} \text{ resonance region} \\ \text{and allow for invariant-mass cuts on reconstructed } t, \bar{t} \end{cases}$

STATUS OF QCD CORRECTIONS

Decay $t \to bW^+$ with $\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\text{QCD}}$ $\Rightarrow t\bar{t}$ is perturbative at threshold

Bigi, Dokshitzer, Khoze, Kühn, Zerwas '86

Top quarks move slowly near threshold: $v = \sqrt{1 - \frac{4m_t^2}{s}} \sim \alpha_s \ll 1$ $\hookrightarrow \text{ sum } \left(\frac{\alpha_s}{v}\right)^n$ from "Coulomb gluons" to all orders $\to \mathbb{NRQCD}$ $R = \frac{\sigma_{t\bar{t}}}{\sigma_{v+v-}} = v \sum_n \left(\frac{\alpha_s}{v}\right)^n \left(\{1\}_{\text{LO}} + \{\alpha_s, v\}_{\text{NLO}} + \{\alpha_s^2, \alpha_s v, v^2\}_{\text{NNLO}} + \dots\right)$

Further RG improvement by summing also $(\alpha_s \ln v)^m$: LL, NLL, ... $\rightarrow \text{vNRQCD}_{pNRQCD}$

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

3/27

Effective field theory (EFT) for pair production of unstable particles near threshold, based on separation of resonant and nonresonant fluctuations

Hoang, Reisser '05 🔶

Beneke, Chapovsky, Khoze, Signer, Zanderighi '01-04; Actis, Beneke, Falgari, Schwinn, Signer, Zanderighi '07-08

• power counting for finite width effects:

$$\frac{\Gamma_t}{m_t} \sim \alpha_{\rm EW} \sim \alpha_s^2 \sim v^2 \ll 1$$

- hard modes ~ m_t (including top decay products) are integrated out
 → EFT with potential (nearly on-shell) top quarks and ultrasoft gluons
- Extract cross section for $e^+e^- \rightarrow W^+W^-b\bar{b}$ from appropriate cuts of the $e^+e^- \rightarrow e^+e^-$ forward-scattering amplitude:

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

ELECTROWEAK EFFECTS

Electroweak effects at LO Fadin, Khoze '87

- Replacement rule: $E = \sqrt{s} 2m_t \rightarrow E + i\Gamma_t$
 - \Rightarrow unstable top propagator

Electroweak effects at NLO

- Exchange of "Coulomb photon": trivially extension of QCD corrections
- Gluon exchange involving the bottom quarks in the final state ⇒ these contributions vanish at NLO for the total cross section, Fadin, Khoze, Martin '94; Melnikov, Yakovlev '94 also negligible if loose top invariant-mass cuts are applied; remains true at NNLO Hoang, Reisser '05; Beneke, Jantzen, RF '10
- Non-resonant (hard) corrections to $e^+e^- \rightarrow W^+W^-b\bar{b}$ which account for the production of the Wb pairs by highly virtual tops or with only one or no top

$$\hookrightarrow \quad \Delta\sigma_{\text{non-res}} = \frac{1}{s} \sum_{k} \operatorname{Im} \left[C_{4e}^{(k)} \right] \langle e^+ e^- | \mathcal{O}_{4e}^{(k)} | e^+ e^- \rangle$$

ELECTROWEAK EFFECTS

universität

Electroweak (non-trivial) effects at NNLO

- lifetime dilatation term $\delta \mathcal{L} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} \left(i \frac{\Gamma_t}{2} \frac{\mathbf{p}^2}{2m} \right) \psi_{\mathbf{p}}$
- absorptive parts in the 1-loop matching coeffs. of the production operators (arising from bW cuts) Hoang, Reisser '06

 \Rightarrow reproduce interferences between double and single resonant amplitudes

• real part of hard one-loop EW corrections Kuhn, Guth '92; Hoang, Reisser '06

ELECTROWEAK EFFECTS

Electroweak effects at NNLO (cont.)

• No EW corrections to the Coulomb potential at NNLO

resonant NNLO corrections produce "finite-width divergences"

(also called "phase space divergences")

$$\begin{array}{c} & \longrightarrow \\ & \searrow \\ & \searrow \\ & \swarrow \\ & \swarrow \\ & \searrow \\ & \swarrow \\ & \swarrow \\ & & \swarrow \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

• $C_{4e}^{(k)}(m_t)$ determined by the non-resonant contributions. Beyond NLO the exact computation is hard, but dominant terms can be obtained for moderate top invariant mass cuts \Rightarrow Phase space matching

II. Electroweak non-resonant NLO contributions

II. Electroweak non-resonant NLO contributions

Beneke, Jantzen, RF '10

- $\Rightarrow \text{cuts through } \frac{bW^+\bar{t}}{\bar{t}} \text{ (see diagrams)}$ and $\overline{b}W^-t$ (not shown) in the 2-loop forward scattering amplitude
- treat loop-momenta as hard: $p_t^2 - m_t^2 \sim \mathcal{O}(m_t^2) \gg \Sigma(p_t^2) \sim m_t^2 \alpha_{\text{EW}}$ $\rightarrow \Gamma_t = 0$
- suppressed w.r.t. LO $(\sim v)$ by $\alpha_{\rm EW}/v\sim \alpha_s$
- expansion in $\delta = \frac{s - 4m_t^2}{4m_t^2}$ $\hookrightarrow \text{ at NLO:}$ $s = 4m_t^2$

h3

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

 bW^+ from highly virtual top

h2

Wh4

Form of non-resonant contributions

In terms of the invariant mass of the bW^+ system, $p_t^2 = (p_b + p_{W^+})^2$, $(p_t \rightarrow \text{also momentum of the top line for h1-h4})$ diagrams h1-h10 read:

$$\int_{\Delta^2}^{m_t^2} dp_t^2 \, (m_t^2 - p_t^2)^{1/2 - \epsilon} \, H_i\!\left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2}\right)$$

with $\Delta^2 = M_W^2$ for the total cross section [Phase-space factor $(m_t^2 - p_t^2)^{1/2-\epsilon}$ in dim. reg. regularizes the end-point singularity for h1]

Applying invariant-mass cuts

Restrict invariant masses of the reconstructed $t, \bar{t}: |\sqrt{p_{t,\bar{t}}^2 - m_t}| \leq \Delta M_t$ \hookrightarrow lower integration limit $\Delta^2 = m_t^2 - \Lambda^2$ where $\Lambda^2 = (2m_t - \Delta M_t)\Delta M_t$ We focus on loose cuts with $\Lambda^2 \gg m_t \Gamma_t$ (corresponding to $\Delta M_t \gg \Gamma_t$)

 \rightsquigarrow cut has no effect in the resonant contributions

[In contrast: for tight cuts with $\Lambda^2 \sim m_t \Gamma_t$ ($\Delta M_t \sim \Gamma_t$), non-resonant contributions vanish and cuts only affect the resonant contributions]

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

RESULTS

Non-resonant NLO contributions: from numeric integration over p_t^2 (and over one angle for some diagrams), the integrand is an analytic function of p_t^2/m_t^2 and M_W^2/m_t^2 ; cut-dependence enters through the integration limit

Parameters: on-shell (pole) masses, $m_t = 172 \text{ GeV}$, $\Gamma_t = \Gamma_t^{\text{tree}} = 1.46550 \text{ GeV}$, α and $\sin^2 \theta_W$ from G_F , M_W , M_Z

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

11/27

III. Phase-space matching

III. Phase space matching

Alternative approach to compute non-resonant contributions Hoang, Reisser, RF 10

• Non-resonant contributions obtained for moderate invariant-mass cuts, $m_t\Gamma_t \ll \Lambda^2 \leq m_t^2$, as a series:

$$\frac{\Gamma_t}{\Lambda} \sum_{n,\ell,k} \left[\left(\frac{m_t \Gamma_t}{\Lambda^2} \right)^n \times \left(\frac{\Lambda^2}{m_t^2} \right)^\ell \right] \times \left(\alpha_s \frac{m_t}{\Lambda} \right)^k \qquad n,\ell,k=0,1,\dots$$

- NLO, NNLO and (partial) N³LO contributions obtained (counting $\Lambda \sim m_t$) \checkmark \rightarrow NLL, NNLL, N³LL in the vNRQCD framework
- Assumption: non-resonant background processes are small (\checkmark at NLO!)
- Beyond NLO, phase space matching approach cannot be applied to larger cuts up to the total cross section \times

CONCEPTS OF PHASE SPACE MATCHING

CONCEPTS OF PHASE SPACE MATCHING

Pedro Ruiz-Femenía · Teilchenphysikseminar · 17.03.2011

15/27

III. Phase space matching

CONCEPTS OF PHASE SPACE MATCHING

Leading order diagram

example, NNLL kin. insertion

 \Rightarrow numerically suppressed for $\Lambda \leq 110 \text{ GeV} (\Delta M_t \leq 35 \text{ GeV})$, do not spoil the nonrelativistic expansion

PHASE SPACE MATCHING WITH QCD EFFECTS

Coulomb-like potentials \rightarrow introduce powers of $\left(\frac{\alpha_s}{v}\right)^n \rightarrow \left(\alpha_s \frac{m_t}{\Lambda}\right)^n$

NNLL

 $\widetilde{C}^1(\Lambda)$

$$\propto \frac{m_t^2}{4\pi} \left[-\alpha_s \operatorname{Im} \left[\ln(-iv) \right] \right] -$$

 $\mathcal{O}(\alpha_s)$ contribution to LL Coulomb Green function

universität

wien

 $2\alpha_s \frac{m_t \Gamma_t}{\Lambda^2} + \alpha_s \frac{8\sqrt{2}}{3\pi} \frac{m_t^2 \Gamma_t}{\Lambda^3} \operatorname{Im} v + \dots \bigg]$

 $N^{3}LL$, nonanalytic in E

$$i\,\delta \tilde{c}_1(\Lambda)$$
 + $i\delta \tilde{c}_1(\Lambda)$

 \rightarrow matching for the $t\bar{t}$ currents

$$i\delta\tilde{c}_1(\Lambda) = -iC_F\alpha_s \frac{4\sqrt{2}}{3\pi} \frac{m_t^2\Gamma_t}{\Lambda^3}$$

- α_s -expansion of phase space matching contributions shows good convergence, also for relativistic corrections, for $\Lambda \sim 70 - 110 \text{ GeV} (\Delta M_t \sim 15 - 35 \text{ GeV})$
- N³LL $[\mathcal{O}(\alpha_s^2)]$ corrections (not fully known!) needed to meet experimental precision at the future LC

CONCEPTS OF PHASE SPACE MATCHING

$$\sigma_{b\bar{b}WW}(\Lambda) = \sigma_{\mathrm{NRQCD}}(\Lambda) + \sigma_{\mathrm{rem}}(\Lambda)$$
computed in the $t\bar{t}$ phase space regions remainder
full relativistic theory passing the cut on $p_{t,\bar{t}}^2$, contributions,
reproduced by NR expansion for example:
 \rightarrow use NRQCD rules $+ E, \Gamma_t \ll \Lambda^2/m_t$
to obtain coeffs. $\tilde{C}^{(n)}(\Lambda)$
"matching procedure"
inside the EFT itself \checkmark very small for $\alpha_s = 0$

IV. Results & comparisons

COMPARISON TO MADGRAPH/MADEVENT

 \hookrightarrow generated 10⁴ events for $e^+e^- \to W^+W^-b\bar{b}$ with MadGraph (MG) for $s = 4m_t^2$, and analyzed dependence on the bW invariant-mass cut ΔM_t

EFT result: resonant LO+NNLO ($\alpha_s = 0$) + non-resonant NLO

 $e^+e^- \rightarrow W^+W^-b\bar{b}$ tree-level cross section: energy dependence for different ΔM_t invariant-mass cuts

NON-QCD CORRECTIONS BEYOND NLO

Sizes of NNLL EW and phase space matching (psm) corrections

NNLL QED effects

NNLL hard one-loop EW effects

NNLL finite lifetime corrections

Non-resonant corrections

(NLL, NNLL, N³LL phase space matching contributions)

- psm contributions are the largest of the 4 classes of EW effects
- almost constant (small linear \sqrt{s} -dependence from γ, Z propagators)
- convergence of the psm procedure particularly good for larger ΔM_t

V. Conclusions

Precise determinations of top parameters in threshold region

- count number of $t\bar{t}$ events, color singlet state, background non-resonant, physics well understood
- EFT framework allows for a separation of resonant and non-resonant fluctuations and to sum up leading contributions
- QCD corrections well under control —> (almost) NNLL + N³LO

EW non-resonant corrections to $e^+e^- \rightarrow W^+W^-b\bar{b}$ in the $t\bar{t}$ resonance region

- complete NLO non-resonant contributions computed for total cross section and with top invariant-mass cuts
- NLO non-resonant amount ~ -30 fb (-3% above and up to -20% below threshold) for the total cross section, even more with invariant-mass cuts

V. Conclusions

Beyond NLO: Phase space matching approach

- dominant NNLO and NNNLO terms computed in the invariant mass range $\Delta M_t \sim 15-35~{
 m GeV}$ show good convergence
 - \Rightarrow need to be added to existing QCD results in view of the expected experimental uncertainties at the LC

Outlook

analysis of squark pair production at threshold also possible within scalar NRQCD

⇒ full NLL QCD running known Hoang, RF '05

P-wave production $(e^+e^- \rightarrow \tilde{q} \, \bar{\tilde{q}})$: phase-space divergencies more severe

$$\begin{aligned} G_{\text{coul}}^{L=1} &= m^2 \left(v^2 + \frac{C_F^2 \, \alpha_s^2}{4} \right) G_{\text{coul}} + \dots \implies m \, v^2 = E + i\Gamma \end{aligned} \quad \begin{aligned} &\text{Im} \, G_{\text{coul}}^{L=1} \sim \frac{\alpha_s \Gamma_t}{\epsilon} & \text{LO effect!} \\ & \text{(work in progress...)} \end{aligned} \end{aligned}$$

